1
|
Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, Tomescu CL, Ionescu AM. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants (Basel) 2023; 12:1907. [PMID: 38001761 PMCID: PMC10669212 DOI: 10.3390/antiox12111907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020956 Bucharest, Romania;
| | - Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
2
|
Rikame TN, Ranawade PS, Mittal SPK, Barvkar VT, Borde MY, Tak RD. Characterization and Biological Studies of the Terpenoids from Ganoderma resinaceum and Serpula similis (Agaricomycetes). Int J Med Mushrooms 2023; 25:15-31. [PMID: 37947061 DOI: 10.1615/intjmedmushrooms.2023050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mycochemical properties and bioactivities of Ganoderma resinaceum and Serpula similis remain unexplored. The present study assessed antioxidant, cytotoxicity, and cell migration abilities of Ganoderma and Serpula extracts, followed by their phytochemical analyses. The MTT assay was conducted to determine the cytotoxicity along with the cell migration studies in human cancer cell lines. The antioxidant profiles were evaluated through DPPH and FRAP assays. Furthermore, LC-MS/MS analysis was performed to elucidate the phytochemicals responsible for anticancer and antioxidant activities. Significant concentration-dependent cytotoxicities of 12.7% and 13.7% were observed against HCT 116 cell lines at 1% and 5% concentrations of the G. resinaceum extract, respectively. Similarly, significant concentration-dependent cytotoxicities of 6.7% and 25.5% were observed at 1% and 5% concentrations of the S. similis extract, respectively. The extracts of G. resinaceum and S. similis both shows better anti-migration potential in lung cancer cells. Both extracts demonstrated good scavenging activity on DPPH and ferric ion free radicals. LC-MS analysis revealed 11 compounds from S. similis and 15 compounds from G. resinaceum fruiting bodies. Compounds such as terpenoids, alkaloids, cytotoxic peptides, and other metabolites were identified as major components in both extracts. These extracts exhibited cytotoxic activity against HCT 116 cancer cells, along with moderate antioxidant activity. This implies that the extracts might be used as bioactive natural sources in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Tejal N Rikame
- Department of Chemistry, Ahmednagar College, Ahmednagar 414001, MH, India
| | - Preeti S Ranawade
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Smriti P K Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Mahesh Y Borde
- Department of Botany, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Rajesh D Tak
- Department of Chemistry, Ahmednagar College, Ahmednagar 414001, MH, India
| |
Collapse
|
3
|
Ghosh S, Das S, Saha R, Acharya K. Studies of Antioxidant and Cytotoxic Activity in Ready-to-Drink Wild Ganoderma Teas: An In Vitro Approach. Int J Med Mushrooms 2023; 25:53-63. [PMID: 37831512 DOI: 10.1615/intjmedmushrooms.2023050232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ganoderma is a medicinally important mushroom and has been used since ancient times. However, mostly G. lucidum has been used for therapeutic purposes, in form of tea, dietary and drug supplements but other species of Ganoderma are still remaining underexploited. This study is the first approach to valorize Ganoderma teas prepared from different wild species of Ganoderma other than G. lucidum with respect to both phytochemically and therapeutically through investigation of their phytochemical, carbohydrate contents and exploring their antioxidant activity. Phytochemical contents such as phenol and flavonoids were quantified using spectrophotometry methods. The carbohydrate content of the teas was estimated by phenol sulphuric acid method. The biochemical analysis revealed the teas contained a notable amount of phenolic compounds ranging from 19.15 to 40.2 µg GAE/mg of extract and also showed significant content of flavonoids. Further, antioxidant potential in terms of DPPH and ABTS radical scavenging ability and total antioxidant capacity was also evaluated. According to the results, G. resinaceum tea showed better potential in scavenging DPPH (EC50 36 ug/mL) and ABTS radicals (EC50 3 9 ug/mL) whereas the least effect was shown for the tea of G. ahmedi. Therefore, tea showing the best results, i.e. G. resinaceum tea, was also analyzed for cytotoxicity on breast cancer cells. It was found that the tea made from G. resinaceum inhibited cellular growth and proliferation in a dose-dependent manner with maximum growth inhibition (61%) observed at the highest concentration of 2.3 mg/mL. The presence of a greater quantity of carbohydrates in G. resinaceum tea also justified the remarkable anticancer potential of the tea. Overall, our findings indicated that a few wild species of Ganoderma other than G. lucidum have great potential to be valued as a healthy beverage with immense therapeutic benefits.
