1
|
Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J Control Release 2023; 362:667-691. [PMID: 37666302 DOI: 10.1016/j.jconrel.2023.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Gu Y, Wu L, Hameed Y, Nabi-Afjadi M. Overcoming the challenge: cell-penetrating peptides and membrane permeability. BIOMATERIALS AND BIOSENSORS 2023; 2. [DOI: 10.58567/bab02010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
<p>Cell-penetrating peptides (CPPs) have emerged as a promising strategy for enhancing the membrane permeability of bioactive molecules, particularly in the treatment of central nervous system diseases. CPPs possess the ability to deliver a diverse array of bioactive molecules into cells using either covalent or non-covalent approaches, with a preference for non-covalent methods to preserve the biological activity of the transported molecules. By effectively traversing various physiological barriers, CPPs have exhibited significant potential in preclinical and clinical drug development. The discovery of CPPs represents a valuable solution to the challenge of limited membrane permeability of bioactive molecules and will continue to exert a crucial influence on the field of biomedical science.</p>
Collapse
Affiliation(s)
- Yuan Gu
- The Statistics Department, The George Washington University, Washington, United States
| | - Long Wu
- Department of Surgery, University of Maryland, Baltimore, United States
| | - Yasir Hameed
- Department of Applied Biological Sciences, Tokyo University of Science, Tokyo, Japan
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Moreno-Gutierrez DS, Del Toro-Ríos X, Martinez-Sulvaran NJ, Perez-Altamirano MB, Hernandez-Garcia A. Programming the Cellular Uptake of Protein-Based Viromimetic Nanoparticles for Enhanced Delivery. Biomacromolecules 2023; 24:1563-1573. [PMID: 36877960 DOI: 10.1021/acs.biomac.2c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Viral mimetics is a noteworthy strategy to design efficient delivery systems without the safety drawbacks and engineering difficulties of modifying viral vectors. The triblock polypeptide CSB was previously designed de novo to self-assemble with DNA into nanocomplexes called artificial virus-like particles (AVLPs) due to their similarities to viral particles. Here, we show how we can incorporate new blocks into the CSB polypeptide to enhance its transfection without altering its self-assembly capabilities and the stability and morphology of the AVLPs. The addition of a short peptide (aurein) and/or a large protein (transferrin) to the AVLPs improved their internalization and specific targeting to cells by up to 11 times. Overall, these results show how we can further program the cellular uptake of the AVLPs with a wide range of bioactive blocks. This can pave the way to develop programmable and efficient gene delivery systems.
Collapse
Affiliation(s)
- David S Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Ximena Del Toro-Ríos
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Natalia J Martinez-Sulvaran
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Mayra B Perez-Altamirano
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| |
Collapse
|
4
|
Shen WJ, Tian DM, Fu L, Jin B, Liu Y, Xu YS, Ye YB, Wang XB, Xu XJ, Tang C, Li FP, Wang CF, Wu G, Yan LP. Elastin-Derived VGVAPG Fragment Decorated Cell-Penetrating Peptide with Improved Gene Delivery Efficacy. Pharmaceutics 2023; 15:670. [PMID: 36839992 PMCID: PMC9961289 DOI: 10.3390/pharmaceutics15020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 02/18/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are attractive non-viral gene delivery vectors due to their high transfection capacity and safety. Previously, we have shown that cell-penetrating peptide RALA can be a promising gene delivery vector for chronic wound regeneration application. In this study, we engineered a novel peptide called RALA-E by introducing elastin-derived VGVAPG fragment into RALA, in order to target the elastin-binding protein on the cell surface and thus improve delivery efficacy of RALA. The transfection efficiency of RALA-E was evaluated by transfecting the HEK-293T and HeLa cell lines cells with RALA-E/pDNA complexes and the flow-cytometry results showed that RALA-E significantly increased the transfection efficiency by nearly 20% in both cell lines compared to RALA. Inhibition of pDNA transfection on HEK-293T cells via chlorpromazine, genistein and mβCD showed that the inhibition extent in transfection efficiency was much less for RALA-E group compared to RALA group. In addition, RALA-E/miR-146a complexes showed up to 90% uptake efficiency in macrophages, and can escape from the endosome and enter the nucleus to inhibit the expression of inflammation genes. Therefore, the developed RALA-E peptide has high potential as a safe and efficient vector for gene therapy application.
