1
|
Soni S, Stevens A, Batra G, Heazell AEP. Characterising delayed villous maturation: A narrative literature review. Placenta 2024; 158:48-56. [PMID: 39368233 DOI: 10.1016/j.placenta.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The normal development of the placenta is vital for fetal growth and a healthy pregnancy outcome. Delayed villous maturation (DVM) is a placental lesion that has been implicated in stillbirth. In DVM, villi do not maturate adequately for their gestational age. DVM is characterised by larger and fewer terminal placental villi, low numbers of syncytial knots, and thicker and fewer vasculosyncytial membranes. DVM is most commonly reported in conjunction with maternal diabetes; however, the occurrence of idiopathic DVM suggests that there may be multiple mechanistic pathways that contribute to DVM. DVM can only be diagnosed through histopathological examination after birth, and there is significant interobserver variability in diagnosis. Establishing objective criteria to distinguish between DVM and healthy placentas is key to increasing the understanding of DVM. Vasculosyncytial membrane count, numbers of syncytial knots and CD15, among others, have been presented as potential diagnostic criteria in the literature. This review aims to compile information on DVM, including the pathophysiology, conditions that have reported associations with DVM and potential markers that could be used as criteria to differentiate between DVM and healthy placentas.
Collapse
Affiliation(s)
- Sharanam Soni
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Adam Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Gauri Batra
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Department of Obstetrics, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
2
|
Lear CA, Maeda Y, King VJ, Dhillon SK, Beacom MJ, Gunning MI, Lear BA, Davidson JO, Stone PR, Ikeda T, Gunn AJ, Bennet L. Circadian patterns of heart rate variability in fetal sheep after hypoxia-ischaemia: A biomarker of evolving brain injury. J Physiol 2024; 602:6553-6569. [PMID: 37432936 PMCID: PMC11607889 DOI: 10.1113/jp284560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.8 gestation (equivalent to term humans). We have previously shown that this is associated with delayed development of severe white and grey matter injury, including cystic white matter injury (WMI) resembling that observed in human preterm infants. HI was associated with suppression of time and frequency domain measures of FHRV and reduced their circadian rhythmicity during the first 3 days of recovery. By contrast, circadian rhythms of multiple measures of FHRV were exaggerated over the final 2 weeks of recovery, mediated by a greater reduction in FHRV during the morning nadir, but no change in the evening peak. These data suggest that the time of day at which FHRV measurements are taken affects their diagnostic utility. We further propose that circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury. KEY POINTS: Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and probably for disability in survivors, although there are no reliable biomarkers for antenatal brain injury. In preterm fetal sheep, acute HI that is known to lead to delayed development of severe white and grey matter injury over 3 weeks, was associated with early suppression of multiple time and frequency domain measures of fetal heart rate variability (FHRV) and loss of their circadian rhythms during the first 3 days after HI. Over the final 2 weeks of recovery after HI, exaggerated circadian rhythms of frequency domain FHRV measures were observed. The morning nadirs were lower with no change in the evening peak of FHRV. Circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury.
Collapse
Affiliation(s)
- Christopher A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Yoshiki Maeda
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Victoria J. King
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Simerdeep K. Dhillon
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Michael J. Beacom
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Mark I. Gunning
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Benjamin A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Joanne O. Davidson
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Peter R. Stone
- The Department of Obstetrics and GynaecologyThe University of AucklandAucklandNew Zealand
| | - Tomoaki Ikeda
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Alistair J. Gunn
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Laura Bennet
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| |
Collapse
|
3
|
Lear CA, Dhillon SK, Nakao M, Lear BA, Georgieva A, Ugwumadu A, Stone PR, Bennet L, Gunn AJ. The peripheral chemoreflex and fetal defenses against intrapartum hypoxic-ischemic brain injury at term gestation. Semin Fetal Neonatal Med 2024; 29:101543. [PMID: 39455374 DOI: 10.1016/j.siny.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Fetal hypoxemia is ubiquitous during labor and, when severe, is associated with perinatal death and long-term neurodevelopmental disability. Adverse outcomes are highly associated with barriers to care, such that developing countries have a disproportionate burden of perinatal injury. The prevalence of hypoxemia and its link to injury can be obscure, simply because the healthy fetus has robust coordinated defense mechanisms, spearheaded by the peripheral chemoreflex, such that hypoxemia only becomes apparent in the minority of cases associated with stillbirth, severe metabolic acidemia or adverse neurodevelopmental outcomes. This represents only the extreme end of the spectrum, when defense mechanisms have failed due to severe/prolonged hypoxemia, or the fetal defenses are compromised by additional risk factors. Understanding the fetal defenses to hypoxemia and when the fetus begins to decompensate is crucial to understanding perinatal health and disease, by linking antenatal health, intrapartum events, the neonatal trajectory and ultimately life-long neurodevelopmental health.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand.
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Masahiro Nakao
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Antoniya Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
4
|
Nardi E, Seidita I, Abati I, Donati C, Bernacchioni C, Castiglione F, Serena C, Mecacci F, Bloise E, Petraglia F. The placenta in fetal death: molecular evidence of dysregulation of inflammatory, proliferative, and fetal protective pathways. Am J Obstet Gynecol 2024:S0002-9378(24)00679-3. [PMID: 38908653 DOI: 10.1016/j.ajog.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND It is estimated that over 2 million cases of fetal death occur worldwide every year, but, despite the high incidence, several basic and clinical characteristics of this disorder are still unclear. Placenta is suggested to play a central role in fetal death. Placenta produces hormones, cytokines and growth factors that modulate functions of the placental-maternal unit. Fetal death has been correlated with impaired secretion of some of these regulatory factors. OBJECTIVE The aim of the present study was to evaluate, in placentas collected from fetal death, the gene expression of inflammatory, proliferative and protective factors. STUDY DESIGN Cases of fetal death in singleton pregnancy were retrospectively selected, excluding pregnancies complicated by fetal anomalies, gestational diabetes, intrauterine growth restriction and moderate to severe maternal diseases. A group of placentas collected from healthy singleton term pregnancies were used as controls. Groups were compared regarding maternal and gestational age, fetal sex and birthweight. Placental messenger RNA expression of inflammatory (interleukin 6), proliferative (activin A, transforming growth factor β1) and regulatory (vascular endothelial growth factor, vascular endothelial growth factor receptor 2, ATP-binding cassette transporters (ABC) ABCB1 and ABCG2, sphingosine 1-phosphate signaling pathway) markers was conducted using real-time polymerase chain reaction. Statistical analysis and graphical representation of the data were performed using the GraphPad Prism 5 software. For the statistical analysis, Student's t test was used, and P values<.05 were considered significant. RESULTS Placental mRNA expression of interleukin 6 and vascular endothelial growth factor receptor 2 resulted significantly higher in the fetal death group compared to controls (P<.01), while activin A, ABCB1, and ABCG2 expression resulted significantly lower (P<.01). A significant alteration in the sphingosine 1-phosphate signaling pathway was found in the fetal death group, with an increased expression of the specific receptor isoforms sphingosine 1-phosphate receptor 1, 3, and 4 (sphingosine 1-phosphate1, sphingosine 1-phosphate3, sphingosine 1-phosphate4) and of sphingosine kinase 2, 1 of the enzyme isoforms responsible for sphingosine 1-phosphate synthesis (P<.01). CONCLUSION The present study confirmed a significantly increased expression of placental interleukin 6 and vascular endothelial growth factor receptor 2 mRNA, and for the first time showed an increased expression of sphingosine 1-phosphate receptors and sphingosine kinase 2 as well as a decreased expression of activin A and of selected ATP-binding cassette transporters, suggesting that multiple inflammatory and protective factors are deranged in placenta of fetal death.