Collapse
Affiliation(s)
- Sandipta Ghosh
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India; School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan-173229, India
| | - Sristi Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Rituparna Saha
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | | |
Collapse
|
4
|
Arunachalam K, Sasidharan SP, Yang X. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. FOOD CHEMISTRY ADVANCES 2022; 1:100023. [PMID: 36686330 PMCID: PMC8887958 DOI: 10.1016/j.focha.2022.100023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 01/25/2023]
Abstract
The World Health Organization (WHO) declared COVID-19 as a pandemic on March 11, 2020, because of its widespread transmission and infection rates. The unique severe disease was found in Wuhan, China, since December 2019, and swiftly spread throughout the world. Natural chemicals derived from herbal medicines and medicinal mushrooms provide a significant resource for the development of novel antiviral drugs. Many natural drugs have been proven to have antiviral properties against a variety of virus strains, such as the coronavirus and the herpes simplex virus (HSV).. In this research, successful dietary treatments for different COVID illnesses were compared to potential of mushroom products in its therapy. In Google Scholar, Science Direct, PubMed, and Scopus, search keywords like COVID, COVID-19, SARS, MERS, mushrooms, and their compounds were utilized. In this review of the literature we foucsed popular mushrooms such as Agaricus subrufescens Peck, Agaricus blazei Murill, Cordyceps sinensis (Berk.) Sacc., Ganoderma lucidum (Curtis.) P. Karst., Grifola frondosa (Dicks.) Gray, Hericium erinaceus (Bull.) Pers., Inonotus obliquus (Arch. Ex Pers.) Pilát., Lentinula edodes (Berk.) Pegler, Pleurotus ostreatus (Jacq.) P. Kumm., Poria cocos F.A. Wolf, and Trametes versicolor (L.) Lloyd.,. Changed forms of β-Glucan seem to have a good impact on viral replication suppression and might be used in future studies. However, the results seems terpenoids, lectins, glycoproteins, lentinan, galactomannan, and polysaccharides from mushrooms are promising prophylactic or therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
Attenuation of Morphine Dependence by Ganoderma lucidum Extract in Mice. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Opioids are the principal drugs of choice for managing acute severe pain; however, physical dependence is still reported as one of the main limiting factors in the clinical application of these drugs. In the present study, the effect of Ganoderma lucidum (G. lucidum) was assessed on morphine dependence in mice. Methods: A 19-day administration schedule was applied to induce morphine dependence in male adult NMRI mice. The mice were given intraperitoneal (i.p.) morphine sulfate once daily in an increasing dose of 10, 20, and 40 mg/kg. Then, G. lucidum hydroalcoholic extract (12.5, 25, and 50 mg/kg, i.p.) was given to the mice from days 10 to 18. Another group of mice received single doses of the extract (50, 100, and 200 mg/kg, i.p.) only on the 19th day. Naloxone (3 mg/kg, i.p.) was used to precipitate withdrawal syndrome. Normal saline and diazepam (0.25 mg/kg) were used as the negative and positive controls, respectively. Results: The administration of single doses of G. lucidum extract (100 and 200 mg/kg, i.p.) significantly decreased the number of jumps, leanings, and diarrhea in mice subjected to morphine dependence. The repeated administration of G. lucidum extract (25 and 50 mg/kg for nine days) significantly attenuated the number of jumps, leanings, and diarrhea in morphine-dependent mice. Conclusions: Overall, G. lucidum extract attenuates induced morphine dependence and inhibits withdrawal syndrome symptoms in mice.
