1
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
2
|
Duong LD, West JD, Morano KA. Redox regulation of proteostasis. J Biol Chem 2024; 300:107977. [PMID: 39522946 DOI: 10.1016/j.jbc.2024.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead to their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network. Here, we highlight recent advances in our understanding of how cells respond to the challenges of protein folding and metabolic alterations that occur during oxidative stress. Immediately after an oxidative insult, cells selectively block the translation of most new proteins and shift molecular chaperones from folding to a holding role to prevent wholesale protein aggregation. At the same time, adaptive responses in gene expression are induced, allowing for increased expression of antioxidant enzymes, enzymes that carry out the reduction of oxidized proteins, and molecular chaperones, all of which serve to mitigate oxidative damage and rebalance proteostasis. Likewise, concomitant activation of protein clearance mechanisms, namely proteasomal degradation and particular autophagic pathways, promotes the degradation of irreparably damaged proteins. As oxidative stress is associated with inflammation, aging, and numerous age-related disorders, the molecular events described herein are therefore major determinants of health and disease.
Collapse
Affiliation(s)
- Long Duy Duong
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio, USA.
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
3
|
Ulfig A, Jakob U. Cellular oxidants and the proteostasis network: balance between activation and destruction. Trends Biochem Sci 2024; 49:761-774. [PMID: 39168791 DOI: 10.1016/j.tibs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024]
Abstract
Loss of protein homeostasis (proteostasis) is a common hallmark of aging and age-associated diseases. Considered as the guardian of proteostasis, the proteostasis network (PN) acts to preserve the functionality of proteins during their lifetime. However, its activity declines with age, leading to disease manifestation. While reactive oxygen species (ROS) were traditionally considered culprits in this process, recent research challenges this view. While harmful at high concentrations, moderate ROS levels protect the cell against age-mediated onset of proteotoxicity by activating molecular chaperones, stress response pathways, and autophagy. This review explores the nuanced roles of ROS in proteostasis and discusses the most recent findings regarding the redox regulation of the PN and its potential in extending healthspan and delaying age-related pathologies.
Collapse
Affiliation(s)
- Agnes Ulfig
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Gantner BN, Palma FR, Kayzuka C, Lacchini R, Foltz DR, Backman V, Kelleher N, Shilatifard A, Bonini MG. Histone oxidation as a new mechanism of metabolic control over gene expression. Trends Genet 2024; 40:739-746. [PMID: 38910033 PMCID: PMC11387142 DOI: 10.1016/j.tig.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
The emergence of aerobic respiration created unprecedented bioenergetic advantages, while imposing the need to protect critical genetic information from reactive byproducts of oxidative metabolism (i.e., reactive oxygen species, ROS). The evolution of histone proteins fulfilled the need to shield DNA from these potentially damaging toxins, while providing the means to compact and structure massive eukaryotic genomes. To date, several metabolism-linked histone post-translational modifications (PTMs) have been shown to regulate chromatin structure and gene expression. However, whether and how PTMs enacted by metabolically produced ROS regulate adaptive chromatin remodeling remain relatively unexplored. Here, we review novel mechanistic insights into the interactions of ROS with histones and their consequences for the control of gene expression regulation, cellular plasticity, and behavior.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cezar Kayzuka
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil; Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vadim Backman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Bioengineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Neil Kelleher
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcelo G Bonini
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Søgaard AB, Løvschall KB, Montasell MC, Cramer CB, Marcet PM, Pedersen AB, Jakobsen JH, Zelikin AN. Artificial Receptor in Synthetic Cells Performs Transmembrane Activation of Proteolysis. Adv Biol (Weinh) 2024:e2400053. [PMID: 38767247 DOI: 10.1002/adbi.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 05/22/2024]
Abstract