Collapse
Affiliation(s)
- Eleonora Nardi
- Pathology, Department of Health Science, University of Florence, Florence, Italy
| | - Isabelle Seidita
- Lipid Cell Signaling and Biology Lab, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Isabella Abati
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Chiara Donati
- Lipid Cell Signaling and Biology Lab, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Caterina Bernacchioni
- Lipid Cell Signaling and Biology Lab, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Caterina Serena
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Federico Mecacci
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, University of Florence, Florence, Italy
| | - Enrrico Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Felice Petraglia
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, University of Florence, Florence, Italy.
| |
Collapse
|
5
|
Jonker SS, Louey S. Fetal cardiac troponin I levels decline toward birth in sheep. Am J Physiol Heart Circ Physiol 2024; 326:H1538-H1543. [PMID: 38758126 PMCID: PMC11380961 DOI: 10.1152/ajpheart.00224.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Elevated cardiac troponin I (cTnI), a myocardial damage biomarker, has been reported in cord blood of neonates delivered vaginally or by cesarean section. Although the neonatal peak likely reflects the physiological adjustment to extrauterine life, a better understanding of serial prepartum changes is required to determine physiological causes of fetal cTnI release. We longitudinally sampled eight healthy lambs (20 days before spontaneous birth to 5 days postnatal), and from three fetuses receiving intravenous IGF-1. Samples were collected into heparin, and the plasma was stored at -80°C for later determination of high-sensitivity (hs) cTnI levels (BeckmanCoulter UniCel DxI Access IA; log transformed detection limit = 0.30, quantification limit = 0.78, 99th percentile = 1.78). Positive and negative control samples were drawn from an adult ewe during a terminal experiment (myocardial ischemia) and similarly assessed. hs-cTnI data were log transformed from ng/L. Log(hs-cTnI) was 1.47 ± 0.30 (means ± SD) at 20 days before birth and declined to 1.02 ± 0.65 in fetuses 12 ± 4 h before birth (P < 0.0001, R2 = 0.7869). Birth stimulated a delayed, transient peak in hs-cTnI (P = 0.0058). Newborn (43 ± 19 min postnatal) levels were 1.39 ± 0.40 (P = 0.0650 vs. fetus on day of birth) and 2.14 ± 0.63 the day after birth (P = 0.0331 vs. newborn). The second day after birth, levels declined to 1.65 ± 0.48 (P = 0.0238 vs. day 1). IGF-1 infusion increased hs-cTnI levels 25-50% over baseline (P = 0.0252, R2 = 0.9938). Baseline adult ewe log(hs-cTnI) was below the limit of detection; 3 h following coronary artery ligation, levels were 3.21. In conclusion, we newly report that fetal hs-cTnI levels decline concomitantly with reduced proliferation of cardiomyocytes toward term.NEW & NOTEWORTHY Serial blood samples were collected from catheterized, normally developing fetal and newborn lambs and high-sensitivity cardiac troponin I (hs-cTnI) levels were assessed, providing unprecedented insight into the physiological processes leading to high levels in the perinatal period. Moderately high levels of hs-cTnI found in the normally developing fetus declined toward term. An elevation to high levels peaked the day after birth, after which hs-cTnI declined again. Stimulation of fetal cardiomyocyte proliferation with IGF-1 also elevated hs-cTnI.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
6
|
Moodley Y, Asare K, Tanser F, Tomita A. Maternal exposure to heat and its association with miscarriage in rural KwaZulu-Natal, South Africa: A population-based cohort study. WOMEN'S HEALTH (LONDON, ENGLAND) 2024; 20:17455057241259171. [PMID: 39066467 PMCID: PMC11282531 DOI: 10.1177/17455057241259171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND We sought to improve the current understanding of how climate change impacts women's reproductive health in sub-Saharan Africa. OBJECTIVES We investigated the relationship between maternal heat exposure and miscarriage (pregnancy ending before 20 weeks gestation) in a South African setting. DESIGN Population-based cohort study. METHODS Our study involved data for pregnancies collected via a health and demographic surveillance system in rural KwaZulu-Natal, South Africa between 2012 and 2016. Data from the South African Weather Service were used to compute maternal exposure to heat during the following time windows for each pregnancy: during the month preceding conception (T1) and during the week preceding the study outcome (either a miscarriage or no miscarriage, T2). Heat exposure was operationalized as a continuous variable and defined as the number of days that a mother was exposed to a mean daily temperature of > 26.6°C (A "hot day," equivalent to a mean daily temperature of > 80°F) during T1 or T2. Binary logistic regression was used to investigate the relationship between maternal heat exposure and miscarriage. RESULTS A total of 105/3477 pregnancies included in our analysis ended in miscarriage (3.0%). Each additional hot day during T1 was associated with a 26% higher odds of miscarriage (odds ratio: 1.26; 95% confidence interval: 1.15-1.38). No significant associations were observed between maternal heat exposure during T2 and the odds of miscarriage (odds ratio: 0.94, 95% confidence interval: 0.73-1.20). The relationship between maternal heat exposure during T1 and the odds of miscarriage was J-shaped. CONCLUSION There is a clear relationship between maternal heat exposure during the month preceding conception and miscarriage in our sub-Saharan African setting. Given the lack of feasible strategies to reduce pregnancy loss associated with prevailing high temperatures in sub-Saharan Africa, progressive climate change will likely exacerbate existing challenges for women's reproductive health in this region.