Collapse
|
6
|
Cör Andrejč D, Knez Ž, Knez Marevci M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front Pharmacol 2022; 13:934982. [PMID: 35935849 PMCID: PMC9353308 DOI: 10.3389/fphar.2022.934982] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 01/20/2023] Open
Abstract
Ganoderma lucidum is a very medicinal mushroom that has been utilized in Oriental medicine for many years. It has a wide range of pharmacological and therapeutic properties, and has been used for many years as a health promoter. It contains various biologically active compounds that improve the immune system and have antioxidant, antitumor, anti-inflammatory, antifungal, and antimicrobial properties. Active compounds include triterpenoids and polysaccharides, as well as proteins, lipids, phenolics, sterols, etc. In the following review, we summarize briefly their biological activities, such as antioxidant, anti-bacterial, anti-fungal, antitumor, anti-viral, and anti-inflammatory activity. Although Ganoderma has a number of medicinal effects that have been confirmed by the in vitro and in vivo studies summarised in this review, there are some limitations. Clinical trials face mainly a lack of pure constituents. Accurate identification of the compounds obtained is also problematic. In addition, most of the included studies were small, and there were concerns about the methodological quality of each study. Studies have shown that Ganoderma has valuable potential for the prevention and treatment of cancer. In any case, G. lucidum cannot be used as first-line therapy for cancer.
Collapse
Affiliation(s)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia.,Laboratory Faculty of Medicine, Maribor, Slovenia
| | | |
Collapse
|
7
|
Chan SW, Tomlinson B, Chan P, Lam CWK. The beneficial effects of Ganoderma lucidum on cardiovascular and metabolic disease risk. PHARMACEUTICAL BIOLOGY 2021; 59:1161-1171. [PMID: 34465259 PMCID: PMC8409941 DOI: 10.1080/13880209.2021.1969413] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 05/16/2023]
Abstract
CONTEXT Various herbal medicines are thought to be useful in the management of cardiometabolic disease and its risk factors. Ganoderma lucidum (Curtis) P. Karst. (Ganodermataceae), also known as Lingzhi, has received considerable attention for various indications, including some related to the prevention and treatment of cardiovascular and metabolic disease by ameliorating major cardiovascular risk factors. OBJECTIVE This review focuses on the major studies of the whole plant, plant extract, and specific active compounds isolated from G. lucidum in relation to the main risk factors for cardiometabolic disease. METHODS References from major databases including PubMed, Web of Science, and Google Scholar were compiled. The search terms used were Ganoderma lucidum, Lingzhi, Reishi, cardiovascular, hypoglycaemic, diabetes, dyslipidaemia, antihypertensive, and anti-inflammatory. RESULTS A number of in vitro studies and in vivo animal models have found that G. lucidum possesses antioxidative, antihypertensive, hypoglycaemic, lipid-lowering, and anti-inflammatory properties, but the health benefits in clinical trials are inconsistent. Among these potential health benefits, the most compelling evidence thus far is its hypoglycaemic effects in patients with type 2 diabetes or hyperglycaemia. CONCLUSIONS The inconsistent evidence about the potential health benefits of G. lucidum is possibly because of the use of different Ganoderma formulations and different study populations. Further large controlled clinical studies are therefore needed to clarify the potential benefits of G. lucidum preparations standardised by known active components in the prevention and treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
8
|
Fermentation Production of Ganoderma lucidum by Bacillus subtilis Ameliorated Ceftriaxone-induced Intestinal Dysbiosis and Improved Intestinal Mucosal Barrier Function in Mice. DIGITAL CHINESE MEDICINE 2020. [DOI: 10.1016/j.dcmed.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
9
|
Lalmuansangi C, Zosangzuali M, Lalremruati M, Tochhawng L, Siama Z. Evaluation of the protective effects of Ganoderma applanatum against doxorubicin-induced toxicity in Dalton’s Lymphoma Ascites (DLA) bearing mice. Drug Chem Toxicol 2020; 45:1243-1253. [DOI: 10.1080/01480545.2020.1812630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- C. Lalmuansangi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Mary Zosangzuali
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | | | - Zothan Siama
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
10
|