Collapse
Affiliation(s)
- Wen-Juan Shen
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Duo-Mei Tian
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Le Fu
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Biao Jin
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Liu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yun-Sheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yong-Bin Ye
- Department of Hematology, Zhongshan Hospital Affiliated to Sun Yat-sen University, Zhongshan 528403, China
| | - Xiao-Bo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiao-Jun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Fang-Ping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun-Fei Wang
- Endoscopy Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Le-Ping Yan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Vambhurkar G, Amulya E, Sikder A, Shah S, Famta P, Khatri DK, Singh SB, Srivastava S. Nanomedicine based potentially transformative strategies for colon targeting of peptides: State-of-the-art. Colloids Surf B Biointerfaces 2022; 219:112816. [PMID: 36108367 DOI: 10.1016/j.colsurfb.2022.112816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022]
Abstract
Recently, peptides have attracted tremendous attention among researchers attributed to their high target specificity and efficacy compared to conventional therapeutics. The ease of self-administration and non-invasiveness confers oral as the most desirable route. However, numerous challenges associated with peptide delivery through the oral route like harsh gastrointestinal environment, enzymatic degradation, and absorption barriers hinder its clinical translation. Protease activity is more pronounced in the proximal segments of the gastrointestinal tract (GIT). Distal segments like the colon possess lower proteolytic activity, enhanced retention time, etc. which could facilitate easy absorption. However, traversing of the upper segments to reach the colon requires the circumvention of the pitfalls of the GIT. The advent of nanomedicine strategies could help in overcoming the said challenges associated with oral delivery, colon-specific targeting, and improving stability and bioavailability at the active site. Furthermore, the classification of peptides and various nanomedicine strategies for oral delivery of peptides to the colon has been conveyed. Regulatory hurdles and ways to accomplish clinical translation have been addressed.
Collapse
Affiliation(s)
- Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
6
|
Tasset A, Bellamkonda A, Wang W, Pyatnitskiy I, Ward D, Peppas N, Wang H. Overcoming barriers in non-viral gene delivery for neurological applications. NANOSCALE 2022; 14:3698-3719. [PMID: 35195645 PMCID: PMC9036591 DOI: 10.1039/d1nr06939j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gene therapy for neurological disorders has attracted significant interest as a way to reverse or stop various disease pathologies. Typical gene therapies involving the central and peripheral nervous system make use of adeno-associated viral vectors whose questionable safety and limitations in manufacturing has given rise to extensive research into non-viral vectors. While early research studies have demonstrated limited efficacy with these non-viral vectors, investigation into various vector materials and functionalization methods has provided insight into ways to optimize these non-viral vectors to improve desired characteristics such as improved blood-brain barrier transcytosis, improved perfusion in brain region, enhanced cellular uptake and endosomal escape in neural cells, and nuclear transport of genetic material post- intracellular delivery. Using a combination of various strategies to enhance non-viral vectors, research groups have designed multi-functional vectors that have been successfully used in a variety of pre-clinical applications for the treatment of Parkinson's disease, brain cancers, and cellular reprogramming for neuron replacement. While more work is needed in the design of these multi-functional non-viral vectors for neural applications, much of the groundwork has been done and is reviewed here.
Collapse
Affiliation(s)
- Aaron Tasset
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Arjun Bellamkonda
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Wenliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Ilya Pyatnitskiy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Deidra Ward
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Nicholas Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
8
|
The Peptide TAT-I24 with Antiviral Activity against DNA Viruses Binds Double-Stranded DNA with High Affinity. Biologics 2021. [DOI: 10.3390/biologics1010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The peptide TAT-I24, composed of the 9-mer peptide I24 and the TAT (48-60) peptide, exerts broad-spectrum antiviral activity against several DNA viruses. The current model of the mode of action suggests a reduction of viral entry and also a possible interaction with the viral DNA upon virus entry. To further support this model, the present study investigates the DNA binding properties of TAT-I24. DNA binding was analysed by gel retardation of a peptide-complexed DNA, fluorescence reduction of DNA labelled with intercalating dyes and determination of binding kinetics by surface plasmon resonance. Molecular dynamics simulations of DNA-peptide complexes predict high-affinity binding and destabilization of the DNA by TAT-I24. The effect on viral DNA levels of infected cells were studied by real-time PCR and staining of viral DNA by bromodeoxyuridine. TAT-I24 binds double-stranded DNA with high affinity, leading to inhibition of polymerase binding and thereby blocking of de novo nucleic acid synthesis. Analysis of early steps of virus entry using a bromodeoxyuridine-labelled virus as well as quantification of viral genomes in the cells indicate direct binding of the peptide to the viral DNA. Saturation of the peptide with exogenous DNA can fully neutralize the inhibitory effect. The antiviral activity of TAT-I24 is linked to its ability to bind DNA with high affinity. This mechanism could be the basis for the development of novel antiviral agents.