Collapse
Affiliation(s)
- Yoshan Moodley
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
- Division of Health Systems and Public Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kwabena Asare
- School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, KwaZulu-Natal, South Africa
- Health Economics and HIV and AIDS Research Division (HEARD), University of KwaZulu-Natal, Durban, South Africa
| | - Frank Tanser
- Africa Health Research Institute, KwaZulu-Natal, South Africa
- School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- South African Centre for Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| | - Andrew Tomita
- Centre for Rural Health, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, University of KwaZulu-Natal, Congella, South Africa
| |
Collapse
|
7
|
Gallo DM, Fitzgerald W, Romero R, Gomez-Lopez N, Gudicha DW, Than NG, Bosco M, Chaiworapongsa T, Jung E, Meyyazhagan A, Suksai M, Gotsch F, Erez O, Tarca AL, Margolis L. Proteomic profile of extracellular vesicles in maternal plasma of women with fetal death. J Matern Fetal Neonatal Med 2023; 36:2177529. [PMID: 36813269 PMCID: PMC10395052 DOI: 10.1080/14767058.2023.2177529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVES Fetal death is a complication of pregnancy caused by multiple etiologies rather than being the end-result of a single disease process. Many soluble analytes in the maternal circulation, such as hormones and cytokines, have been implicated in its pathophysiology. However, changes in the protein content of extracellular vesicles (EVs), which could provide additional insight into the disease pathways of this obstetrical syndrome, have not been examined. This study aimed to characterize the proteomic profile of EVs in the plasma of pregnant women who experienced fetal death and to evaluate whether such a profile reflected the pathophysiological mechanisms of this obstetrical complication. Moreover, the proteomic results were compared to and integrated with those obtained from the soluble fraction of maternal plasma. METHODS This retrospective case-control study included 47 women who experienced fetal death and 94 matched, healthy, pregnant controls. Proteomic analysis of 82 proteins in the EVs and the soluble fractions of maternal plasma samples was conducted by using a bead-based, multiplexed immunoassay platform. Quantile regression analysis and random forest models were implemented to assess differences in the concentration of proteins in the EV and soluble fractions and to evaluate their combined discriminatory power between clinical groups. Hierarchical cluster analysis was applied to identify subgroups of fetal death cases with similar proteomic profiles. A p-value of <.05 was used to infer significance, unless multiple testing was involved, with the false discovery rate controlled at the 10% level (q < 0.1). All statistical analyses were performed by using the R statistical language and environment-and specialized packages. RESULTS Nineteen proteins (placental growth factor, macrophage migration inhibitory factor, endoglin, regulated upon activation normal T cell expressed and presumably secreted (RANTES), interleukin (IL)-6, macrophage inflammatory protein 1-alpha, urokinase plasminogen activator surface receptor, tissue factor pathway inhibitor, IL-8, E-Selectin, vascular endothelial growth factor receptor 2, pentraxin 3, IL-16, galectin-1, monocyte chemotactic protein 1, disintegrin and metalloproteinase domain-containing protein 12, insulin-like growth factor-binding protein 1, matrix metalloproteinase-1(MMP1), and CD163) were found to have different plasma concentrations (of an EV or a soluble fraction) in women with fetal death compared to controls. There was a similar pattern of change for the dysregulated proteins in the EV and soluble fractions and a positive correlation between the log2-fold changes of proteins significant in either the EV or the soluble fraction (ρ = 0.89, p < .001). The combination of EV and soluble fraction proteins resulted in a good discriminatory model (area under the ROC curve, 82%; sensitivity, 57.5% at a 10% false-positive rate). Unsupervised clustering based on the proteins differentially expressed in either the EV or the soluble fraction of patients with fetal death relative to controls revealed three major clusters of patients. CONCLUSION Pregnant women with fetal death have different concentrations of 19 proteins in the EV and soluble fractions compared to controls, and the direction of changes in concentration was similar between fractions. The combination of EV and soluble protein concentrations revealed three different clusters of fetal death cases with distinct clinical and placental histopathological characteristics.
Collapse
Affiliation(s)
- Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nándor Gábor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Systems, Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Clark AR, Fontinha H, Thompson J, Couper S, Jani D, Mirjalili A, Bennet L, Stone P. Maternal Cardiovascular Responses to Position Change in Pregnancy. BIOLOGY 2023; 12:1268. [PMID: 37759669 PMCID: PMC10525953 DOI: 10.3390/biology12091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The maternal cardiovascular-circulatory system undergoes profound changes almost from the conception of a pregnancy until the postpartum period to support the maternal adaptions required for pregnancy and lactation. Maintenance of cardiovascular homeostasis requires changes in the cardiovascular autonomic responses. Here, we present a longitudinal study of the maternal cardiovascular autonomic responses to pregnancy and maternal position. Over a normal gestation, in the left lateral position there are significant changes in both time and frequency domain parameters reflecting heart rate variability. We show that cardiovascular autonomic responses to physiological stressors (standing and supine positions in late pregnancy) became significantly different with advancing gestation. In the third trimester, 60% of the subjects had an unstable heart rate response on standing, and these subjects had a significantly reduced sample entropy evident in their heart rate variability data. By 6 weeks, postpartum function returned to near the non-pregnant state, but there were consistent differences in high-frequency power when compared to nulligravid cases. Finally, we review complementary evidence, in particular from magnetic resonance imaging, that provides insights into the maternal and fetal impacts of positioning in pregnancy. This demonstrates a clear relationship between supine position and maternal hemodynamic parameters, which relates to compression of the inferior vena cava (p = 0.05). Together, these studies demonstrate new understanding of the physiology of physiological stressors related to position.
Collapse
Affiliation(s)
- Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Hanna Fontinha
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - John Thompson
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Sophie Couper
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Devanshi Jani
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Ali Mirjalili
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Peter Stone
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
9
|
Odendaal H, Geerts L, Wright C, Roberts DJ, Schubert P, Boyd TK, Brink L, Nel D. Association of Placental Histology with the Pulsatility Index of Fetal and Uteroplacental Vessels during Pregnancy and with Birthweight Z-Score. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i8.4238. [PMID: 37712063 PMCID: PMC10501112 DOI: 10.18103/mra.v11i8.4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Aims To compare macro- and microscopic features of the placenta with the pulsatility index (PI) of the uterine (UtA), umbilical (UA) and middle cerebral arteries at 20-24- and 34-38-weeks' gestation, and with birthweight z-scores (BWZS). Methods Recruitment for the Safe Passage Study, which investigated the association of alcohol and tobacco use with stillbirth and sudden infant death syndrome, occurred from August 2007 to January 2015 at community clinics in Cape Town, South Africa. The population represents a predominantly homogenous population of pregnant women from a low socioeconomic residential area. This study is a further analysis of the data of the Safe Passage Study. It consists of 1205 singleton pregnancies for which placental histology was available, of whom 1035 had a known BWZS and 1022 and 979 had fetoplacental Doppler examinations performed at Tygerberg Academic Hospital at 20-24 and 34-38 weeks respectively. Features of the placenta were assessed according to international norms. Results Significantly higher ORs for the presence of individual and combined features of maternal vascular malperfusion (MVM) were found with lower BWZS and higher UtA PI values, more consistently than with higher UA PI values. Strongest associations were for a small placenta for gestational age (UtA OR 4.86 at 20-24 and 5.92 at 34-38 weeks; UA OR 5.33 at 20-24 and 27.01 at 34-38 weeks; low BWZS OR 0.31), for accelerated maturation (UtA OR 11.68 at 20-24 weeks and 18.46 at 34-38 weeks; low BWZS 0.61), for macroscopic infarction (UtA OR 6.08 at 20-24 weeks; UA OR 17.02 at 34-38 weeks; low BWZS OR 0.62) and for microscopic infarction (UtA OR 6.84 at 20-24 and 10.9 at 34-38 weeks; low BWZS OR 0.62). Conclusion There is considerable variability in the associations between individual features of MVM and increased UtA or UA PI and low BWZS. Although all MVM features currently carry equal weight in defining the condition of MVM, our data suggest that some should carry more weight than others. Macroscopic examination of the placenta may be helpful in identifying placental insufficiency as a small placenta for gestational age and macroscopic infarction were the features most strongly associated with outcomes.