Density functional theory and molecular dynamics simulation support Ganoderma lucidum triterpenoids as broad range antagonist of matrix metalloproteinases. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Effects of sporoderm-broken spores of Ganoderma lucidum on growth performance, antioxidant function and immune response of broilers. ACTA ACUST UNITED AC 2019; 6:39-46. [PMID: 32211527 PMCID: PMC7082644 DOI: 10.1016/j.aninu.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/17/2019] [Accepted: 11/07/2019] [Indexed: 01/31/2023]
Abstract
This study was conducted to evaluate the effects of sporoderm-broken spores of Ganoderma lucidum (SSGL), a traditional Chinese medicinal herb, on growth performance, antioxidant ability, and immunity of broilers. Three hundred male broilers with similar body weights (40.0 ± 1.0 g) at 1 d of age were assigned randomly to 4 treatments. Each treatment contained 5 replicates of 15 birds per replicate. The dietary treatments were corn–soybean meal basal diet supplemented with SSGL at the concentrations of 0 (control), 100, 200 and 500 mg/kg diet. The results showed that diets supplemented with SSGL significantly increased (P < 0.05) the average daily gain and decreased (P < 0.05) the feed:gain (F:G) ratio of birds during the finisher period (22 to 44 d of age). Moreover, the total antioxidant capability, glutathione reductase and catalase activities in the liver and spleen were significantly higher (P < 0.05) in broilers fed diets with SSGL than in broilers fed the control diet. Additionally, dietary SSGL also increased (P < 0.05) the serum interleukin (IL)-2, immunoglobulin (Ig) A and IgG levels of broilers compared with the control diet. These results suggest that SSGL have ameliorative effects on growth performance, free radical-scavenging activity, antioxidant capability, and immune function of broilers.
Collapse
|
12
|
Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease. Sci Rep 2019; 9:19059. [PMID: 31836806 PMCID: PMC6911040 DOI: 10.1038/s41598-019-55723-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/30/2019] [Indexed: 12/05/2022] Open
Abstract
Dengue virus (DENV) infection causes serious health problems in humans for which no drug is currently available. Recently, DENV NS2B-NS3 protease has been proposed as a primary target for anti-dengue drug discovery due to its important role in new virus particle formation by conducting DENV polyprotein cleavage. Triterpenoids from the medicinal fungus Ganoderma lucidum have been suggested as pharmacologically bioactive compounds and tested as anti-viral agents against various viral pathogens including human immunodeficiency virus. However, no reports are available concerning the anti-viral activity of triterpenoids from Ganoderma lucidum against DENV. Therefore, we employed a virtual screening approach to predict the functional triterpenoids from Ganoderma lucidum as potential inhibitors of DENV NS2B-NS3 protease, followed by an in vitro assay. From in silico analysis of twenty-two triterpenoids of Ganoderma lucidum, four triterpenoids, viz. Ganodermanontriol (−6.291 kcal/mol), Lucidumol A (−5.993 kcal/mol), Ganoderic acid C2 (−5.948 kcal/mol) and Ganosporeric acid A (−5.983 kcal/mol) were predicted to be viral protease inhibitors by comparison to reference inhibitor 1,8-Dihydroxy-4,5-dinitroanthraquinone (−5.377 kcal/mol). These results were further studied for binding affinity and stability using the molecular mechanics/generalized Born surface area method and Molecular Dynamics simulations, respectively. Also, in vitro viral infection inhibition suggested that Ganodermanontriol is a potent bioactive triterpenoid.
Collapse
|
13
|
Pan Y, Lin Z. Anti-aging Effect of Ganoderma (Lingzhi) with Health and Fitness. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:299-309. [PMID: 31777025 DOI: 10.1007/978-981-32-9421-9_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although Ganoderma (Lingzhi in Chinese) has been used as an elixir for thousands of years, its anti-aging effects still need to be clarified. Aging is related to immunoregulation, oxidation stress, and free radical product. Till now, Ganoderma exert life span elongation activities by inhibiting ROS production, lipid peroxidation, and advanced oxidation protein products; increasing production of mitochondrial electron transport complexes, SOD, CAT, GSH and GSH-Px, DPPH, and ABTS radical scavenger activities; and having immunomodulatory and antioxidant activity by increasing radical scavenging activity and ferric reducing antioxidant power. Ganoderma's anti-aging effect on human remains a mystery, and its potential mechanisms underlying anti-aging effect for its clinical application still need to be elucidated.
Collapse
Affiliation(s)
- Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhibin Lin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
14
|
Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules 2018. [PMID: 29534044 PMCID: PMC6017764 DOI: 10.3390/molecules23030649] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.