Collapse
|
9
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Tarvirdipour S, Huang X, Mihali V, Schoenenberger CA, Palivan CG. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules 2020; 25:E3482. [PMID: 32751865 PMCID: PMC7435460 DOI: 10.3390/molecules25153482] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology approaches play an important role in developing novel and efficient carriers for biomedical applications. Peptides are particularly appealing to generate such nanocarriers because they can be rationally designed to serve as building blocks for self-assembling nanoscale structures with great potential as therapeutic or diagnostic delivery vehicles. In this review, we describe peptide-based nanoassemblies and highlight features that make them particularly attractive for the delivery of nucleic acids to host cells or improve the specificity and sensitivity of probes in diagnostic imaging. We outline the current state in the design of peptides and peptide-conjugates and the paradigms of their self-assembly into well-defined nanostructures, as well as the co-assembly of nucleic acids to form less structured nanoparticles. Various recent examples of engineered peptides and peptide-conjugates promoting self-assembly and providing the structures with wanted functionalities are presented. The advantages of peptides are not only their biocompatibility and biodegradability, but the possibility of sheer limitless combinations and modifications of amino acid residues to induce the assembly of modular, multiplexed delivery systems. Moreover, functions that nature encoded in peptides, such as their ability to target molecular recognition sites, can be emulated repeatedly in nanoassemblies. Finally, we present recent examples where self-assembled peptide-based assemblies with "smart" activity are used in vivo. Gene delivery and diagnostic imaging in mouse tumor models exemplify the great potential of peptide nanoassemblies for future clinical applications.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| |
Collapse
|
11
|
Wang C, You J, Gao M, Zhang P, Xu G, Dou H. Bio-inspired gene carriers with low cytotoxicity constructed via the assembly of dextran nanogels and nano-coacervates. Nanomedicine (Lond) 2020; 15:1285-1296. [PMID: 32468909 DOI: 10.2217/nnm-2020-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: To achieve safe and biocompatible gene carriers. Materials & methods: A core/shell-structured hierarchical carrier with an internal peptide/gene coacervate 'core' and a dextran nanogel 'shell' on the surface has been designed. Results: The dextran nanogels shield coacervate (DNSC) can effectively condense genes and release them in reducing environments. The dextran nanogel-based 'shell' can effectively shield the positive charge of the peptide/gene coacervate 'core', thus reducing the side effects of cationic gene carriers. In contrast with the common nonviral gene carriers that had high cytotoxicities, the DNSC showed a high transfection efficiency while maintaining a low cytotoxicity. Conclusion: The DNSC provides an effective environmentally responsive gene carrier with potential applications in the fields of gene therapy and gene carrier development.
Collapse
Affiliation(s)
- Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Miaomiao Gao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
12
|
Yan LP, Castaño IM, Sridharan R, Kelly D, Lemoine M, Cavanagh BL, Dunne NJ, McCarthy HO, O'Brien FJ. Collagen/GAG scaffolds activated by RALA-siMMP-9 complexes with potential for improved diabetic foot ulcer healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111022. [PMID: 32993972 DOI: 10.1016/j.msec.2020.111022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Impaired wound healing of diabetic foot ulcers has been linked to high MMP-9 levels at the wound site. Strategies aimed at the simultaneous downregulation of the MMP-9 level in situ and the regeneration of impaired tissue are critical for improved diabetic foot ulcer (DFU) healing. To fulfil this aim, collagen/GAG (Col/GAG) scaffolds activated by MMP-9-targeting siRNA (siMMP-9) were developed in this study. The siMMP-9 complexes were successfully formed by mixing the RALA cell penetrating peptide with siMMP-9. The complexes formulated at N:P ratios of 6 to 15 had a diameter around 100 nm and a positive zeta potential about 40 mV, making them ideal for cellular uptake. In 2 dimensional (2D) culture of human fibroblasts, the cellular uptake of the complexes surpassed 60% and corresponded to a 60% reduction in MMP-9 gene expression in low glucose culture. In high glucose culture, which induces over-expression of MMP-9 and therefore serves as an in vitro model mimicking conditions in DFU, the MMP-9 gene could be downregulated by around 90%. In the 3D culture of fibroblasts, the siMMP-9 activated Col/GAG scaffolds displayed excellent cytocompatibility and ~60% and 40% MMP-9 gene downregulation in low and high glucose culture, respectively. When the siMMP-9 complexes were applied to THP-1 macrophages, the primary cell type producing MMP-9 in DFU, MMP-9 gene expression was significantly reduced by 70% and 50% for M0 and M1 subsets, in 2D culture. In the scaffolds, the MMP-9 gene and protein level of M1 macrophages decreased by around 50% and 30% respectively. Taken together, this study demonstrates that the RALA-siMMP-9 activated Col/GAG scaffolds possess high potential as a promising regenerative platform for improved DFU healing.