The design of artificial, synthetic cells is a fundamentally important and fast-developing field of science. Of the diverse attributes of cellular life, artificial transmembrane signaling across the biomolecular barriers remains a high challenge with only a few documented successes. Herein, the study achieves signaling across lipid bilayers and connects an exofacial enzymatic receptor activation to an intracellular biochemical catalytic response using an artificial receptor. The mechanism of signal transduction for the artificial receptor relies on the triggered decomposition of a self-immolative linker. Receptor activation ensues its head-to-tail decomposition and the release of a secondary messenger molecule into the internal volume of the synthetic cell. Transmembrane signaling is demonstrated in synthetic cells based on liposomes and mammalian cell-sized giant unilamellar vesicles and illustrates receptor performance in cell mimics with a diverse size and composition of the lipid bilayer. In giant unilamellar vesicles, transmembrane signaling connects exofacial receptor activation with intracellular activation of proteolysis. Taken together, the results of this study take a step toward engineering receptor-mediated, responsive behavior in synthetic cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexander N Zelikin
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
6
|
Knoke LR, Leichert LI. Global approaches for protein thiol redox state detection. Curr Opin Chem Biol 2023; 77:102390. [PMID: 37797572 DOI: 10.1016/j.cbpa.2023.102390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Due to its nucleophilicity, the thiol group of cysteine is chemically very versatile. Hence, cysteine often has important functions in a protein, be it as the active site or, in extracellular proteins, as part of a structural disulfide. Within the cytosol, cysteines are typically reduced. But the nucleophilicity of its thiol group makes it also particularly prone to post-translational oxidative modifications. These modifications often lead to an alteration of the function of the affected protein and are reversible in vivo, e.g. by the thioredoxin and glutaredoxin system. The in vivo-reversible nature of these modifications and their genesis in the presence of localized high oxidant levels led to the paradigm of thiol-based redox regulation, the adaptation, and modulation of the cellular metabolism in response to oxidative stimuli by thiol oxidation in regulative proteins. Consequently, the proteomic study of these oxidative posttranslational modifications of cysteine plays an indispensable role in redox biology.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
7
|
Piñeyro MD, Chiribao ML, Arias DG, Robello C, Parodi-Talice A. Overoxidation and Oligomerization of Trypanosoma cruzi Cytosolic and Mitochondrial Peroxiredoxins. Pathogens 2023; 12:1273. [PMID: 37887789 PMCID: PMC10610341 DOI: 10.3390/pathogens12101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Peroxiredoxins (Prxs) have been shown to be important enzymes for trypanosomatids, counteracting oxidative stress and promoting cell infection and intracellular survival. In this work, we investigate the in vitro sensitivity to overoxidation and the overoxidation dynamics of Trypanosoma cruzi Prxs in parasites in culture and in the infection context. We showed that recombinant m-TXNPx, in contrast to what was observed for c-TXNPx, exists as low molecular mass forms in the overoxidized state. We observed that T. cruzi Prxs were overoxidized in epimastigotes treated with oxidants, and a significant proportion of the overoxidized forms were still present at least 24 h after treatment suggesting that these forms are not actively reversed. In in vitro infection experiments, we observed that Prxs are overoxidized in amastigotes residing in infected macrophages, demonstrating that inactivation of at least part of the Prxs by overoxidation occurs in a physiological context. We have shown that m-TXNPx has a redox-state-dependent chaperone activity. This function may be related to the increased thermotolerance observed in m-TXNPx-overexpressing parasites. This study suggests that despite the similarity between protozoan and mammalian Prxs, T. cruzi Prxs have different oligomerization dynamics and sensitivities to overoxidation, which may have implications for their function in the parasite life cycle and infection process.
Collapse
Affiliation(s)
- María Dolores Piñeyro
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - María Laura Chiribao
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Diego G. Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, UNL-CONICET, Santa Fe 3000, Argentina;
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Adriana Parodi-Talice
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| |
Collapse
|
8
|
Villar SF, Ferrer-Sueta G, Denicola A. The multifaceted nature of peroxiredoxins in chemical biology. Curr Opin Chem Biol 2023; 76:102355. [PMID: 37385138 DOI: 10.1016/j.cbpa.2023.102355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
Peroxiredoxins (Prx), thiol-dependent peroxidases, were first identified as H2O2 detoxifiers, and more recently as H2O2 sensors, intermediates in redox-signaling pathways, metabolism modulators, and chaperones. The multifaceted nature of Prx is not only dependent on their peroxidase activity but also strongly associated with specific protein-protein interactions that are being identified, and where the Prx oligomerization dynamics plays a role. Their oxidation by a peroxide substrate forms a sulfenic acid that opens a route to channel the redox signal to diverse protein targets. Recent research underscores the importance of different Prx isoforms in the cellular processes behind disease development with potential therapeutic applications.
