1
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03462-4. [PMID: 39392484 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Raza C, Mohsin S, Faheem M, Hanif U, Alkhathlan HZ, Shaik MR, Riaz HA, Anjum R, Jurrat H, Khan M. In Vivo Study of Moringa oleifera Seed Extracts as Potential Sources of Neuroprotection against Rotenone-Induced Neurotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1479. [PMID: 38891288 PMCID: PMC11175126 DOI: 10.3390/plants13111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is a leading neurodegenerative disorder affecting 1-3 percent of the elderly population. Oxidative stress is the primary factor for the neurodegeneration of Substantia Nigra (SN). The current study aims to assess the seed extracts of Moringa oleifera (MO) on rotenone-mediated motor function impairments in a PD mouse model. For this purpose, two different seed extracts of MO were prepared, including aqueous MO (AqMO) and ethanolic MO (EthMO). Male Swiss albino mice were grouped into five groups. Mice received 2.5 mg/kg rotenone for 21 consecutive days, and control mice received the vehicle. Extract-treated mice received 200 mg/kg AqMO and EthMO separately, orally and daily for 28 days. Sinemet-treated mice received 20 mg/kg, oral dose, as a positive group. The motor function performance was evaluated using standard neurobehavioral tests. The antioxidant potentials of MO seed extracts were estimated by lipid peroxidation (LPO), reduced glutathione (GSH), glutathione-s-transferase (GST) and catalase (CAT) activities in mice brain homogenates. The PD mice brain SN sections were investigated for neurodegeneration. MO seed extract-treated mice showed a significant reduction in motor dysfunction compared to rotenone-treated mice as assessed through the open field, beam walk, pole climb-down, tail suspension, stride length and stepping tests. Increased antioxidant capacities of the PD mice brains of MO extract-administered groups were observed compared to the control. A histological study showed reduced signs of neurodegeneration, vacuolation around multipolar cells and cytoplasmic shrinkage in MO extract-treated mice SN brain sections. Collectively, MO seed extracts protected the animals from locomotor deficits induced by rotenone, possibly through antioxidant means, and seem to have potential applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Sehrish Mohsin
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Uzma Hanif
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| | - Hasib Aamir Riaz
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Husna Jurrat
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.Z.A.); (M.R.S.)
| |
Collapse
|
3
|
Telerman A, Ravid U, Dudai N, Elmann A. Therapeutic Effects of Geranium Oil in MPTP-Induced Parkinsonian Mouse Model. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:768-775. [PMID: 37819493 DOI: 10.1007/s11130-023-01112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease characterized by motor and non-motor disabilities resulting from neuronal cell death in the substantia nigra and striatum. Microglial activation and oxidative stress are two of the primary mechanisms driving that neuronal death. Here, we evaluated the effects of geranium oil on 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) mouse model for PD, on microglial activation, and oxidative stress. We demonstrate that oral treatment with geranium oil improved motor performance in this model. The therapeutic effects of geranium oil were observed as a significant increase in rotarod latency and distance among the mice treated with geranium oil, as compared to vehicle-treated MPTP mice. Geranium oil also prevented dopaminergic neuron death in the substantia nigra of the treated mice. These therapeutic effects can be partially attributed to the antioxidant and anti-inflammatory properties of geranium oil, which were observed as attenuated accumulation of reactive oxygen species and inhibition of the secretion of proinflammatory cytokines from geranium oil-treated activated microglial cells. A repeated-dose oral toxicity study showed that geranium oil is not toxic to mice. In light of that finding and since geranium oil is defined by the FDA as generally recognized as safe (GRAS), we do not foresee any toxicity problems in the future and suggest that geranium oil may be a safe and effective oral treatment for PD. Since the MPTP model is only one of the preclinical models for PD, further studies are needed to confirm that geranium oil can be used to prevent or treat PD.
Collapse
Affiliation(s)
- Alona Telerman
- Department of Food Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Uzi Ravid
- Medicinal and Aromatic Plants Unit, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Nativ Dudai
- Medicinal and Aromatic Plants Unit, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Anat Elmann
- Department of Food Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
4
|
Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease. Molecules 2023; 28:7588. [PMID: 38005310 PMCID: PMC10673433 DOI: 10.3390/molecules28227588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological ailments, including stroke, Alzheimer's disease (AD), epilepsy, Parkinson's disease (PD), and other related diseases, have affected around 1 billion people globally to date. PD stands second among the common neurodegenerative diseases caused as a result of dopaminergic neuron loss in the midbrain's substantia nigra regions. It affects cognitive and motor activities, resulting in tremors during rest, slow movement, and muscle stiffness. There are various traditional approaches for the management of PD, but they provide only symptomatic relief. Thus, a survey for finding new biomolecules or substances exhibiting the therapeutic potential to patients with PD is the main focus of present-day research. Medicinal plants, herbal formulations, and natural bioactive molecules have been gaining much more attention in recent years as synthetic molecules orchestrate a number of undesired effects. Several in vitro, in vivo, and in silico studies in the recent past have demonstrated the therapeutic potential of medicinal plants, herbal formulations, and plant-based bioactives. Among the plant-based bioactives, polyphenols, terpenes, and alkaloids are of particular interest due to their potent anti-inflammatory, antioxidant, and brain-health-promoting properties. Further, there are no concise, elaborated articles comprising updated mechanism-of-action-based reviews of the published literature on potent, recently investigated (2019-2023) medicinal plants, herbal formulations, and plant based-bioactive molecules, including polyphenols, terpenes, and alkaloids, as a method for the management of PD. Therefore, we designed the current review to provide an illustration of the efficacious role of various medicinal plants, herbal formulations, and bioactives (polyphenols, terpenes, and alkaloids) that can become potential therapeutics against PD with greater specificity, target approachability, bioavailability, and safety to the host. This information can be further utilized in the future to develop several value-added formulations and nutraceutical products to achieve the desired safety and efficacy for the management of PD.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | | | - Neeraj K. Sethiya
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Manmohan Singhal
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| |
Collapse
|
5
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
6
|
Ait Lhaj Z, Ibork H, El Idrissi S, Ait Lhaj F, Sobeh M, Mohamed WMY, Alamy M, Taghzouti K, Abboussi O. Bioactive strawberry fruit ( Arbutus unedo L.) extract remedies paraquat-induced neurotoxicity in the offspring prenatally exposed rats. Front Neurosci 2023; 17:1244603. [PMID: 37901424 PMCID: PMC10600521 DOI: 10.3389/fnins.2023.1244603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Background Paraquat (1,1'-dimethyl-4-4'-bipyridinium dichloride) exposure is well-established as a neurotoxic agent capable of causing neurological deficits in offspring. This study aimed to investigate therapeutic effects of Arbutus unedo L. aqueous extract (AU) against paraquat (PQ) exposure. Methods For that the phytoconstituents of AU was determined by LC/MS, and then its antioxidant potential was assessed by DPPH and ABTS assays. The assessment included its impact on cell viability and mitochondrial metabolism using N27 dopaminergic cells. Additionally, we evaluated the effects of prenatal PQ exposure on motor coordination, dopamine levels, trace element levels, and total antioxidant capacity (TAC) in rat progeny. Results The phytochemical profile of AU extract revealed the presence of 35 compounds, primarily phenolic and organic acids, and flavonoids. This accounted for its strong in vitro antioxidant activities against DPPH and ABTS radicals, surpassing the activities of vitamin C. Our findings demonstrated that AU effectively inhibited PQ-induced loss of N27 rat dopaminergic neural cells and significantly enhanced their mitochondrial respiration. Furthermore, daily post-treatment with AU during the 21 days of the rat's pregnancy alleviated PQ-induced motor deficits and akinesia in rat progeny. These effects inhibited dopamine depletion and reduced iron levels in the striatal tissues. The observed outcomes appeared to be mediated by the robust antioxidant activity of AU, effectively counteracting the PQ-induced decrease in TAC in the blood plasma of rat progeny. These effects could be attributed to the bioactive compounds present in AU, including phenolic acids such as gallic acid and flavonoids such as quercetin, rutin, apigenin, glucuronide, and kaempferol, all known for their potent antioxidant capacity. Discussion In conclusion, this preclinical study provided the first evidence of the therapeutic potential of AU extract against PQ-induced neurotoxicity. These findings emphasize the need for further exploration of the clinical applicability of AU in mitigating neurotoxin-induced brain damage.