Collapse
Affiliation(s)
- Le-Ping Yan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland.
| | - Irene Mencía Castaño
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland
| | - Rukmani Sridharan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland
| | - Domhnall Kelly
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland
| | - Mark Lemoine
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland.
| |
Collapse
|
13
|
Li S, Zhao H, Fan Y, Zhao G, Wang R, Wen F, Wang J, Wang X, Wang Y, Gao Y. Design, synthesis, and in vitro antitumor activity of a transferrin receptor-targeted peptide-doxorubicin conjugate. Chem Biol Drug Des 2019; 95:58-65. [PMID: 31452330 DOI: 10.1111/cbdd.13613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/20/2019] [Accepted: 08/03/2019] [Indexed: 12/21/2022]
Abstract
In this study, a peptide-drug conjugate was designed and synthesized by connecting a transferrin receptor (TfR)-targeted binding peptide analog BP9a (CAHLHNRS) with doxorubicin (DOX) through N-succinimidyl-3-maleimidopropionate (SMP) as the cross-linker. Confocal laser scanning microscopy results indicated that free DOX mainly accumulated in the nuclei of both TfR overexpressed HepG2 hepatoma cells and L-O2 normal liver cells expressing low level of TfR; most of the BP9a-DOX conjugate displayed cytoplasmic location, and its cellular uptake by HepG2 cells was obviously reduced by TfR blockage test. Nevertheless, the cellular uptake of this conjugate by L-O2 cells was much less than that of free DOX. Meanwhile, the BP9a-DOX conjugate exhibited lower in vitro antiproliferative activity against HepG2 cells than free DOX, but its cytotoxic effect on L-O2 cells was decreased compared with that of free DOX. These results suggest that BP9a could be applied as a potential TfR-targeted peptide vector for selective drug delivery.
Collapse
Affiliation(s)
- Songtao Li
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Hongling Zhao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Yanfang Fan
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Guiqin Zhao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Ruxing Wang
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Fuyu Wen
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| | - Jianping Wang
- Department of Immunology, Chengde Medical University, Chengde, China
| | - Xiaohui Wang
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Yu Wang
- Department of Traumatic Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yang Gao
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Institute of Chinese Mateia Medica, Chengde Medical University, Chengde, China
| |
Collapse
|
14
|
DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomater 2019; 96:480-490. [PMID: 31299353 DOI: 10.1016/j.actbio.2019.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022]
Abstract
Castrate resistant prostate cancer (CRPC) remains a major challenge for healthcare professionals. Immunotherapeutic approaches, including DNA vaccination, hold the potential to harness the host's own immune system to mount a cell-mediated, anti-tumour response, capable of clearing disseminated tumour deposits. These anti-cancer vaccines represent a promising strategy for patients with advanced disease, however, to date DNA vaccines have demonstrated limited efficacy in clinical trials, owing to the lack of a suitable DNA delivery system. This study was designed to evaluate the efficacy of a two-tier delivery system incorporating cationic RALA/pDNA nanoparticles (NPs) into a dissolvable microneedle (MN) patch for the purposes of DNA vaccination against prostate cancer. Application of NP-loaded MN patches successfully resulted in endogenous production of the encoded Prostate Stem Cell Antigen (PSCA). Furthermore, immunisation with RALA/pPSCA loaded MNs elicited a tumour-specific immune response against TRAMP-C1 tumours ex vivo. Finally, vaccination with RALA/pPSCA loaded MNs demonstrated anti-tumour activity in both prophylactic and therapeutic prostate cancer models in vivo. This is further evidence that this two-tier MN delivery system is a robust platform for prostate cancer DNA vaccination. STATEMENT OF SIGNIFICANCE: This research describes the development and utilisation of our unique microneedle (MN) DNA delivery system, which enables penetration through the stratum corneum and deposition of the DNA within the highly immunogenic skin layers via a dissolvable MN matrix, and facilitates cellular uptake via complexation of pDNA cargo into nanoparticles (NPs) with the RALA delivery peptide. We report for the first time on using the NP-MN platform to immunise mice with encoded Prostate Stem Cell Antigen (mPSCA) for prostate cancer DNA vaccination. Application of the NP-MN system resulted in local mPSCA expression in vivo. Furthermore, immunisation with the NP-MN system induced a tumour-specific cellular immune response, and inhibited the growth of TRAMP-C1 prostate tumours in both prophylactic and therapeutic challenge models in vivo.