Collapse
Affiliation(s)
- Hein Odendaal
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town, South Africa
| | - Lut Geerts
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town, South Africa
| | - Colleen Wright
- Lancet Laboratories, Johannesburg, South Africa
- Division of Anatomical Pathology, Tygerberg Hospital, National Health Laboratory Service, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pawel Schubert
- Division of Anatomical Pathology, Tygerberg Hospital, National Health Laboratory Service, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Theonia K Boyd
- Department of Pathology, Division of Anatomic Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Lucy Brink
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town, South Africa
| | - Daan Nel
- Department of Statistics and Actuarial Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Nascimento TP, Vilhena Silva-Neto A, Baia-da-Silva DC, da Silva Balieiro PC, Baleiro AADS, Sachett J, Brasileiro L, Sartim MA, Martinez-Espinosa FE, Wen FH, Pucca MB, Gerardo CJ, Sampaio VS, Ferreira de Aquino P, Monteiro WM. Pregnancy outcomes after snakebite envenomations: A retrospective cohort in the Brazilian Amazonia. PLoS Negl Trop Dis 2022; 16:e0010963. [PMID: 36469516 PMCID: PMC9754599 DOI: 10.1371/journal.pntd.0010963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Snakebite envenomations (SBEs) in pregnant women can result in adverse maternal or neonatal effects, such as abortion, placental abruption, preterm labor, fetal malformations, and maternal, fetal or neonatal deaths. Despite the high incidence of SBEs in the Brazilian Amazon, there is no literature on the impact of SBEs on pregnancy outcomes. The objective of this study was to describe clinical epidemiology and outcomes associated with SBEs in women of childbearing age and pregnant women in the state of Amazonas, Western Brazilian Amazon, from 2007 to 2021. Information on the population was obtained from the Reporting Information System (SINAN), Mortality Information System (SIM) and Live Birth Information System (SINASC) for the period from 2007 to 2021. A total of 36,786 SBEs were reported, of which 3,297 (9%) involved women of childbearing age, and 274 (8.3%) involved pregnant women. Severity (7.9% in pregnant versus 8.7% in non-pregnant women) (P = 0.87) and case-fatality (0.4% in pregnant versus 0.3% in non-pregnant women) rates were similar between groups (P = 0.76). Pregnant women who suffered snakebites were at higher risk for fetal death (OR: 2.17, 95%CI: 1.74-2.67) and neonatal death (OR = 2.79, 95%CI: 2.26-3.40). This study had major limitations related to the completeness of the information on the pregnancy outcomes. Although SBE incidence in pregnant women is low in the Brazilian Amazon, SBEs increased the risk of fetal and neonatal deaths.
Collapse
Affiliation(s)
- Thaís P. Nascimento
- Leônidas & Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | - Alexandre Vilhena Silva-Neto
- Amazonas State University, Manaus, Amazonas, Brazil
- Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil
| | - Djane Clarys Baia-da-Silva
- Leônidas & Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
- Amazonas State University, Manaus, Amazonas, Brazil
- Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil
- Amazonas Federal University, Manaus, Amazonas, Brazil
| | | | | | - Jacqueline Sachett
- Amazonas State University, Manaus, Amazonas, Brazil
- Butantan Institute, São Paulo, Brazil
| | - Lisele Brasileiro
- Amazonas State University, Manaus, Amazonas, Brazil
- Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil
| | - Marco A. Sartim
- Amazonas State University, Manaus, Amazonas, Brazil
- Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil
| | - Flor Ernestina Martinez-Espinosa
- Leônidas & Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
- Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil
| | | | | | - Charles J. Gerardo
- Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Vanderson S. Sampaio
- Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil
| | | | - Wuelton M. Monteiro
- Amazonas State University, Manaus, Amazonas, Brazil
- Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil
| |
Collapse
|
11
|
Romero R, Jung E, Chaiworapongsa T, Erez O, Gudicha DW, Kim YM, Kim JS, Kim B, Kusanovic JP, Gotsch F, Taran AB, Yoon BH, Hassan SS, Hsu CD, Chaemsaithong P, Gomez-Lopez N, Yeo L, Kim CJ, Tarca AL. Toward a new taxonomy of obstetrical disease: improved performance of maternal blood biomarkers for the great obstetrical syndromes when classified according to placental pathology. Am J Obstet Gynecol 2022; 227:615.e1-615.e25. [PMID: 36180175 PMCID: PMC9525890 DOI: 10.1016/j.ajog.2022.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The major challenge for obstetrics is the prediction and prevention of the great obstetrical syndromes. We propose that defining obstetrical diseases by the combination of clinical presentation and disease mechanisms as inferred by placental pathology will aid in the discovery of biomarkers and add specificity to those already known. OBJECTIVE To describe the longitudinal profile of placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), and the PlGF/sFlt-1 ratio throughout gestation, and to determine whether the association between abnormal biomarker profiles and obstetrical syndromes is strengthened by information derived from placental examination, eg, the presence or absence of placental lesions of maternal vascular malperfusion. STUDY DESIGN This retrospective case cohort study was based on a parent cohort of 4006 pregnant women enrolled prospectively. The case cohort of 1499 pregnant women included 1000 randomly selected patients from the parent cohort and all additional patients with obstetrical syndromes from the parent cohort. Pregnant women were classified into six groups: 1) term delivery without pregnancy complications (n=540; control); 2) preterm labor and delivery (n=203); 3) preterm premature rupture of the membranes (n=112); 4) preeclampsia (n=230); 5) small-for-gestational-age neonate (n=334); and 6) other pregnancy complications (n=182). Maternal plasma concentrations of PlGF and sFlt-1 were determined by enzyme-linked immunosorbent assays in 7560 longitudinal samples. Placental pathologists, masked to clinical outcomes, diagnosed the presence or absence of placental lesions of maternal vascular malperfusion. Comparisons between mean biomarker concentrations in cases and controls were performed by utilizing longitudinal generalized additive models. Comparisons were made between controls and each obstetrical syndrome with and without subclassifying cases according to the presence or absence of placental lesions of maternal vascular malperfusion. RESULTS 1) When obstetrical syndromes are classified based on the presence or absence of placental lesions of maternal vascular malperfusion, significant differences in the mean plasma concentrations of PlGF, sFlt-1, and the PlGF/sFlt-1 ratio between cases and controls emerge earlier in gestation; 2) the strength of association between an abnormal PlGF/sFlt-1 ratio and the occurrence of obstetrical syndromes increases when placental lesions of maternal vascular malperfusion are present (adjusted odds ratio [aOR], 13.6 vs 6.7 for preeclampsia; aOR, 8.1 vs 4.4 for small-for-gestational-age neonates; aOR, 5.5 vs 2.1 for preterm premature rupture of the membranes; and aOR, 3.3 vs 2.1 for preterm labor (all P<0.05); and 3) the PlGF/sFlt-1 ratio at 28 to 32 weeks of gestation is abnormal in patients who subsequently delivered due to preterm labor with intact membranes and in those with preterm premature rupture of the membranes if both groups have placental lesions of maternal vascular malperfusion. Such association is not significant in patients with these obstetrical syndromes who do not have placental lesions. CONCLUSION Classification of obstetrical syndromes according to the presence or absence of placental lesions of maternal vascular malperfusion allows biomarkers to be informative earlier in gestation and enhances the strength of association between biomarkers and clinical outcomes. We propose that a new taxonomy of obstetrical disorders informed by placental pathology will facilitate the discovery and implementation of biomarkers as well as the prediction and prevention of such disorders.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI.