Collapse
Affiliation(s)
- Zakaria Ait Lhaj
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Farida Ait Lhaj
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Faculty of Sciences, Center of Materials, Mohammed V University, Rabat, Morocco
| | - Mansour Sobeh
- AgroBiosciences Research Division, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Wael M. Y. Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Meryem Alamy
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| |
Collapse
|
7
|
Salem HA, Abu-Elfotuh K, Alzahrani S, Rizk NI, Ali HS, Elsherbiny N, Aljohani A, Hamdan AME, Chellasamy P, Abdou NS, Gowifel AMH, Darwish A, Ibrahim OM, Abd Elmageed ZY. Punicalagin's Protective Effects on Parkinson's Progression in Socially Isolated and Socialized Rats: Insights into Multifaceted Pathway. Pharmaceutics 2023; 15:2420. [PMID: 37896179 PMCID: PMC10610313 DOI: 10.3390/pharmaceutics15102420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a gradual deterioration of dopaminergic neurons, leading to motor impairments. Social isolation (SI), a recognized stressor, has recently gained attention as a potential influencing factor in the progress of neurodegenerative illnesses. We aimed to investigate the intricate relationship between SI and PD progression, both independently and in the presence of manganese chloride (MnCl2), while evaluating the punicalagin (PUN) therapeutic effects, a natural compound established for its cytoprotective, anti-inflammatory, and anti-apoptotic activities. In this five-week experiment, seven groups of male albino rats were organized: G1 (normal control), G2 (SI), G3 (MnCl2), G4 (SI + MnCl2), G5 (SI + PUN), G6 (MnCl2 + PUN), and G7 (SI + PUN + MnCl2). The results revealed significant changes in behavior, biochemistry, and histopathology in rats exposed to SI and/or MnCl2, with the most pronounced effects detected in the SI rats concurrently exposed to MnCl2. These effects were associated with augmented oxidative stress biomarkers and reduced antioxidant activity of the Nrf2/HO-1 pathway. Additionally, inflammatory pathways (HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1 and JAK-2/STAT-3) were upregulated, while dysregulation of signaling pathways (PI3K/AKT/GSK-3β/CREB), sustained endoplasmic reticulum stress by activation PERK/CHOP/Bcl-2, and impaired autophagy (AMPK/SIRT-1/Beclin-1 axis) were observed. Apoptosis induction and a decrease in monoamine levels were also noted. Remarkably, treatment with PUN effectively alleviated behaviour, histopathological changes, and biochemical alterations induced by SI and/or MnCl2. These findings emphasize the role of SI in PD progress and propose PUN as a potential therapeutic intervention to mitigate PD. PUN's mechanisms of action involve modulation of pathways such as HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1, JAK-2/STAT-3, PI3K/AKT/GSK-3β/CREB, AMPK/SIRT-1, Nrf2/HO-1, and PERK/CHOP/Bcl-2.
Collapse
Affiliation(s)
- Hoda A. Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
| | - Nermin I. Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menouf 32952, Egypt;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Alhanouf Aljohani
- Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | | | - Nada S. Abdou
- Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 11556, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Osama Mohamed Ibrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Tanta, Tanta 31527, Egypt;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| |
Collapse
|
8
|
Bhusal CK, Uti DE, Mukherjee D, Alqahtani T, Alqahtani S, Bhattacharya A, Akash S. Unveiling Nature's potential: Promising natural compounds in Parkinson's disease management. Parkinsonism Relat Disord 2023; 115:105799. [PMID: 37633805 DOI: 10.1016/j.parkreldis.2023.105799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Although the exact etiology of PD remains elusive, growing evidence suggests a complex interplay of genetic, environmental, and lifestyle factors in its development. Despite advances in pharmacological interventions, current treatments primarily focus on managing symptoms rather than altering the disease's underlying course. In recent years, natural phytocompounds have emerged as a promising avenue for PD management. Phytochemicals derived from plants, such as phenolic acids, flavones, phenols, flavonoids, polyphenols, saponins, terpenes, alkaloids, and amino acids, have been extensively studied for their potential neuroprotective effects. These bioactive compounds possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anti-apoptotic, and anti-aggregation activities, which may counteract the neurodegenerative processes in PD. This comprehensive review delves into the pathophysiology of PD, with a specific focus on the roles of oxidative stress, mitochondrial dysfunction, and protein malfunction in disease pathogenesis. The review collates a wealth of evidence from preclinical studies and in vitro experiments, highlighting the potential of various phytochemicals in attenuating dopaminergic neuron degeneration, reducing α-synuclein aggregation, and modulating neuroinflammatory responses. Prominent among the natural compounds studied are curcumin, resveratrol, coenzyme Q10, and omega-3 fatty acids, which have demonstrated neuroprotective effects in experimental models of PD. Additionally, flavonoids like baicalein, luteolin, quercetin, and nobiletin, and alkaloids such as berberine and physostigmine, show promise in mitigating PD-associated pathologies. This review emphasizes the need for further research through controlled clinical trials to establish the safety and efficacy of these natural compounds in PD management. Although preclinical evidence is compelling, the translation of these findings into effective therapies for PD necessitates robust clinical investigation. Rigorous evaluation of pharmacokinetics, bioavailability, and potential drug interactions is imperative to pave the way for evidence-based treatment strategies. With the rising interest in natural alternatives and the potential for synergistic effects with conventional therapies, this review serves as a comprehensive resource for pharmaceutical industries, researchers, and clinicians seeking novel therapeutic approaches to combat PD. Harnessing the therapeutic potential of these natural phytocompounds may hold the key to improving the quality of life for PD patients and moving towards disease-modifying therapies in the future.
Collapse
Affiliation(s)
- Chandra Kanta Bhusal
- Post Graduate Institute of Medical and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India.
| | - Daniel Ejim Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Uttar Dinajpur, West Bengal, India.
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Arghya Bhattacharya
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah, 711316, India.
| | - Shopnil Akash
- Faculty of Allied Health Science, Department of Pharmacy, Daffodil International University, Daffodil Smart City, Ashulia, Savar, Dhaka, 1207, Bangladesh.
| |
Collapse
|
9
|
Wu Q, Wang M, Chen W, Wang K, Wang Y. Assessing neuroprotective efficacy of phytochemical saponin ruscogenin in both in vitro and in vivo model. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
10
|
Otero-Losada M, Gubellini P, Capani F, Perez-Lloret S. Editorial: Neuroprotection and disease modification in Parkinson's disease: Volume II. Front Pharmacol 2023; 13:1121513. [PMID: 36699074 PMCID: PMC9868301 DOI: 10.3389/fphar.2022.1121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Matilde Otero-Losada
- Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Abierta Interamericana-Centro de Altos Estudios en Ciencias Humanas y de La Salud, UAI-CAECIHS CONICET, Buenos Aires, Argentina,*Correspondence: Matilde Otero-Losada,
| | - Paolo Gubellini
- CNRS, IBDM, UMR7288, Aix-Marseille University, Marseille, France
| | - Francisco Capani
- Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Abierta Interamericana-Centro de Altos Estudios en Ciencias Humanas y de La Salud, UAI-CAECIHS CONICET, Buenos Aires, Argentina,Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Santiago de Chile, Chile
| | - Santiago Perez-Lloret
- Observatorio de Salud Pública, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina,Department of Physiology, Faculty of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
12
|
Neuroprotective Effects of Some Nutraceuticals against Manganese-Induced Parkinson's Disease in Rats: Possible Modulatory Effects on TLR4/NLRP3/NF-κB, GSK-3β, Nrf2/HO-1, and Apoptotic Pathways. Pharmaceuticals (Basel) 2022; 15:ph15121554. [PMID: 36559006 PMCID: PMC9785377 DOI: 10.3390/ph15121554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the substantia nigra where functions controlling body movement take place. Manganese (Mn) overexposure is linked to a neurologic syndrome resembling PD. Sesamol, thymol, wheat grass (WG), and coenzyme Q10 (CoQ10) are potent antioxidants, anti-inflammatory, and anti-apoptotic nutraceuticals. We investigated the potential protective effects of these nutraceuticals alone or in combinations against MnCl2-induced PD in rats. Seven groups of adult male Sprague Dawley rats were categorized as follows: group (I) was the control, while groups 2-7 received MnCl2 either alone (Group II) or in conjunction with oral doses of sesamol (Group III), thymol (Group IV), CoQ10 (Group V), WG (Group VI), or their combination (Group VII). All rats were subjected to four behavioral tests (open-field, swimming, Y-maze, and catalepsy tests). Biochemical changes in brain levels of monoamines, ACHE, BDNF, GSK-3β, GABA/glutamate, as well as oxidative stress, and apoptotic and neuroinflammatory biomarkers were evaluated, together with histopathological examinations of different brain regions. Mn increased catalepsy scores, while decreasing neuromuscular co-ordination, and locomotor and exploratory activity. It also impaired vigilance, spatial memory, and decision making. Most behavioral impairments induced by Mn were improved by sesamol, thymol, WG, or CoQ10, with prominent effect by sesamol and thymol. Notably, the combination group showed more pronounced improvements, which were confirmed by biochemical, molecular, as well as histopathological findings. Sesamol or thymol showed better protection against neuronal degeneration and some behavioral impairments induced by Mn than WG or CoQ10, partly via interplay between Nrf2/HO-1, TLR4/NLRP3/NF-κB, GSK-3β and Bax/Bcl2 pathways.