Collapse
Affiliation(s)
- Sebastián F Villar
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
9
|
Ulrich K. Redox-regulated chaperones in cell stress responses. Biochem Soc Trans 2023:233014. [PMID: 37140269 DOI: 10.1042/bst20221304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Proteostasis and redox homeostasis are tightly interconnected and most protein quality control pathways are under direct redox regulation which allow cells to immediately respond to oxidative stress conditions. The activation of ATP-independent chaperones serves as a first line of defense to counteract oxidative unfolding and aggregation of proteins. Conserved cysteine residues evolved as redox-sensitive switches which upon reversible oxidation induce substantial conformational rearrangements and the formation of chaperone-active complexes. In addition to harnessing unfolding proteins, these chaperone holdases interact with ATP-dependent chaperone systems to facilitate client refolding and restoring proteostasis during stress recovery. This minireview gives an insight into highly orchestrated mechanisms regulating the stress-specific activation and inactivation of redox-regulated chaperones and their role in cell stress responses.
Collapse
Affiliation(s)
- Kathrin Ulrich
- Institute of Biochemistry, Cellular Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
10
|
Olson KR, Derry PJ, Kent TA, Straub KD. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid Redox Signal 2023; 38:68-94. [PMID: 35819295 PMCID: PMC9885552 DOI: 10.1089/ars.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Significance: Nutraceuticals are ingested for health benefits, in addition to their general nutritional value. These dietary supplements have become increasingly popular since the late 20th century and they are a rapidly expanding global industry approaching a half-trillion U.S. dollars annually. Many nutraceuticals are promulgated as potent antioxidants. Recent Advances: Experimental support for the efficacy of nutraceuticals has lagged behind anecdotal exuberance. However, accumulating epidemiological evidence and recent, well-controlled clinical trials are beginning to support earlier animal and in vitro studies. Although still somewhat limited, encouraging results have been suggested in essentially all organ systems and against a wide range of pathophysiological conditions. Critical Issues: Health benefits of "antioxidant" nutraceuticals are largely attributed to their ability to scavenge oxidants. This has been criticized based on several factors, including limited bioavailability, short tissue retention time, and the preponderance of endogenous antioxidants. Recent attention has turned to nutraceutical activation of downstream antioxidant systems, especially the Keap1/Nrf2 (Kelch like ECH associated protein 1/nuclear factor erythroid 2-related factor 2) axis. The question now becomes, how do nutraceuticals activate this axis? Future Directions: Reactive sulfur species (RSS), including hydrogen sulfide (H2S) and its metabolites, are potent activators of the Keap1/Nrf2 axis and avid scavengers of reactive oxygen species. Evidence is beginning to accumulate that a variety of nutraceuticals increase cellular RSS by directly providing RSS in the diet, or through a number of catalytic mechanisms that increase endogenous RSS production. We propose that nutraceutical-specific targeting of RSS metabolism will lead to the design and development of even more efficacious antioxidant therapeutic strategies. Antioxid. Redox Signal. 38, 68-94.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, Arkansas, USA
- Department of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
11
|
Ulrich K, Farkas Á, Chan O, Katamanin O, Schwappach B, Jakob U. From guide to guard-activation mechanism of the stress-sensing chaperone Get3. Mol Cell 2022; 82:3226-3238.e7. [PMID: 35839781 PMCID: PMC9460928 DOI: 10.1016/j.molcel.2022.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
Oxidative stress conditions can cause ATP depletion, oxidative protein unfolding, and potentially toxic protein aggregation. To alleviate this proteotoxic stress, the highly conserved yeast protein, Get3, switches from its guiding function as an ATP-dependent targeting factor for tail-anchored proteins to its guarding function as an ATP-independent molecular chaperone that prevents irreversible protein aggregation. Here, we demonstrate that activation of Get3's chaperone function follows a tightly orchestrated multi-step process, centered around the redox status of two conserved cysteines, whose reactivity is directly controlled by Get3's nucleotide-binding state. Thiol oxidation causes local unfolding and the transition into chaperone-active oligomers. Vice versa, inactivation requires the reduction of Get3's cysteines followed by ATP-binding, which allows the transfer of bound client proteins to ATP-dependent chaperone systems for their effective refolding. Manipulating this fine-tuned cycle of activation and inactivation in yeast impairs oxidative stress resistance and growth, illustrating the necessity to tightly control Get3's intrinsic chaperone function.