Collapse
|
15
|
Ahmad F, Salahuddin M, Alamoudi W, Acharya S. Dysfunction of cortical synapse-specific mitochondria in developing rats exposed to lead and its amelioration by ascorbate supplementation. Neuropsychiatr Dis Treat 2018; 14:813-824. [PMID: 29606875 PMCID: PMC5868605 DOI: 10.2147/ndt.s148248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Lead (Pb) is a widespread environmental neurotoxin and its exposure even in minute quantities can lead to compromised neuronal functions. A developing brain is particularly vulnerable to Pb mediated toxicity and early-life exposure leads to permanent alterations in brain development and neuronal signaling and plasticity, culminating into cognitive and behavioral dysfunctions and elevated risk of neuropsychiatric disorders later in life. Nevertheless, the underlying biochemical mechanisms have not been completely discerned. METHODS Because of their ability to fulfill high energy needs and to act as calcium buffers in events of high intensity neuronal activity as well as their adaptive regulatory capability to match the requirements of the dynamicity of synaptic signaling, synapse-specific or synaptic mitochondria (SM) are critical for synaptic development, function and plasticity. Our aim for the present study hence was to characterize the effects of early-life Pb exposure on the functions of SM of prepubertal rats. For this purpose, employing a chronic model of Pb neurotoxicity, we exposed rat pups perinatally and postnatally to Pb and used a plethora of colorimetric and fluorometric assays for assessing redox and bioenergetic properties of SM. In addition, taking advantage of its ability as an antioxidant and as a metal chelator, we employed ascorbic acid (vitamin C) supplementation as an ameliorative therapeutic strategy against Pb-induced neurotoxicity and dysfunction of SM. RESULTS Our results suggest that early-life exposure to Pb leads to elevated oxidative stress in cortical SM with consequent compromises in its energy metabolism activity. Ascorbate supplementation resulted in significant recovery of Pb-induced oxidative stress and functional compromise of SM. CONCLUSION Alterations in redox status and bioenergetic properties of SM could potentially contribute to the synaptic dysfunction observed in events of Pb neurotoxicity. Additionally, our study provides evidence for suitability of ascorbate as a significant ameliorative agent in tacking Pb neurotoxicity.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Neuroscience Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Salahuddin
- Animal House Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Widyan Alamoudi
- Neuroscience Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sadananda Acharya
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
16
|
Kao CH, Bishop KS, Xu Y, Han DY, Murray PM, Marlow GJ, Ferguson LR. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis. GENOMICS INSIGHTS 2016; 9:1-16. [PMID: 27006591 PMCID: PMC4778854 DOI: 10.4137/gei.s32477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 01/07/2023]
Abstract
Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis.
Collapse
Affiliation(s)
- Chi H.J. Kao
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Karen S. Bishop
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yuanye Xu
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Dug Yeo Han
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Pamela M. Murray
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Gareth J. Marlow
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lynnette R. Ferguson
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
New Insights into the Role of Metformin Effects on Serum Omentin-1 Levels in Acute Myocardial Infarction: Cross-Sectional Study. Emerg Med Int 2015; 2015:283021. [PMID: 26682070 PMCID: PMC4670866 DOI: 10.1155/2015/283021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 11/23/2022] Open
Abstract
Background. Serum omentin-1 level was low in the most types of ischemic heart disease compared to normal subjects; it also dependently correlated with coronary heart disease; thus, omentin-1 is regarded as a novel biomarker in IHD. Objective. The aim of the present study was to establish the links between omentin-1 and acute myocardial infarction in metformin patients. Subjects and Methods. A cross-sectional study was performed on eighty-five patients with type II DM and acute MI. They are divided as follows: Group I, 62 patients with type II DM who received metformin prior to onset of acute MI; Group II, 23 patients with type II DM who did not receive metformin prior to onset of acute MI; and Group III, 30 normal healthy controls. Venous blood was drawn from each participant for determination of lipid profile, plasma omentin-1, cardiac troponin-I (cTn-I) and other routine tests. Results. Patients that presented with acute MI that received metformin show a significant difference in all biochemical parameters (p < 0.001); metformin increases serum omentin-1 level and decreases serum cardiac troponin-I level compared with control subjects and nonmetformin treated patients. Conclusion. Metformin pharmacotherapy increases omentin-1 serum levels and may be regarded as a potential agent in the prevention of the occurrences of acute MI in diabetic patients.