| | - Eunjung Jung
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Offer Erez
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Faculty of Health Sciences, Division of Obstetrics and Gynecology, Maternity Department "D," Soroka University Medical Center, School of Medicine, Ben-Gurion University of the Negev, Beersheba, Israel; Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Dereje W Gudicha
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yeon Mee Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Bomi Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación e Innovación en Medicina Materno-Fetal, Unidad de Alto Riesgo Obstétrico, Hospital Sotero Del Rio, Santiago, Chile
| | - Francesca Gotsch
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Andreea B Taran
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bo Hyun Yoon
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, University of Arizona, College of Medicine - Tucson, Tucson, AZ
| | - Piya Chaemsaithong
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Faculty of Medicine, Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Lami Yeo
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Chong Jai Kim
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Pathology, Wayne State University School of Medicine, Detroit, MI; Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Adi L Tarca
- Perinatology Research Branch, Divisions of Obstetrics and Maternal-Fetal Medicine and Intramural Research, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI
| |
Collapse
|
12
|
King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at risk fetuses. Front Physiol 2022; 13:959750. [PMID: 36060697 PMCID: PMC9437293 DOI: 10.3389/fphys.2022.959750] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major cause of stillbirth, prematurity and impaired neurodevelopment. Its etiology is multifactorial, but many cases are related to impaired placental development and dysfunction, with reduced nutrient and oxygen supply. The fetus has a remarkable ability to respond to hypoxic challenges and mounts protective adaptations to match growth to reduced nutrient availability. However, with progressive placental dysfunction, chronic hypoxia may progress to a level where fetus can no longer adapt, or there may be superimposed acute hypoxic events. Improving detection and effective monitoring of progression is critical for the management of complicated pregnancies to balance the risk of worsening fetal oxygen deprivation in utero, against the consequences of iatrogenic preterm birth. Current surveillance modalities include frequent fetal Doppler ultrasound, and fetal heart rate monitoring. However, nearly half of FGR cases are not detected in utero, and conventional surveillance does not prevent a high proportion of stillbirths. We review diagnostic challenges and limitations in current screening and monitoring practices and discuss potential ways to better identify FGR, and, critically, to identify the “tipping point” when a chronically hypoxic fetus is at risk of progressive acidosis and stillbirth.
Collapse
Affiliation(s)
- Victoria J. King
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Auckland Biomedical Engineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simerdeep K. Dhillon,
| |
Collapse
|
13
|
Jaiman S, Romero R, Bhatti G, Jung E, Gotsch F, Suksai M, Gallo DM, Chaiworapongsa T, Kadar N. The role of the placenta in spontaneous preterm labor and delivery with intact membranes. J Perinat Med 2022; 50:553-566. [PMID: 35246973 PMCID: PMC9189066 DOI: 10.1515/jpm-2021-0681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine whether placental vascular pathology and impaired placental exchange due to maturational defects are involved in the etiology of spontaneous preterm labor and delivery in cases without histologic acute chorioamnionitis. METHODS This was a retrospective, observational study. Cases included pregnancies that resulted in spontaneous preterm labor and delivery (<37 weeks), whereas uncomplicated pregnancies that delivered fetuses at term (≥37-42 weeks of gestation) were selected as controls. Placental histological diagnoses were classified into three groups: lesions of maternal vascular malperfusion, lesions of fetal vascular malperfusion, and placental microvasculopathy, and the frequency of each type of lesion in cases and controls was compared. Moreover, we specifically searched for villous maturational abnormalities in cases and controls. Doppler velocimetry of the umbilical and uterine arteries were performed in a subset of patients. RESULTS There were 184 cases and 2471 controls, of which 95 and 1178 had Doppler studies, respectively. The frequency of lesions of maternal vascular malperfusion was greater in the placentas of patients with preterm labor than in the control group [14.1% (26/184) vs. 8.8% (217/2471) (p=0.023)]. Disorders of villous maturation were more frequent in the group with preterm labor than in the control group: 41.1% (39/95) [delayed villous maturation in 31.6% (30/95) vs. 2.5% (13/519) in controls and accelerated villous maturation in 9.5% (9/95) vs. none in controls]. CONCLUSIONS Maturational defects of placental villi were associated with approximately 41% of cases of unexplained spontaneous preterm labor and delivery without acute inflammatory lesions of the placenta and with delivery of appropriate-for-gestational-age fetuses.