Collapse
Affiliation(s)
- Kathrin Ulrich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ákos Farkas
- Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Olivia Chan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia Katamanin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Santiago A, Morano KA. Oxidation of two cysteines within yeast Hsp70 impairs proteostasis while directly triggering an Hsf1-dependent cytoprotective response. J Biol Chem 2022; 298:102424. [PMID: 36030825 PMCID: PMC9508553 DOI: 10.1016/j.jbc.2022.102424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases affect millions of Americans every year. One factor linked to the formation of aggregates associated with these diseases is damage sustained to proteins by oxidative stress. Management of protein misfolding by the ubiquitous Hsp70 chaperone family can be modulated by modification of two key cysteines in the ATPase domain by oxidizing or thiol-modifying compounds. To investigate the biological consequences of cysteine modification on the Hsp70 Ssa1 in budding yeast, we generated cysteine null (cysteine to serine) and oxidomimetic (cysteine to aspartic acid) mutant variants of both C264 and C303 and demonstrate reduced ATP binding, hydrolysis, and protein folding properties in both the oxidomimetic and hydrogen peroxide–treated Ssa1. In contrast, cysteine nullification rendered Ssa1 insensitive to oxidative inhibition. Additionally, we determined the oxidomimetic ssa1-2CD (C264D, C303D) allele was unable to function as the sole Ssa1 isoform in yeast cells and also exhibited dominant negative effects on cell growth and viability. Ssa1 binds to and represses Hsf1, the major transcription factor controlling the heat shock response, and we found the oxidomimetic Ssa1 failed to stably interact with Hsf1, resulting in constitutive activation of the heat shock response. Consistent with our in vitro findings, ssa1-2CD cells were compromised for de novo folding, post-stress protein refolding, and in regulated degradation of a model terminally misfolded protein. Together, these findings pinpoint Hsp70 as a key link between oxidative stress and proteostasis, information critical to understanding cytoprotective systems that prevent and manage cellular insults underlying complex disease states.
Collapse
Affiliation(s)
- Alec Santiago
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, Texas, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences at UTHealth Houston, Houston, Texas, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, Texas, USA.
| |
Collapse
|
13
|
Zhang Y, Liang S, Pan Z, Yu Y, Yao H, Liu Y, Liu G. XRE family transcriptional regulator XtrSs modulates Streptococcus suis fitness under hydrogen peroxide stress. Arch Microbiol 2022; 204:244. [PMID: 35386008 DOI: 10.1007/s00203-022-02854-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022]
Abstract
Streptococcus suis is an important emerging zoonosis that causes economic losses in the pig industry and severe threats to public health. Transcriptional regulators play essential roles in bacterial adaptation to host environments. In this study, we identified a novel XRE family transcriptional regulator in S. suis CZ130302, XtrSs, involved in the bacterial fitness to hydrogen peroxide stress. Based on electrophoretic mobility shift and β-galactosidase activity assays, we found that XtrSs auto-regulated its own transcription and repressed the expression of its downstream gene psePs, a surface protein with unknown function in S. suis, by binding to a palindromic sequence from the promoter region. Furthermore, we proved that the deletion of the psePs gene attenuated bacterial antioxidant response. Phylogenetic analysis revealed that XtrSs and PsePs naturally co-existed as a combination in most S. suis genomes. Collectively, we demonstrated the binding characteristics of XtrSs in S. suis and provided a new insight that XtrSs played a critical role in modulating psePs to the hydrogen peroxide resistance of S. suis.
Collapse
Affiliation(s)
- Yumin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Song Liang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
14
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
15
|
Herrmann JM, Becker K, Dick TP. Dynamics of thiol-based redox switches: redox at its peak! Biol Chem 2021; 402:221-222. [PMID: 33544502 DOI: 10.1515/hsz-2020-0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Katja Becker
- Biochemistry and Molecular Biology, University of Giessen, Giessen, Germany
| | - Tobias P Dick
- Redox Regulation, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|