Collapse
|
18
|
Bishop KS, Kao CHJ, Xu Y, Glucina MP, Paterson RRM, Ferguson LR. From 2000years of Ganoderma lucidum to recent developments in nutraceuticals. PHYTOCHEMISTRY 2015; 114:56-65. [PMID: 25794896 DOI: 10.1016/j.phytochem.2015.02.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 05/21/2023]
Abstract
Medicinal mushrooms have been used for centuries as nutraceuticals to improve health and to treat numerous chronic and infectious diseases. One such mushroom is Ganoderma lucidum, commonly known as Lingzhi, a species revered as a medicinal mushroom for treating assorted diseases and prolonging life. The fungus is found in diverse locations, and this may have contributed to confusion regarding the correct taxonomic classification of the genus Ganoderma. G. lucidum was first used to name a specimen found in England and thereafter was naively applied to a different Ganoderma species found in Asia, commonly known as Chinese Lingzhi. Despite the taxonomic confusion, which has largely been uncorrected, the popularity of Lingzhi has escalated across the globe. The current taxonomic situation is now discussed accurately in this Special Issue on Ganoderma. Today it is a multi-billion dollar industry wherein Lingzhi is cultivated or collected from the wild and consumed as a tea, in alcoholic beverages, and as a nutraceutical to confer numerous health benefits. Consumption of nutraceuticals has grown in popularity, and it is becoming increasingly important that active ingredients be identified and that suppliers make substantiated health claims about their products. The objective of this article is to present a review of G. lucidum over the past 2000 years from prized ancient "herbal" remedy to its use in nutraceuticals and to the establishment of a 2.5 billion $ (US) industry.
Collapse
Affiliation(s)
- Karen S Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Chi H J Kao
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yuanye Xu
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - R Russell M Paterson
- IBB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Rai PK, Russell OM, Lightowlers RN, Turnbull DM. Potential compounds for the treatment of mitochondrial disease. Br Med Bull 2015; 116:5-18. [PMID: 26590387 DOI: 10.1093/bmb/ldv046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Mitochondrial diseases are a group of heterogeneous disorders for which no curative therapy is currently available. Several drugs are currently being pursued as candidates to correct the underlying biochemistry that causes mitochondrial dysfunction. SOURCES OF DATA A systematic review of pharmacological therapeutics tested using in vitro, in vivo models and clinical trials. Results presented from database searches undertaken to ascertain compounds currently being pioneered to treat mitochondrial disease. AREAS OF AGREEMENT Previous clinical research has been hindered by poorly designed trials that have shown some evidence in enhancing mitochondrial function but without significant results. AREAS OF CONTROVERSY Several compounds under investigation display poor pharmacokinetic profiles or numerous off target effects. GROWING POINTS Drug development teams should continue to screen existing and novel compound libraries for therapeutics that can enhance mitochondrial function. Therapies for mitochondrial disorders could hold potential cures for a myriad of other ailments associated with mitochondrial dysfunction such as neurodegenerative diseases.