Collapse
|
13
|
Zarei M, Esmaeili A, Zarrabi A, Zarepour A. Superparamagnetic Iron Oxide Nanoparticles and Curcumin Equally Promote Neuronal Branching Morphogenesis in the Absence of Nerve Growth Factor in PC12 Cells. Pharmaceutics 2022; 14:pharmaceutics14122692. [PMID: 36559186 PMCID: PMC9788162 DOI: 10.3390/pharmaceutics14122692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Regeneration of the damaged neurons in neurological disorders and returning their activities are two of the main purposes of neuromedicine. Combination use of specific nanoformulations with a therapeutic compound could be a good candidate for neuroregeneration applications. Accordingly, this research aims to utilize the combination of curcumin, as a neurogenesis agent, with dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate their effects on PC12 cellsʹ neuronal branching morphogenesis in the absence of nerve growth factor. Therefore, the effects of each component alone and in combination form on the cytotoxicity, neurogenesis, and neural branching morphogenesis were evaluated using MTT assay, immunofluorescence staining, and inverted microscopy, respectively. Results confirmed the effectiveness of the biocompatible iron oxide nanoparticles (with a size of about 100 nm) in improving the percentage of neural branching (p < 0.01) in PC12 cells. In addition, the combination use of these nanoparticles with curcumin could enhance the effect of curcumin on neurogenesis (p < 0.01). These results suggest that SPIONs in combination with curcumin could act as an inducing factor on PC12 neurogenesis in the absence of nerve growth factor and could offer a novel therapeutic approach to the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahshid Zarei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
- Correspondence: ; Tel.: +98-31-37932490
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
14
|
Biganeh H, Kabiri M, Zeynalpourfattahi Y, Costa Brancalhão RM, Karimi M, Shams Ardekani MR, Rahimi R. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities. Heliyon 2022; 8:e10496. [PMID: 36105465 PMCID: PMC9465338 DOI: 10.1016/j.heliyon.2022.e10496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/30/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022] Open
Abstract
Silk cocoon, naturally produced by silkworms scientifically named Bombyx mori L. (Lepidoptera, Bombycidae), is one of the well-known medicinal agents with several therapeutic activities. The present study aims to review the various aspects of the silk cocoon, including chemical composition, traditional uses, biological and biotechnological activities, and toxicological issues, to provide a scientific source for scholars. For this purpose, Electronic databases including PubMed, Scopus, Google Scholar, Web of Science, and traditional literature, were searched up to December 2021. According to the historical data, silk farming is acknowledged as one of the most ancient agricultural findings. The silk is generally composed of 75–83% fibroin, 17–25% sericin, and 1–5% non-sericin components, including secondary metabolites, wax, pigments, carbohydrates, and other impurities. Flavonoids, especially quercetin and kaempferol, alkaloids, coumarin derivatives, and phenolic acids, are among the secondary metabolites isolated from the silk cocoon. In recent years the biological properties of the silk cocoon, especially its major proteins, namely fibroin and sericin, have drawn special attention. Scientific literature has investigated several pharmacological effects of the silk cocoon and its ingredients, including cardioprotective, antioxidant, anticancer, antidiabetic, antihyperlipidemia, gastroprotective, as well as ameliorated skin health activities. In addition, it has been extensively taken into consideration in drug delivery and tissue engineering study fields. Furthermore, its toxicity is in acceptable range.
Collapse
|
15
|
Wu Q, Wang M, Chen W, Wang K, Wang Y. Coronarin D Attenuates MPTP-Induced Parkinson’s Disease in Mice by Inhibition of Oxidative Stress and Apoptosis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
16
|
Lee TK, Lee JC, Kim D, Lee JW, Kim SS, Kim HI, Shin M, Cho J, Won MH, Choi S. Effects of Brain Factor‑7® against motor deficit and oxidative stress in a mouse model of MPTP‑induced Parkinson's disease. Exp Ther Med 2022; 24:635. [PMID: 36160902 PMCID: PMC9468851 DOI: 10.3892/etm.2022.11572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is strongly implicated in the pathogenesis of Parkinson's disease (PD) through degeneration of dopaminergic neurons. The present study was designed to investigate the underlying mechanisms and therapeutic potential of Brain Factor-7® (BF-7®), a natural compound in silkworm, in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was intraperitoneally injected into mice to cause symptoms of PD. Mice were orally administered BF-7® (a mixture of silk peptides) before and after MPTP treatment. Rotarod performance test was used to assess motor performance. Fluoro-Jade B staining for neurons undergoing degeneration and immunohistochemistry of tyrosine hydroxylase for dopaminergic neurons, 4-hydroxy-2-nonenal (4HNE) for lipid peroxidation, 8-hydroxy-2'-deoxyguanosine (8OHdG) for DNA damage and superoxide dismutase (SOD) 1 and SOD2 for antioxidative enzymes in the pars compacta of the substantia nigra were performed. Results showed that BF-7® treatment significantly improved MPTP-induced motor deficit and protected MPTP-induced dopaminergic neurodegeneration. Furthermore, BF-7® treatment significantly ameliorated MPTP-induced oxidative stress. Increased 4HNE and 8OHdG immunoreactivities induced by MPTP were significantly reduced by BF-7®, whereas SOD1 and SOD2 immunoreactivities decreased by MPTP were significantly enhanced by BF-7®. In conclusion, BF-7® exerted protective and/or therapeutic effects in a mouse model of PD by decreasing effects of oxidative stress on dopaminergic neurons in the substantia nigra pars compacta.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung‑Wonju National University, Gangneung 25457, Republic of Korea
| | - Ji-Won Lee
- Precision Medicine R&D Center, Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Sung-Su Kim
- Precision Medicine R&D Center, Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Hyung-Il Kim
- Department of Emergency Medicine, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Myoung Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jun Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Soo Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
17
|
Parekh P, Serra M, Allaw M, Perra M, Marongiu J, Tolle G, Pinna A, Casu MA, Manconi M, Caboni P, Manzoni OJJ, Morelli M. Characterization of Nasco grape pomace-loaded nutriosomes and their neuroprotective effects in the MPTP mouse model of Parkinson’s disease. Front Pharmacol 2022; 13:935784. [PMID: 36059998 PMCID: PMC9428270 DOI: 10.3389/fphar.2022.935784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Grape pomaces have recently received great attention for their richness in polyphenols, compounds known to exert anti-inflammatory and antioxidant effects. These pomaces, however, have low brain bioavailability when administered orally due to their extensive degradation in the gastrointestinal tract. To overcome this problem, Nasco pomace extract was incorporated into a novel nanovesicle system called nutriosomes, composed of phospholipids (S75) and water-soluble maltodextrin (Nutriose® FM06). Nutriosomes were small, homogeneously dispersed, had negative zeta potential, and were biocompatible with intestinal epithelial cells (Caco-2). Nasco pomace extract resulted rich in antioxidant polyphenols (gallic acid, catechin, epicatechin, procyanidin B2, and quercetin). To investigate the neuroprotective effect of Nasco pomace in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD), Nasco nutriosomes or Nasco suspension was administered intragastrically and their neuroprotective effects were evaluated. Degeneration of nigro-striatal dopaminergic neurons induced by subacute MPTP treatment, the pathological hallmark of PD, was assessed through immunohistochemical evaluation of tyrosine hydroxylase (TH) in the caudate-putamen (CPu) and substantia nigra pars compacta (SNc), and the dopamine transporter (DAT) in CPu. Immunohistochemical analysis revealed that Nasco nutriosomes significantly prevented the reduction in TH- and DAT-positive fibres in CPu, and the number of TH-positive cells in SNc following subacute MPTP treatment, while Nasco suspension counteracted MPTP toxicity exclusively in SNc. Overall, these results highlight the therapeutic effects of Nasco pomace extract when administered in a nutriosome formulation in the subacute MPTP mouse model of PD and validate the effectiveness of the nutriosome preparation over suspension as an innovative nano-drug delivery system for in vivo administration.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
- *Correspondence: Marcello Serra,