Collapse
Affiliation(s)
- Sunil Jaiman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
14
|
Mota-Rojas D, Villanueva-García D, Solimano A, Muns R, Ibarra-Ríos D, Mota-Reyes A. Pathophysiology of Perinatal Asphyxia in Humans and Animal Models. Biomedicines 2022; 10:347. [PMID: 35203556 PMCID: PMC8961792 DOI: 10.3390/biomedicines10020347] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
Perinatal asphyxia is caused by lack of oxygen delivery (hypoxia) to end organs due to an hypoxemic or ischemic insult occurring in temporal proximity to labor (peripartum) or delivery (intrapartum). Hypoxic-ischemic encephalopathy is the clinical manifestation of hypoxic injury to the brain and is usually graded as mild, moderate, or severe. The search for useful biomarkers to precisely predict the severity of lesions in perinatal asphyxia and hypoxic-ischemic encephalopathy (HIE) is a field of increasing interest. As pathophysiology is not fully comprehended, the gold standard for treatment remains an active area of research. Hypothermia has proven to be an effective neuroprotective strategy and has been implemented in clinical routine. Current studies are exploring various add-on therapies, including erythropoietin, xenon, topiramate, melatonin, and stem cells. This review aims to perform an updated integration of the pathophysiological processes after perinatal asphyxia in humans and animal models to allow us to answer some questions and provide an interim update on progress in this field.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Alfonso Solimano
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Ramon Muns
- Livestock Production Sciences Unit, Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK;
| | - Daniel Ibarra-Ríos
- Division of Neonatology, National Institute of Health Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Andrea Mota-Reyes
- School of Medicine and Health Sciences, TecSalud, Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Monterrey 64849, Mexico;
| |
Collapse
|
15
|
Kulkarni VG, Sunilkumar KB, Nagaraj T, Uddin Z, Ahmed I, Hwang K, Goudar SS, Guruprasad G, Saleem S, Tikmani SS, Dhaded SM, Yogeshkumar S, Somannavar MS, McClure EM, Goldenberg RL. Maternal and fetal vascular lesions of malperfusion in the placentas associated with fetal and neonatal death: results of a prospective observational study. Am J Obstet Gynecol 2021; 225:660.e1-660.e12. [PMID: 34111407 DOI: 10.1016/j.ajog.2021.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Fetal death is one of the major adverse pregnancy outcomes and is common in low- and middle-income countries. Placental lesions may play an important role in the etiology of fetal and neonatal deaths. Previous research relating placental lesions to fetal death causation was hindered by a lack of agreement on a placental classification scheme. The Amsterdam consensus statement that was published in 2016 focused its attention on malperfusions in the maternal and fetal placental circulations. OBJECTIVE This study aimed to investigate the relationships of placental maternal and fetal vascular malperfusions in fetal and neonatal deaths, focusing on the most important maternal clinical conditions in the pathway to fetal and neonatal deaths, such as maternal hypertension, antepartum hemorrhage, and decreased fetal growth. STUDY DESIGN This was a prospective, observational cohort study conducted at 2 Asian sites. The data collected included clinical history, gross and histologic evaluations of the placenta, and several other investigations and were used to determine the cause of death. The placenta was evaluated at both sites using the Amsterdam consensus framework. We estimated the risk of placental maternal and fetal vascular malperfusions in fetal and neonatal deaths. RESULTS Between July 2018 and January 2020 in India and Pakistan, 1633 women with placentas available for the study provided consent. Of these women, 814 had fetal deaths, 618 had preterm live births and subsequent neonatal deaths, and 201 had term live births. The prevalence of maternal vascular malperfusion was higher in the placentas associated with fetal deaths (58.4%) and preterm neonatal deaths (31.1%) than in the placentas associated with term live births (15.4%). Adjusting for site, maternal vascular malperfusion had a relative risk of 3.88 (95% confidence interval, 2.70-5.59) in fetal deaths vs term live births and a relative risk of 2.07 (95% confidence interval, 1.41-3.02) in preterm neonatal deaths vs term live births. Infarcts and distal villous hypoplasia were the most common histologic components of maternal vascular malperfusion. Compared with maternal vascular malperfusion (58.4%), fetal vascular malperfusion was less common in the placentas associated with fetal deaths (19.0%). However, there were higher frequencies of fetal vascular malperfusion in the placentas associated with fetal deaths (19.0%) than in placentas associated with neonatal deaths (8.3%) or term live birth (5.0%). Adjusting for site, fetal vascular malperfusion had a relative risk of 4.09 (95% confidence interval, 2.15-7.75) in fetal deaths vs term live births and a relative risk of 1.77 (95% confidence interval, 0.90-3.49) in preterm neonatal deaths vs term live births. Furthermore, there was a higher incidence of maternal vascular malperfusion in cases of maternal hypertension (71.4%), small for gestational age (69.9%), and antepartum hemorrhage (59.1%) than in cases of fetal deaths with none of these conditions (43.3%). There was no significant difference in the occurrence of fetal vascular malperfusion in the 4 clinical categories. CONCLUSION Histologic examination of the placenta, especially for malperfusion disorders, is crucial in elucidating pathways to fetal and neonatal deaths in preterm infants. In particular, focusing on placental maternal and fetal vascular malperfusions during pregnancy is a means to identify fetuses at risk of fetal death and is an important strategy to reduce the risk of fetal death early delivery. We hope that the increased risk of fetal and neonatal deaths in these pregnancies can be reduced by the development of an intervention that reduces the likelihood of developing maternal and fetal vascular malperfusion.
Collapse
|
16
|
Nguyen T, Khaksari K, Khare SM, Park S, Anderson AA, Bieda J, Jung E, Hsu CD, Romero R, Gandjbakhche AH. Non-invasive transabdominal measurement of placental oxygenation: a step toward continuous monitoring. BIOMEDICAL OPTICS EXPRESS 2021; 12:4119-4130. [PMID: 34457403 PMCID: PMC8367252 DOI: 10.1364/boe.424969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to assess transabdominal placental oxygenation levels non-invasively. A wearable device was designed and tested in 12 pregnant women with an anterior placenta, 5 of whom had maternal pregnancy complications. Preliminary results revealed that the placental oxygenation level is closely related to pregnancy complications and placental pathology. Women with maternal pregnancy complications were found to have a lower placental oxygenation level (69.4% ± 6.7%) than those with uncomplicated pregnancy (75.0% ± 5.8%). This device is a step in the development of a point-of-care method designed to continuously monitor placental oxygenation and to assess maternal and fetal health.