Collapse
Affiliation(s)
- P K Rai
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - O M Russell
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - R N Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - D M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
20
|
Pallua JD, Pezzei C, Zelger B, Schaefer G, Bittner LK, Huck-Pezzei VA, Schoenbichler SA, Hahn H, Kloss-Brandstaetter A, Kloss F, Bonn GK, Huck CW. Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma. Analyst 2012; 137:3965-74. [PMID: 22792538 DOI: 10.1039/c2an35483g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) of the oral cavity and oropharynx represents more than 95% of all malignant neoplasms in the oral cavity. Histomorphological evaluation of this cancer type is invasive and remains a time consuming and subjective technique. Therefore, novel approaches for histological recognition are necessary to identify malignancy at an early stage. Fourier transform infrared (FTIR) imaging has become an essential tool for the detection and characterization of the molecular components of biological processes, such as those responsible for the dynamic properties of tumor progression. FTIR imaging is a modern analytical technique enabling molecular imaging of a complex biological sample and is based on the absorption of IR radiation by vibrational transitions in covalent bonds. One major advantage of this technique is the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue and avoiding time-consuming extraction, purification, and separation steps. With this imaging technique, it is possible to obtain unique images of the spatial distribution of proteins, lipids, carbohydrates, cholesterols, nucleic acids, phospholipids, and small molecules with high spatial resolution. Analysis and visualization of FTIR imaging datasets are challenging and the use of chemometric tools is crucial in order to take advantage of the full measurement. Therefore, methodologies for this task based on the novel developed algorithm for multivariate image analysis (MIA) are often necessary. In the present study, FTIR imaging and data analysis methods were combined to optimize the tissue measurement mode after deparaffinization and subsequent data evaluation (univariate analysis and MIAs). We demonstrate that it is possible to collect excellent IR spectra from formalin-fixed paraffin-embedded (FFPE) tissue microarrays (TMAs) of OSCC tissue sections employing an optimised analytical protocol. The correlation of FTIR imaging to the morphological tissue features obtained by histological staining of the sections demonstrated that many histomorphological tissue patterns can be visualized in the colour images. The different algorithms used for MIAs of FTIR imaging data dramatically increased the information content of the IR images from squamous cell tissue sections. These findings indicate that intra-operative and surgical specimens of squamous cell carcinoma tissue can be characterized by FTIR imaging.
Collapse
Affiliation(s)
- J D Pallua
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80-82-52a, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ganoderma lucidum polysaccharides reduce methotrexate-induced small intestinal damage in mice via induction of epithelial cell proliferation and migration. Acta Pharmacol Sin 2011; 32:1505-12. [PMID: 22019957 DOI: 10.1038/aps.2011.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM To study the effects of Ganoderma lucidum polysaccharides (Gl-PS) on methotrexate (MTX)-induced small intestinal damage in mice and the underlying mechanisms. METHODS BALB/c mice were used for in vivo study. The mice were administered with Gl-PS (50, 100, or 200 mg/kg, ig) for 10 d, and injected with MTX (50 mg/kg, ip) on d 7 and 8 to induce intestinal damage, and then sacrificed on d 11 for morphological study and tissue malondialdehyde (MDA) and superoxide dismutase (SOD) measurements. Before sacrificing, blood samples were collected to analyze immunoglobulin A (IgA). Rat intestinal IEC-6 cells were used for in vitro study. Cell proliferation and migration were assessed using MTT method and an in vitro wounding model, respectively. Transforming growth factor β (TGFβ) protein expression was determined using ELISA assay. Ornithine decarboxylase (ODC) and c-Myc mRNA expression profiles were determined using RT-PCR. RESULTS MTX treatment caused severe mucosal damage, significantly increased small intestine MDA levels, and decreased SOD and serum IgA levels in BALB/c mice. Gl-PS (100 and 200 mg/kg) markedly reversed the MTX effects. In IEC-6 cells, Gl-PS (0.1, 1, and 10 μg/mL) significantly stimulated the cell proliferation. Furthermore, Gl-PS (10 μg/mL) significantly stimulated the cell migration. In addition, Gl-PS (10 and 20 μg/mL) significantly increased the expression of ODC and c-Myc mRNAs. However, Gl-PS (up to 20 μg/mL) had no effect on the expression of TGFβ protein. CONCLUSION The results suggest that Gl-PS protects small intestine against MTX-induced injury via induction of epithelial cell proliferation and migration.
Collapse
|
22
|
Huang M, Liu J, Zhang S, Mei X, Yang X. Effects of bioactive extracts from four edible mushrooms on the lifespan of Drosophila melanogaster. Mycology 2011. [DOI: 10.1080/21501203.2011.568017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Mian Huang
- a College of Life Science , South China Normal University , Guangzhou, China
| | - Jinqing Liu
- a College of Life Science , South China Normal University , Guangzhou, China
| | - Song Zhang
- a College of Life Science , South China Normal University , Guangzhou, China
| | - Xiaodeng Mei
- a College of Life Science , South China Normal University , Guangzhou, China
| | - Xiaobin Yang
- b Yuewei Edible Fungi Technology Co. Ltd. , Guangzhou, China
| |
Collapse
|