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Giulia Tolle
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | | | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
18
|
Hu YK, Bai XL, Yuan H, Zhang Y, Ayeni EA, Liao X. Polyphenolic Glycosides from the Fruits Extract of Lycium ruthenicum Murr and Their Monoamine Oxidase B Inhibitory and Neuroprotective Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7968-7980. [PMID: 35729693 DOI: 10.1021/acs.jafc.2c02375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fruits ofLycium ruthenicum Murr have long been consumed as health food and used in folk medicine in China. Apart from the well-known polysaccharides, the active small molecular constituents in this fruit have not been fully studied. In this work, a systematic phytochemical study was carried out to investigate the small molecules and their potential health benefits. Nine new polyphenolic glycosides, lyciumserin A-I (1-9), together with 16 known compounds (10-25), were isolated and elucidated by high-resolution electrospray ionization mass spectrometry and comprehensive NMR analyses in combination with chemical hydrolysis. Compounds 1, 2, and 16 exhibited moderate inhibitory activity of monoamine oxidase B (MAO-B), while compounds 1 (50 μM) and 2 (100 μM) displayed significant neuroprotective effects (69.22 and 72.38% of cell viability, respectively) in the 6-hydroxydopamine-induced injury of the PC12 cell model (54.41%), comparable to the positive drug rasagiline (70.45%). The neuroprotective effect of 1 and 2 was further evidenced by the observation of the morphological change and fluorescein diacetate/propidium iodide staining. In addition, the levels of the major active compounds (1, 3, 5/6, and 16-18) vary from 21.5 to 892.3 μg/g. This is the first report on phenolic glycosides from the fruits ofL. ruthenicum Murr that possess both significant MAO-B inhibitory and neuroprotective effects, indicating the promising potential of the fruits for the development of health care products and even therapeutic agents for the treatment of Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
19
|
Lopes MJP, Delmondes GDA, Leite GMDL, Cavalcante DRA, Aquino PÉAD, Lima FAVD, Neves KRT, Costa AS, Oliveira HDD, Bezerra Felipe CF, Pampolha Lima IS, Kerntopf MR, Viana GSDB. The Protein-Rich Fraction from Spirulina platensis Exerts Neuroprotection in Hemiparkinsonian Rats by Decreasing Brain Inflammatory-Related Enzymes and Glial Fibrillary Acidic Protein Expressions. J Med Food 2022; 25:695-709. [PMID: 35834631 DOI: 10.1089/jmf.2021.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Spirulina platensis is a cyanobacterium with high protein content and presenting neuroprotective effects. Now, we studied a protein-enriched fraction (SPF), on behavior, neurochemical and immunohistochemical (IHC) assays in hemiparkinsonian rats, distributed into the groups: SO (sham-operated), 6-hydroxydopamine (6-OHDA), and 6-OHDA (treated with SPF, 5 and 10 mg/kg, p.o., 15 days). Afterward, animals were subjected to behavioral tests and euthanized, and brain areas used for neurochemical and IHC assays. SPF partly reversed the changes in the apomorphine-induced rotations, open field and forced swim tests, and also the decrease in striatal dopamine and 3,4-dihydroxyphenylacetic acid contents seen in hemiparkinsonian rats. Furthermore, SPF reduced brain oxidative stress and increased striatal expressions of tyrosine hydroxylase and dopamine transporter and significantly reduced hippocampal inducible nitric oxide synthase, cyclooxygenase-2 and glial fibrillary acidic protein expressions. The data suggest that the protein fraction from S. platensis, through its brain anti-inflammatory and antioxidative actions, exerts neuroprotective effects that could benefit patients affected by neurodegenerative diseases, like Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andréa Santos Costa
- Faculty of Medicine of the Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Bianchi VE, Rizzi L, Somaa F. The role of nutrition on Parkinson's disease: a systematic review. Nutr Neurosci 2022; 26:605-628. [PMID: 35730414 DOI: 10.1080/1028415x.2022.2073107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD) in elderly patients is the second most prevalent neurodegenerative disease. The pathogenesis of PD is associated with dopaminergic neuron degeneration of the substantia nigra in the basal ganglia, causing classic motor symptoms. Oxidative stress, mitochondrial dysfunction, and neuroinflammation have been identified as possible pathways in laboratory investigations. Nutrition, a potentially versatile factor from all environmental factors affecting PD, has received intense research scrutiny. METHODS A systematic search was conducted in the MEDLINE, EMBASE, and WEB OF SCIENCE databases from 2000 until the present. Only randomized clinical trials (RCTs), observational case-control studies, and follow-up studies were included. RESULTS We retrieved fifty-two studies that met the inclusion criteria. Most selected studies investigated the effects of malnutrition and the Mediterranean diet (MeDiet) on PD incidence and progression. Other investigations contributed evidence on the critical role of microbiota, vitamins, polyphenols, dairy products, coffee, and alcohol intake. CONCLUSIONS There are still many concerns regarding the association between PD and nutrition, possibly due to underlying genetic and environmental factors. However, there is a body of evidence revealing that correcting malnutrition, gut microbiota, and following the MeDiet reduced the onset of PD and reduced clinical progression. Other factors, such as polyphenols, polyunsaturated fatty acids, and coffee intake, can have a potential protective effect. Conversely, milk and its accessory products can increase PD risk. Nutritional intervention is essential for neurologists to improve clinical outcomes and reduce the disease progression of PD.
Collapse
Affiliation(s)
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fahad Somaa
- King Abdulaziz University, Department of occupational therapy. Jeddah, Makkah, Saudi Arabia
| |
Collapse
|
21
|
Goyal A, Gopika S, Kumar A, Garabadu D. A Comprehensive Review on Preclinical Evidence Based Neuroprotective Potential of Bacopa Monnieri Against Parkinson's Disease. Curr Drug Targets 2022; 23:889-901. [PMID: 35297345 DOI: 10.2174/1389450123666220316091734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's diseaseis a chronic and gradually progressive neurodegenerative disorder triggered due to the loss of dopamine-releasing neurons in the region of substantianigra pars compacta characterized by the motor symptoms such as tremor, bradykinesia, akinesia, and postural instability. Proteinopathies, mitochondrial dysfunction induced dopaminergic neuronal deterioration, and gene mutations arethe hallmarks of Parkinson's disease. The bioactive components of Brahmi such as Bacoside A, Bacoside B, and Bacosaponins, belong to various chemical families. Brahmi's neuroprotective role includes reducing neuronal oxidative stress, dopaminergic neuronal degeneration, mitochondrial dysfunction, inflammation, aggregation inhibition of α-synuclein, and improvement of cognitive and learning behaviour. Researchers found that Bacopa monnieri significantly increased brain levels of glutathione, vitamin C, vitamin E, and vitamin A in rats exposed to cigarette smoke. Brahmi has a potent antioxidant property and neuroprotective effects against PD that help reduce oxidative stress, neuroinflammation and enhance the dopamine level. The review collates all the preclinical studies that prove the beneficial neuroprotective effect of Brahmi for treating PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - S Gopika
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Abhishek Kumar
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda- 151001, Punjab, India
| |
Collapse
|
22
|
Curcumin-Loaded Human Serum Albumin Nanoparticles Prevent Parkinson’s Disease-like Symptoms in C. elegans. NANOMATERIALS 2022; 12:nano12050758. [PMID: 35269246 PMCID: PMC8924894 DOI: 10.3390/nano12050758] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
Parkinson’s disease is one of the most common degenerative disorders and is characterized by observable motor dysfunction and the loss of dopaminergic neurons. In this study, we fabricated curcumin nanoparticles using human serum albumin as a nanocarrier. Encapsulating curcumin is beneficial to improving its aqueous solubility and bioavailability. The curcumin-loaded HSA nanoparticles were acquired in the particle size and at the zeta potential of 200 nm and −10 mV, respectively. The curcumin-loaded human serum albumin nanoparticles ameliorated Parkinson’s disease features in the C. elegans model, including body movement, basal slowing response, and the degeneration of dopaminergic neurons. These results suggest that curcumin nanoparticles have potential as a medicinal nanomaterial for preventing the progression of Parkinson’s disease.