Collapse
Affiliation(s)
- Thien Nguyen
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Kosar Khaksari
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Siddharth M. Khare
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Soongho Park
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Afrouz A. Anderson
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Janine Bieda
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Eunjung Jung
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Roberto Romero
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20814 and Detroit, Michigan 48201, USA
| | - Amir H. Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| |
Collapse
|
17
|
Jaiman S, Romero R, Pacora P, Erez O, Jung E, Tarca AL, Bhatti G, Yeo L, Kim YM, Kim CJ, Kim JS, Qureshi F, Jacques SM, Gomez-Lopez N, Hsu CD. Disorders of placental villous maturation are present in one-third of cases with spontaneous preterm labor. J Perinat Med 2021; 49:412-430. [PMID: 33554577 PMCID: PMC8324068 DOI: 10.1515/jpm-2020-0138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Spontaneous preterm labor is an obstetrical syndrome accounting for approximately 65-70% of preterm births, the latter being the most frequent cause of neonatal death and the second most frequent cause of death in children less than five years of age worldwide. The purpose of this study was to determine and compare to uncomplicated pregnancies (1) the frequency of placental disorders of villous maturation in spontaneous preterm labor; (2) the frequency of other placental morphologic characteristics associated with the preterm labor syndrome; and (3) the distribution of these lesions according to gestational age at delivery and their severity. METHODS A case-control study of singleton pregnant women was conducted that included (1) uncomplicated pregnancies (controls, n=944) and (2) pregnancies with spontaneous preterm labor (cases, n=438). All placentas underwent histopathologic examination. Patients with chronic maternal diseases (e.g., chronic hypertension, diabetes mellitus, renal disease, thyroid disease, asthma, autoimmune disease, and coagulopathies), fetal malformations, chromosomal abnormalities, multifetal gestation, preeclampsia, eclampsia, preterm prelabor rupture of the fetal membranes, gestational hypertension, gestational diabetes mellitus, and HELLP (hemolysis, elevated liver enzymes and low platelet count) syndrome were excluded from the study. RESULTS Compared to the controls, the most prevalent placental lesions among the cases were the disorders of villous maturation (31.8% [106/333] including delayed villous maturation 18.6% [62/333] vs. 1.4% [6/442], q<0.0001, prevalence ratio 13.7; and accelerated villous maturation 13.2% [44/333] vs. 0% [0/442], q<0.001). Other lesions in decreasing order of prevalence included hypercapillarized villi (15.6% [68/435] vs. 3.5% [33/938], q<0.001, prevalence ratio 4.4); nucleated red blood cells (1.1% [5/437] vs. 0% [0/938], q<0.01); chronic inflammatory lesions (47.9% [210/438] vs. 29.9% [282/944], q<0.0001, prevalence ratio 1.6); fetal inflammatory response (30.1% [132/438] vs. 23.2% [219/944], q<0.05, prevalence ratio 1.3); maternal inflammatory response (45.5% [195/438] vs. 36.1% [341/944], q<0.01, prevalence ratio 1.2); and maternal vascular malperfusion (44.5% [195/438] vs. 35.7% [337/944], q<0.01, prevalence ratio 1.2). Accelerated villous maturation did not show gestational age-dependent association with any other placental lesion while delayed villous maturation showed a gestational age-dependent association with acute placental inflammation (q-value=0.005). CONCLUSIONS Disorders of villous maturation are present in nearly one-third of the cases of spontaneous preterm labor.
Collapse
Affiliation(s)
- Sunil Jaiman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Chong Jai Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Faisal Qureshi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Harper University Hospital, Detroit, Michigan, USA
| | - Suzanne M. Jacques
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Harper University Hospital, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
18
|
Nikkels PG, Evers AC, Schuit E, Brouwers HA, Bruinse HW, Bont L, Houben ML, Kwee A. Placenta Pathology From Term Born Neonates With Normal or Adverse Outcome. Pediatr Dev Pathol 2021; 24:121-130. [PMID: 33470918 DOI: 10.1177/1093526620980608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The incidence of umbilical cord or placental parenchyma abnormalities associated with mortality or morbidity of term infants is lacking. METHODS Placentas of 55 antepartum stillbirths (APD), 21 intrapartum stillbirths (IPD), 12 neonatal deaths (ND), and 80 admissions to a level 3 neonatal intensive care unit (NS) were studied and compared with 439 placentas from neonates from normal term pregnancies and normal outcome after vaginal delivery (NPVD) and with 105 placentas after an elective caesarian sections (NPEC). RESULTS NPVD and NPEC placentas showed no or one abnormality in 70% and placentas from stillbirth showed two or more abnormalities in 80% of cases. APD placentas more frequently had a low weight and less formation of terminal villi. Hypercoiling was more often present in all study groups. Severe chronic villitis was almost exclusively present in APD placentas. Chorioamnionitis was significantly more frequent in APD, IPD and NS placentas and funisitis was more often observed in IPD and NS placentas. CONCLUSION Multiple placental abnormalities are significantly more frequent in placentas from term neonates with severe perinatal morbidity and mortality. These placental abnormalities are thought to be associated with disturbed oxygen transfer or with inflammation.
Collapse
Affiliation(s)
- Peter Gj Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annemieke Cc Evers
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hens Aa Brouwers
- Department of Neonatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hein W Bruinse
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Louis Bont
- Department of Pediatrics, Utrecht University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel L Houben
- Department of Pediatrics, Utrecht University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anneke Kwee
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
19
|
Schellpfeffer MA, Strasburger JF, Baffa O, Strand SA, Lutter W, Phan T, Wakai RT. Dynamics of the use of magnetocardiography in the study of the cardiac conduction system of the chick embryo. Birth Defects Res 2020; 112:1825-1833. [PMID: 32790153 DOI: 10.1002/bdr2.1777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Human fetal magnetocardiography (fMCG) has been done for several decades to evaluate fetal arrhythmias using a superconducting quantum interference device (SQUID) magnetometer, but there is little work in embryonic/fetal animal models. This study uses an optically-pumped magnetometer (OPM) to obtain an fMCG in the chick embryo. METHODS White Leghorn chick embryos were examined from incubation Day #10-19. Different examination chambers were tested to optimize embryonic thermal stability and magnetic signal acquisition. All examinations were done with magnetic shielding. The OPM sensors were placed next to the egg shell. The embryo's position was localized by transilluminating the intact egg or ultrasound imaging the egg with an open air cell to optimize sensor placement. The raw data for each embryo was postprocessed to obtain a fMCG composite waveform. RESULTS fMCG's were obtained in embryos from Day #12 to 19. The best success with intact eggs was obtained using five sensors; one at the bottom and four around the lower perimeter of the egg at 90° intervals with the egg oriented vertically and the air cell up. Using ultrasound imaging with the air cell open only two sensors were necessary, one at the bottom and one laterally next to the embryo. fMCGs were analyzed for heart rate and rhythm, each portion of the PQRST waveform, and the PR interval, QRS complex, RR interval, and QT interval. CONCLUSIONS This study validates the chick embryo as an animal model to study in a longitudinal and noninvasive fashion the fetal cardiac conduction system by using OPM magnetocardiography.