Collapse
|
15
|
Enhanced nanoparticle delivery exploiting tumour-responsive formulations. Cancer Nanotechnol 2018; 9:10. [PMID: 30595759 PMCID: PMC6276285 DOI: 10.1186/s12645-018-0044-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022] Open
Abstract
Nanoparticles can be used as drug carriers, contrast
agents and radiosensitisers for the treatment of cancer. Nanoparticles can either passively accumulate within tumour sites, or be conjugated with targeting ligands to actively enable tumour deposition. With respect to passive accumulation, particles < 150 nm accumulate with higher efficiency within the tumour microenvironment, a consequence of the enhanced permeability and retention effect. Despite these favourable properties, clinical translation of nano-therapeutics is inhibited due to poor in vivo stability, biodistribution and target cell internalisation. Nano-therapeutics can be modified to exploit features of the tumour microenvironment such as elevated hypoxia, increased pH and a compromised extracellular matrix. This is in contrast to cytotoxic chemotherapies which generally do not exploit the characteristic pathological features of the tumour microenvironment, and as such are prone to debilitating systemic toxicities. This review examines strategies for tumour microenvironment targeting to improve nanoparticle delivery, with particular focus on the delivery of nucleic acids and gold nanoparticles. Evidence for key research areas and future technologies are presented and critically evaluated. Among the most promising technologies are the development of next-generation cell penetrating peptides and the incorporation of micro-environment responsive stealth molecules.
Collapse
|
16
|
Cole G, McCaffrey J, Ali AA, McBride JW, McCrudden CM, Vincente-Perez EM, Donnelly RF, McCarthy HO. Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation. Hum Vaccin Immunother 2016; 13:50-62. [PMID: 27846370 DOI: 10.1080/21645515.2016.1248008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application.
Collapse
Affiliation(s)
- Grace Cole
- a School of Pharmacy, Queen's University Belfast , Belfast , Northern Ireland , UK
| | - Joanne McCaffrey
- a School of Pharmacy, Queen's University Belfast , Belfast , Northern Ireland , UK
| | - Ahlam A Ali
- a School of Pharmacy, Queen's University Belfast , Belfast , Northern Ireland , UK
| | - John W McBride
- a School of Pharmacy, Queen's University Belfast , Belfast , Northern Ireland , UK
| | - Cian M McCrudden
- a School of Pharmacy, Queen's University Belfast , Belfast , Northern Ireland , UK
| | - Eva M Vincente-Perez
- a School of Pharmacy, Queen's University Belfast , Belfast , Northern Ireland , UK
| | - Ryan F Donnelly
- a School of Pharmacy, Queen's University Belfast , Belfast , Northern Ireland , UK
| | - Helen O McCarthy
- a School of Pharmacy, Queen's University Belfast , Belfast , Northern Ireland , UK
| |
Collapse
|
17
|
McErlean EM, McCrudden CM, McCarthy HO. Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers. Ther Deliv 2016; 7:619-37. [PMID: 27582234 DOI: 10.4155/tde-2016-0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The therapeutic potential of cancer gene therapy has been limited by the difficulty of delivering genetic material to target sites. Various biological and molecular barriers exist which need to be overcome before effective nonviral delivery systems can be applied successfully in oncology. Herein, various barriers are described and strategies to circumvent such obstacles are discussed, considering both the extracellular and intracellular setting. Development of multifunctional delivery systems holds much promise for the progression of gene delivery, and a growing body of evidence supports this approach involving rational design of vectors, with a unique molecular architecture. In addition, the potential application of composite gene delivery platforms is highlighted which may provide an alternative delivery strategy to traditional systemic administration.
Collapse
|
18
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 882] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Masuda R, Yamamoto K, Koide T. Cellular Uptake of IgG Using Collagen-Like Cell-Penetrating Peptides. Biol Pharm Bull 2016; 39:130-4. [DOI: 10.1248/bpb.b15-00548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryo Masuda
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University
- Research Institute for Science and Engineering, Waseda University
| | - Kazuhiro Yamamoto
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University
| | - Takaki Koide
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University
| |
Collapse
|