Collapse
|
23
|
Thymol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease via inhibiting oxidative stress. BMC Complement Med Ther 2022; 22:40. [PMID: 35144603 PMCID: PMC8832724 DOI: 10.1186/s12906-022-03524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background Parkinson’s disease (PD) is a multifactorial movement disorder with the progressive degeneration of the nigrostriatal system that impairs patients’ movement ability. Oxidative stress has been found to affect the etiology and pathogenesis of PD. Thymol, a monoterpenic phenol, is one of the most important dietary constituents in thyme species. It has been used in traditional medicine and possesses some properties including antioxidant, free radical scavenging, anti-inflammatory. In this study, in vitro and in vivo experiments were performed with the thymol in order to investigate its potential neuroprotective effects in models of PD. Methods The present study aimed to evaluate the therapeutic potential of thymol in 6-hydroxydopamine (6-OHDA)-induced cellular and animal models of PD. Results Post-treatment with thymol in vitro was found to protect PC12 cells from toxicity induced by 6-OHDA administration in a dose-dependent manner by (1) increasing cell viability and (2) reduction in intracellular reactive oxygen species, intracellular lipid peroxidation, and annexin-positive cells. In vivo, post-treatment with thymol was protective against neurodegenerative phenotypes associated with systemic administration of 6-OHDA. Results indicated that thymol improved the locomotor activity, catalepsy, akinesia, bradykinesia, and motor coordination and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Increased level of reduced glutathione content and a decreased level of MDA (malondialdehyde) in striatum were observed in the 6-OHDA rats post-treated with thymol. Conclusions Collectively, our findings suggest that thymol exerts protective effects, possibly related to an anti-oxidation mechanism, in these in vitro and in vivo models of Parkinson’s disease.
Collapse
|
24
|
Zahedipour F, Hosseini SA, Henney NC, Barreto GE, Sahebkar A. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 2022; 17:1675-1684. [PMID: 35017414 PMCID: PMC8820712 DOI: 10.4103/1673-5374.332128] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Inflammatory processes and proinflammatory cytokines have a key role in the cellular processes of neurodegenerative diseases and are linked to the pathogenesis of functional and mental health disorders. Tumor necrosis factor alpha has been reported to play a major role in the central nervous system in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis and many other neurodegenerative diseases. Therefore, a potent proinflammatory/proapoptotic tumor necrosis factor alpha could be a strong candidate for targeted therapy. Plant derivatives have now become promising candidates as therapeutic agents because of their antioxidant and chemical characteristics, and anti-inflammatory features. Recently, phytochemicals including flavonoids, terpenoids, alkaloids, and lignans have generated interest as tumor necrosis factor alpha inhibitor candidates for a number of diseases involving inflammation within the nervous system. In this review, we discuss how phytochemicals as tumor necrosis factor alpha inhibitors are a therapeutic strategy targeting neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology, School of Medicine; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology, School of Medicine; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neil C Henney
- Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - George E Barreto
- Department of Biological Sciences; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves ADO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 2021; 148:105085. [PMID: 34052297 DOI: 10.1016/j.neuint.2021.105085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.
Collapse
Affiliation(s)
- Charles Elias Assmann
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Grazielle Castagna Cezimbra Weis
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Beatriz da Silva Rosa Bonadiman
- Post-Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Audrei de Oliveira Alves
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
26
|
Küpeli Akkol E, Tatlı Çankaya I, Şeker Karatoprak G, Carpar E, Sobarzo-Sánchez E, Capasso R. Natural Compounds as Medical Strategies in the Prevention and Treatment of Psychiatric Disorders Seen in Neurological Diseases. Front Pharmacol 2021; 12:669638. [PMID: 34054540 PMCID: PMC8155682 DOI: 10.3389/fphar.2021.669638] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are frequently encountered in many neurological disorders, such as Alzheimer’s and Parkinson diseases along with epilepsy, migraine, essential tremors, and stroke. The most common comorbid diagnoses in neurological diseases are depression and anxiety disorders along with cognitive impairment. Whether the underlying reason is due to common neurochemical mechanisms or loss of previous functioning level, comorbidities are often overlooked. Various treatment options are available, such as pharmacological treatments, cognitive-behavioral therapy, somatic interventions, or electroconvulsive therapy. However oral antidepressant therapy may have some disadvantages, such as interaction with other medications, low tolerability due to side effects, and low efficiency. Natural compounds of plant origin are extensively researched to find a better and safer alternative treatment. Experimental studies have shown that phytochemicals such as alkaloids, terpenes, flavonoids, phenolic acids as well as lipids have significant potential in in vitro and in vivo models of psychiatric disorders. In this review, various efficacy of natural products in in vitro and in vivo studies on neuroprotective and their roles in psychiatric disorders are examined and their neuro-therapeutic potentials are shed light.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Irem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | - Elif Carpar
- Department of Psychiatry, Private French La Paix Hospital, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Potici, Italy
| |
Collapse
|
27
|
Trovato M, Sciacchitano S, Facciolà A, Valenti A, Visalli G, Di Pietro A. Interleukin‑6 signalling as a valuable cornerstone for molecular medicine (Review). Int J Mol Med 2021; 47:107. [PMID: 33907833 PMCID: PMC8057292 DOI: 10.3892/ijmm.2021.4940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
The biological abilities of interleukin-6 (IL-6) have been under investigation for nearly 40 years. IL-6 works through an interaction with the complex peptide IL-6 receptor (IL-6R). IL-6 is built with four α-chain nanostructures, while two different chains, IL-6Rα (gp80) and gp130/IL6β (gp130), are included in IL-6R. The three-dimensional shapes of the six chains composing the IL-6/IL-6R complex are the basis for the nanomolecular roles of IL-6 signalling. Genes, pseudogenes and competitive endogenous RNAs of IL-6 have been identified. In the present review, the roles played by miRNA in the post-transcriptional regulation of IL-6 expression are evaluated. mRNAs are absorbed via the 'sponge' effect to dynamically balance mRNA levels and this has been assessed with regard to IL-6 transcription efficiency. According to current knowledge on molecular and nanomolecular structures involved in active IL-6 signalling, two different IL-6 models have been proposed. IL-6 mainly has functions in inflammatory processes, as well as in cognitive activities. Furthermore, the abnormal production of IL-6 has been found in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; also known as COVID-19). In the present review, both inflammatory and cognitive IL-6 models were analysed by evaluating the cytological and histological locations of IL-6 signalling. The goal of this review was to illustrate the roles of the classic and trans-signalling IL-6 pathways in endocrine glands such as the thyroid and in the central nervous system. Specifically, autoimmune thyroid diseases, disorders of cognitive processes and SARS-CoV-2 virus infection have been examined to determine the contribution of IL-6 to these disease states.