Collapse
Affiliation(s)
- Michael A Schellpfeffer
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Janette F Strasburger
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Sarah A Strand
- University of Wisconsin-Madison, Madison, Wisconsin, USA.,University of Iowa Iowa City, Iowa City, Iowa, USA
| | - William Lutter
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tan Phan
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald T Wakai
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Jaiman S, Romero R, Pacora P, Jung EJ, Kacerovsky M, Bhatti G, Yeo L, Hsu CD. Placental delayed villous maturation is associated with evidence of chronic fetal hypoxia. J Perinat Med 2020; 48:516-518. [PMID: 32396141 PMCID: PMC7351034 DOI: 10.1515/jpm-2020-0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023]
Abstract
Background Normal development of the human placenta, referred to as villous tree maturation, entails formation of the vasculosyncytial membranes. These structures develop by the approximation of syncytiotrophoblasts with the villous capillary endothelium and constitute the most efficient sites of gaseous exchange in the placenta. Defective maturation of the villous tree can lead to deficient vasculosyncytial membranes, implicated in the high incidence of hypoxic complications. Hypoxia, in turn, can stimulate production of erythropoietin, whereby increased fetal plasma or amniotic fluid concentrations of this hormone reflect fetal hypoxemia. The current study was undertaken to determine whether delayed villous maturation is associated with changes in amniotic fluid erythropoietin concentrations. Methods Placental histologic examination was performed using hematoxylin and eosin. Subsequent to histologic assessment of delayed villous maturation, the diagnosis was confirmed with CD-15 immunohistochemistry. The controls (n = 61) were pregnancies without villous maturation abnormalities, and cases (n = 5) were pregnancies with delayed villous maturation. Amniotic fluid erythropoietin concentrations were measured using a specific immunoassay. Results Concentrations of erythropoietin in the amniotic fluid (1) of controls were less than the limit of detection and (2) of cases with delayed villous maturation were significantly higher than those of controls (P-value = 0.048). Conclusion Delayed villous maturation is associated with higher concentrations of amniotic fluid erythropoietin.
Collapse
Affiliation(s)
- Sunil Jaiman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, MI, USA.,Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Epidemiology and Biostatistics, College of Human Medicine, East Lansing, MI, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eun Jung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marian Kacerovsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
21
|
Jacques SM, Qureshi F. Does in utero meconium passage in term stillbirth correlate with autopsy and placental findings of hypoxia or inflammation? J Matern Fetal Neonatal Med 2020; 35:1853-1859. [PMID: 32460571 DOI: 10.1080/14767058.2020.1770217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: The cause of meconium passage in utero is controversial, traditionally being considered evidence of fetal stress and hypoxia, and also associated with intra-amniotic inflammation/infection. It is now recognized to also occur in the absence of fetal stress. Autopsy studies have shown that many term stillborns (SB) have hypoxic/ischemic brain injury and other evidence of stress preceding the time period immediately before demise, including acute thymic involution (ATI); however, these findings, along with placental findings, have not been previously correlated with meconium-stained amniotic fluid (MSAF).Methods: 35 structurally normal singleton term SB (21 early term, 14 full/late term) with complete autopsies, including brain and placental examination, were identified. MSAF was visually identified at delivery and confirmed on the placental examination. Autopsy evaluation included brain injury and ATI. Placental evaluation included maternal and fetal vascular malperfusion and acute and chronic inflammatory lesions. Demographic and clinical features were compared.Results: 18 (51%) SB had MSAF, and 17 (49%) had clear amniotic fluid (CAF). The was no significant difference in brain injury in the MSAF vs CAF group, including older gray matter injury (karyorrhexis) (67% vs 47%), recent gray matter injury (red neurons, but no karyorrhexis) (28% vs 35%), white matter injury (50% vs 29%), and hemorrhage (22% vs 24%). Severe ATI was more frequent in the MSAF vs CAF group (61% vs 24%, p = .04). There was no significant difference in placental lesions between groups, including acute maternal inflammation (39% vs 18%), acute fetal inflammation (6% vs 6%), fetal vascular malperfusion (11% vs 18%), maternal vascular malperfusion (39% vs 35%), and chronic inflammatory lesions (39% vs 29%). The MSAF group was more likely to be full/late term than early term (72% vs 28%), in contrast to the CAF group (6% vs 94%) (p = .0001). There was no difference in other clinical factors evaluated.Conclusions: 51% of term SB had MSAF, and, in contrast to the CAF group, these were significantly more likely to be full/late term. Brain injury was frequent in both MSAF and CAF groups, supporting hypoxia as the mechanism of demise in most of these SB. No placental lesions correlated with MSAF, including inflammation. This suggests that hypoxia is the cause of the MSAF in these SB, but that some additional biologic factor present in the full/late term SB, but not present in the early term SB, including possibly gastrointestinal maturation, is necessary for the meconium passage.
Collapse
Affiliation(s)
- Suzanne M Jacques
- Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Faisal Qureshi
- Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
22
|
Jaiman S, Romero R, Pacora P, Jung E, Bhatti G, Yeo L, Kim YM, Kim B, Kim CJ, Kim JS, Qureshi F, Jacques SM, Erez O, Gomez-Lopez N, Hsu CD. Disorders of placental villous maturation in fetal death. J Perinat Med 2020; 0:/j/jpme.ahead-of-print/jpm-2020-0030/jpm-2020-0030.xml. [PMID: 32238609 PMCID: PMC8262362 DOI: 10.1515/jpm-2020-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
Objective The aims of this study were to ascertain the frequency of disorders of villous maturation in fetal death and to also delineate other placental histopathologic lesions in fetal death. Methods This was a retrospective observational cohort study of fetal deaths occurring among women between January 2004 and January 2016 at Hutzel Women's Hospital, Detroit, MI, USA. Cases comprised fetuses with death beyond 20 weeks' gestation. Fetal deaths with congenital anomalies and multiple gestations were excluded. Controls included pregnant women without medical/obstetrical complications and delivered singleton, term (37-42 weeks) neonate with 5-min Apgar score ≥7 and birthweight between the 10th and 90th percentiles. Results Ninety-two percent (132/143) of placentas with fetal death showed placental histologic lesions. Fetal deaths were associated with (1) higher frequency of disorders of villous maturation [44.0% (64/143) vs. 1.0% (4/405), P < 0.0001, prevalence ratio, 44.6; delayed villous maturation, 22% (31/143); accelerated villous maturation, 20% (28/143); and maturation arrest, 4% (5/143)]; (2) higher frequency of maternal vascular malperfusion lesions [75.5% (108/143) vs. 35.7% (337/944), P < 0.0001, prevalence ratio, 2.1] and fetal vascular malperfusion lesions [88.1% (126/143) vs. 19.7% (186/944), P < 0.0001, prevalence ratio, 4.5]; (3) higher frequency of placental histologic patterns suggestive of hypoxia [59.0% (85/143) vs. 9.3% (82/942), P < 0.0001, prevalence ratio, 6.8]; and (4) higher frequency of chronic inflammatory lesions [53.1% (76/143) vs. 29.9% (282/944), P < 0.001, prevalence ratio 1.8]. Conclusion This study demonstrates that placentas of women with fetal death were 44 times more likely to present disorders of villous maturation compared to placentas of those with normal pregnancy. This suggests that the burden of placental disorders of villous maturation lesions is substantial.
Collapse
Affiliation(s)
- Sunil Jaiman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Bomi Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Chong Jai Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Faisal Qureshi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Suzanne M. Jacques
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|