Collapse
Affiliation(s)
- Maria Trovato
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | | | - Alessio Facciolà
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, I‑98125 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, I‑98125 Messina, Italy
| |
Collapse
|
28
|
Johnson JB, Broszczak DA, Mani JS, Anesi J, Naiker M. A cut above the rest: oxidative stress in chronic wounds and the potential role of polyphenols as therapeutics. J Pharm Pharmacol 2021; 74:485-502. [PMID: 33822141 DOI: 10.1093/jpp/rgab038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The pathophysiology of chronic wounds typically involves redox imbalance and inflammation pathway dysregulation, often with concomitant microbial infection. Endogenous antioxidants such as glutathione and tocopherols are notably reduced or absent, indicative of significant oxidative imbalance. However, emerging evidence suggests that polyphenols could be effective agents for the amelioration of this condition. This review aims to summarise the current state of knowledge surrounding redox imbalance in the chronic wound environment and the potential use of polyphenols for the treatment of chronic wounds. KEY FINDINGS Polyphenols provide a multi-faceted approach towards the treatment of chronic wounds. Firstly, their antioxidant activity allows direct neutralisation of harmful free radicals and reactive oxygen species, assisting in restoring redox balance. Upregulation of pro-healing and anti-inflammatory gene pathways and enzymes by specific polyphenols further acts to reduce redox imbalance and promote wound healing actions, such as proliferation, extracellular matrix deposition and tissue remodelling. Finally, many polyphenols possess antimicrobial activity, which can be beneficial for preventing or resolving infection of the wound site. SUMMARY Exploration of this diverse group of natural compounds may yield effective and economical options for the prevention or treatment of chronic wounds.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Janice S Mani
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Jack Anesi
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| |
Collapse
|
29
|
Zhang Z, Peng L, Fu Y, Wang W, Wang P, Zhou F. Ginnalin A Binds to the Subpockets of Keap1 Kelch Domain To Activate the Nrf2-Regulated Antioxidant Defense System in SH-SY5Y Cells. ACS Chem Neurosci 2021; 12:872-882. [PMID: 33571414 DOI: 10.1021/acschemneuro.0c00713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ginnalin A (GA), a polyphenol from the red maple, was reported to be a potential ROS scavenger or an activator of nuclear factor erythroid-2 related factor 2 (Nrf2) in cancer cells. However, whether GA could activate Nrf2 in neuronal cells and the exact mode of action are unknown. We performed molecular docking calculations, which revealed that GA fits well into the five subpockets of the Kelch-like ECH-associated protein1 (Keap1) Kelch domain via hydrogen bonding and hydrophobic interaction. Our cytotoxicity assays demonstrate that pretreating SH-SY5Y cells with 20 μM GA effectively prevents cells from oxidative assault by 6-hydroxydopamine (6-OHDA). Fluorescence imaging indicates that upon the GA pretreatment, Nrf2 dissociates from the Keap1-Nrf2 complex and translocates into nucleus to activate the cellular antixodant system. Real-time qPCR quantification and Western blotting verified that the GA pretreatment elevates NAD(P)H quinone oxidoreductase-1 (NQO1) by more than 4.6-fold, heme oxygenase (HO-1) by about 1.2-fold, and the glutamate-cysteine ligase catalytic (GCLC) subunit by 0.7-fold. The higher antixidant protein levels, along with increased glutathione concentration, decrease intracellular reactive oxygen species and alleviate the 6-OHDA-induced oxidative damage. Silence of Nrf2 abrogates the cytoprotection of the GA pretreatment, confirming that the Keap1/Nrf2-ARE (antioxidant response element) pathway is solely responsible for the GA's biological effects. GA is a promising natural compound for sensitizing neuronal cells' antioxidative defense system to offset oxidative stress, a condition closely linked to the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Zhuang Zhang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Lanlan Peng
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yaru Fu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Wenjuan Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
30
|
Angelopoulou E, Nath Paudel Y, Piperi C, Mishra A. Neuroprotective potential of cinnamon and its metabolites in Parkinson's disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J Biochem Mol Toxicol 2021:e22711. [PMID: 33587308 DOI: 10.1002/jbt.22711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate, may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the Toll-like receptors/nuclear factor-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored and potential obstacles/limitations that need to be overcome for its inclusion in experimental PD therapeutics.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
31
|
Hor SL, Teoh SL, Lim WL. Plant Polyphenols as Neuroprotective Agents in Parkinson's Disease Targeting Oxidative Stress. Curr Drug Targets 2021; 21:458-476. [PMID: 31625473 DOI: 10.2174/1389450120666191017120505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the human midbrain. Various ongoing research studies are competing to understand the pathology of PD and elucidate the mechanisms underlying neurodegeneration. Current pharmacological treatments primarily focused on improving dopamine metabolism in PD patients, despite the side effects of long-term usage. In recent years, it is recognized that oxidative stress-mediated pathways lead to neurodegeneration in the brain, which is associated with the pathophysiology of PD. The importance of oxidative stress is often less emphasized when developing potential therapeutic approaches. Natural plant antioxidants have been shown to mediate the oxidative stress-induced effects in PD, which has gained considerable attention in both in vitro and in vivo studies. Yet, clinical trials on natural polyphenol compounds are limited, restricting the potential use of these compounds as an alternative treatment for PD. Therefore, this review provides an understanding of the oxidative stress-induced effects in PD by elucidating the underlying events contributing to oxidative stress and explore the potential use of polyphenols in improving the oxidative status in PD. Preclinical findings have supported the potential of polyphenols in providing neuroprotection against oxidative stress-induced toxicity in PD. However, limiting factors, such as safety and bioavailability of polyphenols, warrant further investigations so as to make them the potential target for clinical applications in the treatment and management of PD.
Collapse
Affiliation(s)
- Suet Lee Hor
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
32
|
Angelopoulou E, Paudel YN, Piperi C, Mishra A. Neuroprotective potential of cinnamon and its metabolites in Parkinson's disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J Biochem Mol Toxicol 2021; 35:e22720. [PMID: 33491302 DOI: 10.1002/jbt.22720] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/21/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the TLR/NF-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored, and potential obstacles/limitations that need to be overcome, for its inclusion in experimental PD therapeutics.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam N Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
33
|
Khan H, Tundis R, Ullah H, Aschner M, Belwal T, Mirzaei H, Akkol EK. Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol 2020; 146:111817. [PMID: 33069760 DOI: 10.1016/j.fct.2020.111817] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci 87036 Rende (CS), Italy.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Tarun Belwal
- Centre for Biodiversity Conservation and Management, G.B. Plant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| | - Esra Kupeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy Gazi University 06330, Etiler/Ankara Turkey.
| |
Collapse
|
34
|
Ardah MT, Bharathan G, Kitada T, Haque ME. Ellagic Acid Prevents Dopamine Neuron Degeneration from Oxidative Stress and Neuroinflammation in MPTP Model of Parkinson's Disease. Biomolecules 2020; 10:E1519. [PMID: 33172035 PMCID: PMC7694688 DOI: 10.3390/biom10111519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases and is characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta area. In the present study, treatment of EA for 1 week at a dose of 10 mg/kg body weight prior to MPTP (25 mg/kg body weight) was carried out. MPTP administration caused oxidative stress, as evidenced by decreased activities of superoxide dismutase and catalase, and the depletion of reduced glutathione with a concomitant rise in the lipid peroxidation product, malondialdehyde. It also significantly increased the pro-inflammatory cytokines and elevated the inflammatory mediators like cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Immunohistochemical analysis revealed a loss of dopamine neurons in the SNc area and a decrease in dopamine transporter in the striatum following MPTP administration. However, treatment with EA prior to MPTP injection significantly rescued the dopaminergic neurons and dopamine transporter. EA treatment further restored antioxidant enzymes, prevented the depletion of glutathione and inhibited lipid peroxidation, in addition to the attenuation of pro-inflammatory cytokines. EA also reduced the levels of COX-2 and iNOS. The findings of the present study demonstrate that EA protects against MPTP-induced PD and the observed neuroprotective effects can be attributed to its potent antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Mustafa T. Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| | - Greeshma Bharathan
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| | - Tohru Kitada
- Otawa-Kagaku Service, Parkinson’s Clinic and Research, Kamakura 247-0061, Japan;
| | - M. Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| |
Collapse
|
35
|
Kumar R, Kumar R, Khurana N, Singh SK, Khurana S, Verma S, Sharma N, Kapoor B, Vyas M, Khursheed R, Awasthi A, Kaur J, Corrie L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson's disease rat model. Food Chem Toxicol 2020; 144:111590. [DOI: 10.1016/j.fct.2020.111590] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
|
36
|
Identifying Plant-Based Natural Medicine against Oxidative Stress and Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8648742. [PMID: 33014278 PMCID: PMC7519196 DOI: 10.1155/2020/8648742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Free radicals and oxidative stress are among the most studied factors leading to the imbalance in mental health. With no exception, free radicals also damage neuronal cells, leading to various degenerative diseases. With existing modern medications, around 80% of the world population relies on herbal medicine for various ailments. Phytochemicals in plants have a wide range of pharmacological properties, the major being their ability to scavenge free radicals. Plant polyphenols are among the major class of antioxidants identified in plants. This antioxidative property of plant compounds and their ability to downgrade the process of oxidative stress can be used to treat neurodegenerative diseases. However, selecting plants and their active compounds is a crucial step in framing the mechanism of action underlying their therapeutic potential.
Collapse
|
37
|
Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: An Overview of Its Beneficial Effects in Experimental Models and Clinical Trials of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21134766. [PMID: 32635541 PMCID: PMC7369844 DOI: 10.3390/ijms21134766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurological disease characterized by the progressive degeneration of the nigrostriatal dopaminergic pathway with consequent loss of neurons in the substantia nigra pars compacta and dopamine depletion. The cytoplasmic inclusions of α-synuclein (α-Syn), known as Lewy bodies, are the cytologic hallmark of PD. The presence of α-Syn aggregates causes mitochondrial degeneration, responsible for the increase in oxidative stress and consequent neurodegeneration. PD is a progressive disease that shows a complicated pathogenesis. The current therapies are used to alleviate the symptoms of the disease without changing its clinical course. Recently, phytocompounds with neuroprotective effects and antioxidant properties such as caffeine have aroused the interest of researchers. The purpose of this review is to summarize the preclinical studies present in the literature and clinical trials recorded in ClinicalTrial.gov, aimed at illustrating the effects of caffeine used as a nutraceutical compound combined with the current PD therapies. Therefore, the preventive effects of caffeine in the neurodegeneration of dopaminergic neurons encourage the use of this alkaloid as a supplement to reduce the progress of the PD.
Collapse
|
38
|
Albasher G, Aljarba N, Al Sultan N, Alqahtani WS, Alkahtani S. Evaluation of the neuro-protective effect of Artemisia judaica extract in a murine diabetic model. J Food Biochem 2020; 44:e13337. [PMID: 32588466 DOI: 10.1111/jfbc.13337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
Chronic hyperglycemia is associated with several negative outcomes including neuronal injury. Medicinal plants supplementation has been widely applied to treat or decrease diabetic complications. Here, the possible neuroprotective effect of Artemisia judaica extract (AjE. 300 mg kg-1 day-1 ) against neuronal deficits in diabetes model induced by high-fat diet (HFD) administration and streptozotocin (STZ, 30 mg/Kg) injection in rats was investigated. Diabetic rats showed a disturbance in the neuronal redox homeostasis as confirmed by the elevated lipoperoxidation and nitric oxide formation along with the decreased antioxidant molecules. In addition, a state of neuroinflammation and apoptosis were recorded in the brain tissue in diabetic rats. Furthermore, HFD/STZ provoked neurochemical alterations. However, AjE administration was found to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, antiapoptotic, and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients. PRACTICAL APPLICATIONS: Diabetes mellitus (DM) is a metabolic disorder characterized by high blood glucose level comes from the dysregulation of insulin production and/or its action. The persisted hyperglycemia is correlated with the progression of several physical complications including renal, hepatic, vascular, retinal, and neuronal dysfunction. Artemisia is used in the nutritional and medicinal proposes due to the enriched bioactive molecules such as essential oil, flavonoids, phenolics, sesquiterpenoids, triterpenoids, and artemisinin. And we found that Artemisia judaica extract (AjE) administration was able to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, anti-apoptotic and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada Aljarba
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Al Sultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Ramazani E, YazdFazeli M, Emami SA, Mohtashami L, Javadi B, Asili J, Tayarani-Najaran Z. Protective effects of Cinnamomum verum, Cinnamomum cassia and cinnamaldehyde against 6-OHDA-induced apoptosis in PC12 cells. Mol Biol Rep 2020; 47:2437-2445. [DOI: 10.1007/s11033-020-05284-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
|
40
|
Mazumder MK, Borah A, Choudhury S. Inhibitory potential of plant secondary metabolites on anti-Parkinsonian drug targets: Relevance to pathophysiology, and motor and non-motor behavioural abnormalities. Med Hypotheses 2020; 137:109544. [PMID: 31954292 DOI: 10.1016/j.mehy.2019.109544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/29/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative motor disorder, is caused due to the loss of dopaminergic neurons in the substantia nigra pars compacta region of mid-brain and the resultant depletion of the levels of the neurotransmitter dopamine. Although the pathophysiology of the disease is least understood, studies in animal models revealed oxidative stress, mitochondrial dysfunction and inflammation to be the major contributors. Dopamine replenishment therapy by oral administration of L-DOPA, the precursor of dopamine remains to be the therapeutic gold-standard for symptomatic treatment of PD. In addition, use of inhibitors of dopamine metabolizing enzymes (viz. monoamine oxidase-B: MAO-B; and catechol-O-methyltransferase: COMT) are the other strategies for amelioration of the motor abnormalities. Further, PD is associated with non-motor behavioural abnormalities as well, including cognitive impairment and mood disorders, which are caused due to cholinergic neurodegeneration, and thus inhibition of Acetylcholinesterase (AChE) is suggested. However, the currently used drugs against the three crucial enzymes (MAO-B, COMT and AChE) elicit several side effects, and thus the search for novel compounds continues, and plant-based compounds have promising potential in this regard. In the present study, we have used computational modeling to determine the efficiency of 40 plant-based natural products in inhibiting the three anti-Parkinsonian drug targets. Further, statistical analysis was performed to identify the properties of the compounds which are crucial for inhibition of the enzymes. While all the phytochemicals showed potential in inhibiting the enzymes, Rutin, Demethoxycurcumin and Acteoside were found to be most effective inhibitors of MAO-B, COMT and AChE respectively. Since most of the compounds are established anti-oxidant and anti-inflammatory molecules, they are surmised to confer neuroprotection in PD, and prevent progression of the disease.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Central Instrumentation Laboratory, Assam University, Silchar 788011, Assam, India; Department of Zoology, Dhemaji College, Dhemaji 787057, Assam, India.
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Shuvasish Choudhury
- Central Instrumentation Laboratory, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
41
|
Oveissi V, Ram M, Bahramsoltani R, Ebrahimi F, Rahimi R, Naseri R, Belwal T, Devkota HP, Abbasabadi Z, Farzaei MH. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. Daru 2019; 27:389-406. [PMID: 30852764 PMCID: PMC6593128 DOI: 10.1007/s40199-019-00255-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chemotherapy, as one of the main approaches of cancer treatment, is accompanied with several adverse effects, including chemotherapy-induced peripheral neuropathy (CIPN). Since current methods to control the condition are not completely effective, new treatment options should be introduced. Medicinal plants can be suitable candidates to be assessed regarding their effects in CIPN. Current paper reviews the available preclinical and clinical studies on the efficacy of herbal medicines in CIPN. METHODS Electronic databases including PubMed, Scopus, and Cochrane library were searched with the keywords "neuropathy" in the title/abstract and "plant", "extract", or "herb" in the whole text. Data were collected from inception until April 2018. RESULTS Plants such as chamomile (Matricaria chamomilla L.), sage (Salvia officinalis L.), cinnamon (Cinnamomum cassia (L.) D. Don), and sweet flag (Acorus calamus L.) as well as phytochemicals like matrine, curcumin, and thioctic acid have demonstrated beneficial effects in animal models of CIPN via prevention of axonal degeneration, decrease in total calcium level, improvement of endogenous antioxidant defense mechanisms such as superoxide dismutase and reduced glutathione, and regulation of neural cell apoptosis, nuclear factor-ĸB, cyclooxygenase-2, and nitric oxide signaling. Also, five clinical trials have evaluated the effect of herbal products in patients with CIPN. CONCLUSIONS There are currently limited clinical evidence on medicinal plants for CIPN which shows the necessity of future mechanistic studies, as well as well-designed clinical trial for further confirmation of the safety and efficacy of herbal medicines in CIPN. Graphical abstract Schematic mechanisms of medicinal plants to prevent chemotherapy-induced neuropathy: NO: nitric oxide, TNF: tumor necrosis factor, PG: prostaglandin, NF-ĸB: nuclear factor kappa B, LPO: lipid peroxidation, ROS: reactive oxygen species, COX: cyclooxygenase, IL: interleukin, ERK: extracellular signal-related kinase, X: inhibition, ↓: induction.
Collapse
Affiliation(s)
- Vahideh Oveissi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahboobe Ram
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ebrahimi
- Pharmacy Students' Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tarun Belwal
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263643, India
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Anti-inflammatory and analgesic activities of methanol extract of Helianthus annuus Linn. (Asteraceae) leaf. THE EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
This study evaluate the anti-inflammatory and analgesic properties of Helianthus annuus Linn. in rats. Methanol extract of Helianthus annuus (HAE) leaf was used in this study. Formalin- and egg-albumin induced-paw edema were used to investigate the anti-inflammatory activities while acetic acid-induced writhing reflex and tail flick models were used to evaluate the analgesic properties. The doses of HAE used were 150, 300 and 600 mg/kg. Acetylsalicylic acid (ASA) was used as reference drug in the anti-inflammatory and writhing reflex models while pentazocine (reference drug) was used in tail flick model. The negative control was dosed 5% tween-20 (10 ml/kg). The HAE exhibited significant (P < 0.05) dose-dependent anti-inflammatory and analgesic activities. At 3 hour (h) post treatment, the HAE (300 mg/kg) produced 33.33% and 32.94% while ASA produced 36.36% and 35.29% reduction in paw volume in the formalin and egg-albumin induced paw edema models respectively when compared with negative control. In the acetic acid-induced writhing reflex, ASA and HAE (600 mg/kg) produced 67.89% and 35.78% reduction in the number of writhing, respectively when compared with the negative control. Pentazocine and HAE (300 mg/kg) caused 67.62% and 35.24% increase in pain reaction time when compared with the negative control. The study affirms the folkloric uses of Helianthus annuus in the management of pain and inflammation.
Collapse
|
43
|
Laila O, Murtaza I, Abdin MZ, Ahmad S, Khan MS. Development and validation of a high-performance thin-layer chromatography based method for the quantification of trigonelline in fenugreek ( Trigonella foenum-graecum) seeds. JPC-J PLANAR CHROMAT 2019. [DOI: 10.1556/1006.2019.32.2.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Omi Laila
- Biochemistry and Molecular Biotechnology Laboratory, Division of Basic Sciences and Humanities, SKUAST-K-190025, India
| | - Imtiyaz Murtaza
- Biochemistry and Molecular Biotechnology Laboratory, Division of Basic Sciences and Humanities, SKUAST-K-190025, India
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Masood Shah Khan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
44
|
Javed H, Azimullah S, Meeran MFN, Ansari SA, Ojha S. Neuroprotective Effects of Thymol, a Dietary Monoterpene Against Dopaminergic Neurodegeneration in Rotenone-Induced Rat Model of Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20071538. [PMID: 30934738 PMCID: PMC6480243 DOI: 10.3390/ijms20071538] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| |
Collapse
|
45
|
Plant-derived medicines for neuropathies: a comprehensive review of clinical evidence. Rev Neurosci 2019; 30:671-684. [DOI: 10.1515/revneuro-2018-0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Abstract
Neuropathy is defined as the damage to the peripheral or central nervous system accompanied by pain, numbness, or muscle weakness, which can be due to congenital diseases or environmental factors such as diabetes, trauma, or viral infections. As current treatments are not sufficiently able to control the disease, studies focusing on the identification and discovery of new therapeutic agents are necessary. Natural products have been used for a long time for the management of different neurological problems including neuropathies. The aim of the present study is to review the current clinical data on the beneficial effects of medicinal plants in neuropathy. Electronic databases including PubMed, Scopus, and Cochrane Library were searched with the keywords ‘neuropathy’ in the title/abstract and ‘plant’ or ‘extract’ or ‘herb’ in the whole text from inception until August 2017. From a total of 3679 papers, 22 studies were finally included. Medicinal plants were evaluated clinically in several types of neuropathy, including diabetic neuropathy, chemotherapy-induced peripheral neuropathy, carpal tunnel syndrome, and HIV-associated neuropathy. Some studies reported the improvement in pain, nerve function, nerve conduction velocity, and quality of life. Cannabis sativa (hemp), Linum usitatissimum (linseed oil), capsaicin, and a polyherbal Japanese formulation called Goshajinkigan had the most evidence regarding their clinical efficacy. Other investigated herbal medicines in neuropathy, such as Matricaria chamomilla (chamomile), Curcuma longa (turmeric), and Citrullus colocynthis (colocynth), had only one clinical trial. Thus, future studies are necessary to confirm the safety and efficacy of such natural medicines as a complementary or alternative treatment for neuropathy.
Collapse
|
46
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
47
|
Monteiro AFM, Viana JDO, Nayarisseri A, Zondegoumba EN, Mendonça Junior FJB, Scotti MT, Scotti L. Computational Studies Applied to Flavonoids against Alzheimer's and Parkinson's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7912765. [PMID: 30693065 PMCID: PMC6332933 DOI: 10.1155/2018/7912765] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's and Alzheimer's, are understood as occurring through genetic, cellular, and multifactor pathophysiological mechanisms. Several natural products such as flavonoids have been reported in the literature for having the capacity to cross the blood-brain barrier and slow the progression of such diseases. The present article reports on in silico enzymatic target studies and natural products as inhibitors for the treatment of Parkinson's and Alzheimer's diseases. In this study we evaluated 39 flavonoids using prediction of molecular properties and in silico docking studies, while comparing against 7 standard reference compounds: 4 for Parkinson's and 3 for Alzheimer's. Osiris analysis revealed that most of the flavonoids presented no toxicity and good absorption parameters. The Parkinson's docking results using selected flavonoids as compared to the standards with four proteins revealed similar binding energies, indicating that the compounds 8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, capensinidin, and rosinidin are potential leads with the necessary pharmacological and structural properties to be drug candidates. The Alzheimer's docking results suggested that seven of the 39 flavonoids studied, being those with the best molecular docking results, presenting no toxicity risks, and having good absorption rates (8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, aspalathin, butin, and norartocarpetin) for the targets analyzed, are the flavonoids which possess the most adequate pharmacological profiles.
Collapse
Affiliation(s)
- Alex France M. Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Jéssika De O. Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Bioscience, Inodre - 452010, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences, Indore - 452010, Madhya Pradesh, India
| | - Ernestine N. Zondegoumba
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaoundé, Cameroon
| | | | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
- Teaching and Research Management-University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
48
|
Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM. Role of green tea catechins in prevention of age-related cognitive decline: Pharmacological targets and clinical perspective. J Cell Physiol 2018; 234:2447-2459. [PMID: 30187490 DOI: 10.1002/jcp.27289] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Abstract
Over the past decade, a wide range of scientific investigations have been performed to reveal neuropathological aspects of cognitive disorders; however, only limited therapeutic approaches currently exist. The failures of conventional therapeutic options as well as the predicted dramatic rise in the prevalence of cognitive decline in the coming future show the necessity for novel therapeutic agents. Recently, a wide range of research has focused on pharmacological activities of green tea catechins worldwide. Current investigations have clarified mechanistic effects of the catechins in inflammatory cascades, oxidative damages, different cellular transcription as well as transduction pathway in various body systems. It has been demonstrated that green tea polyphenols prevent age-related neurodegeneration through improvement of endogenous antioxidant defense mechanisms, modulation of neural growth factors, attenuation of neuroinflammatory pathway, and regulation of apoptosis. The catechins exhibited beneficial effects in cellular and animal models of neurodegenerative diseases including Alzheimer's disease, MS, and Parkinson's disease. The present review discusses the current pharmacological targets, which can be involved in the treatment of cognitive decline and addresses the action of catechin derivatives elicited from green tea on the multiple neural targets.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasabadi
- Phyto Pharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Farzaei MH, Tewari D, Momtaz S, Argüelles S, Nabavi SM. Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food Chem Toxicol 2018; 120:183-195. [PMID: 29981370 DOI: 10.1016/j.fct.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/23/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Numerous chemicals, such as phenolic compounds are strong radical scavengers, capable of alleviating oxidative stress induced neurodegeneration. Dietary antioxidants, especially flavonoids, are being considered as a promising approach to prevent or slow the pathological development of neurological illness and aging. One of the major advantage of natural products is that of their anti-amyloid effects over synthetic counterpart, however a healthy diet provides these beneficial natural substances as nutraceuticals. The extracellular-signal-regulated kinase (ERK) is one of the main pharmacological target of natural phenolic compounds, participating in several therapeutic effects. Mounting evidence revealed that numerous bioflavonoids, obtained from a variety of dietary fruits or plants as well as medicinal herbal sources, exhibit protective or therapeutic functions versus development of neurodegenerative diseases mainly through modulation of different compartments of ERK signaling pathway. Currently, there is remarkable interest in the beneficial effects of natural flavonoids to improve neural performance and prevent the onset and development of major neurodegenerative diseases. Natural products originated from medicinal plants, in particular antioxidants, have gained a great deal of attention due to their safe and non-toxic natures. Here, we summarized the effect of natural bioflavonoids on ERK signaling pathway and their molecular mechanism.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Kujawska M, Jodynis-Liebert J. Polyphenols in Parkinson's Disease: A Systematic Review of In Vivo Studies. Nutrients 2018; 10:nu10050642. [PMID: 29783725 PMCID: PMC5986521 DOI: 10.3390/nu10050642] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson’s disease.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland.
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland.
| |
Collapse
|