1
|
Scarpellino G, Brunetti V, Berra-Romani R, De Sarro G, Guerra G, Soda T, Moccia F. The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow. Int J Mol Sci 2024; 25:9071. [PMID: 39201757 PMCID: PMC11354477 DOI: 10.3390/ijms25169071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
2
|
Tomruk C, Şirin Tomruk C, Denizlioğlu B, Olukman M, Ercan G, Duman S, Köse T, Çetin Uyanıkgil EÖ, Uyanıkgil Y, Uysal A. Effects of apelin on neonatal brain neurogenesis in L-NAME-induced maternal preeclampsia. Sci Rep 2024; 14:19347. [PMID: 39164321 PMCID: PMC11335761 DOI: 10.1038/s41598-024-69326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
The aim of this study was to investigate the possible protective effects of apelin, which is known to have antioxidant and anti-inflammatory effects, on changes in neurogenesis in newborns of pregnant rats with L-NAME-induced preeclampsia. Wistar albino female rats were divided into four experimental groups: Control, Apelin, Preeclampsia and Preeclampsia + Apelin. Blood pressure was measured on the 5th, 11th and 17th days of gestation, urine protein was analyzed from urine samples collected for 24 h on the 6th, 12th and 18th days and serum creatinine was analyzed from serum samples. Maternal kidney and placenta tissues were obtained to establish the preeclampsia model, and neonatal brain tissues including the cortex, hippocampus and cerebellum regions were obtained to investigate neurogenesis and examined by histological and immunohistochemical methods. The number of newborns, body weight and brain weight of the newborns were measured. eNOS, IL-10, nNOS and NO levels in the brain analyzed via ELISA. Mean arterial pressure, urine protein and serum creatinine increased in the preeclampsia. Newborn weight decreased in the Preeclampsia group, the values in the Preeclampsia + Apelin group were closer to the Control and Apelin groups. In the Preeclampsia group, edema and dilatation in the proximal and distal tubules of kidneys, perivillous fibrin deposition and increase in syncytial nodules of placenta were observed. VEGF immunoreactivity decreased and iNOS immunoreactivity increased in both kidney and placenta. In neonatal brain tissue examinations, cytotoxic edema accompanied by thinning of cortex, delayed migration and lower cell counts in the hippocampus, and increase in intercellular spaces and EGL thickening in the cerebellum were observed in the preeclampsia. Expression of NeuN, GFAP, MBP, IL-10, eNOS, nNOS and NO levels decreased, whereas expression of Iba-1 increased in the preeclampsia. In the Preeclampsia + Apelin group, these findings were similar to the Control and Apelin groups. Apelin administration was found to be beneficial for preventing the adverse consequences of preeclampsia, but further experimental and clinical studies are needed to better understand these effects.
Collapse
Affiliation(s)
- Canberk Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
- Histology and Embryology, Samsun Training and Research Hospital, İlkadim, Samsun, Türkiye
| | - Cansın Şirin Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Burcu Denizlioğlu
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
- Emergency Medicine, Aydın State Hospital, Efeler, Aydın, Türkiye
| | - Murat Olukman
- Department of Medical Pharmacology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Soner Duman
- Department of Internal Medicine, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| | - Emel Öykü Çetin Uyanıkgil
- Department of Pharmaceutical Technology, Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Bornova, İzmir, Türkiye
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye.
| | - Ayşegül Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, İzmir, Türkiye
| |
Collapse
|
3
|
Azevedo RDSD, Falcão KVG, Almeida SMVD, Araújo MC, Silva-Filho RC, Souza Maia MBD, Amaral IPGD, Leite ACR, de Souza Bezerra R. The tissue-specific nature of physiological zebrafish mitochondrial bioenergetics. Mitochondrion 2024; 77:101901. [PMID: 38777222 DOI: 10.1016/j.mito.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish are a powerful tool to study a myriad of experimental conditions, including mitochondrial bioenergetics. Considering that mitochondria are different in many aspects depending on the tissue evaluated, in the zebrafish model there is still a lack of this investigation. Especially for juvenile zebrafish. In the present study, we examined whether different tissues from zebrafish juveniles show mitochondrial density- and tissue-specificity comparing brain, liver, heart, and skeletal muscle (SM). The liver and brain complex IV showed the highest O2 consumption of all ETC in all tissues (10x when compared to other respiratory complexes). The liver showed a higher potential for ROS generation. In this way, the brain and liver showed more susceptibility to O2- generation when compared to other tissues. Regarding Ca2+ transport, the brain showed greater capacity for Ca2+ uptake and the liver presented low Ca2+ uptake capacity. The liver and brain were more susceptible to producing NO. The enzymes SOD and Catalase showed high activity in the brain, whereas GPx showed higher activity in the liver and CS in the SM. TEM reveals, as expected, a physiological diverse mitochondrial morphology. The essential differences between zebrafish tissues investigated probably reflect how the mitochondria play a diverse role in systemic homeostasis. This feature may not be limited to normal metabolic functions but also to stress conditions. In summary, mitochondrial bioenergetics in zebrafish juvenile permeabilized tissues showed a tissue-specificity and a useful tool to investigate conditions of redox system imbalance, mainly in the liver and brain.
Collapse
Affiliation(s)
- Rafael David Souto de Azevedo
- Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Garanhuns, PE, Brazil.
| | - Kivia Vanessa Gomes Falcão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | - Marlyete Chagas Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | | | | | | | - Ranilson de Souza Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
4
|
Pawar A, Pardasani KR. Modelling Cross Talk in the Spatiotemporal System Dynamics of Calcium, IP 3 and Nitric Oxide in Neuron Cells. Cell Biochem Biophys 2024; 82:787-803. [PMID: 38376737 DOI: 10.1007/s12013-024-01229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
The bioenergetic system of calcium ([Ca2+]), inositol 1, 4, 5-trisphophate (IP3) and nitric oxide (NO) regulate the diverse mechanisms in neurons. The dysregulation in any or all of the calcium, IP3 and nitric oxide dynamics may cause neurotoxicity and cell death. Few studies are noted in the literature on the interactions of two systems like [Ca2+] with IP3 and [Ca2+] with nitric oxide in neuron cells, which gives limited insights into regulatory and dysregulatory processes in neuron cells. But, no study is available on the cross talk in dynamics of three systems [Ca2+], IP3 and NO in neurons. Thus, the cross talk in the system dynamics of [Ca2+], IP3 and NO regulation processes in neurons have been studied using mathematical model. The two-way feedback process between [Ca2+] and IP3 and two-way feedback process between [Ca2+] and NO through cyclic guanosine monophosphate (cGMP) with plasmalemmal [Ca2+]-ATPase (PMCA) have been incorporated in the proposed model. This coupling handles the indirect two-way feedback process between IP3 and nitric oxide in neuronal cells automatically. The numerical outcomes were acquired by employing the finite element method (FEM) with the Crank-Nicholson scheme (CNS). The present model incorporating the sodium-calcium exchanger (NCX) and voltage-gated calcium channel (VGCC) provides novel insights into the various regulatory and dysregulatory processes due to buffer, IP3-receptor, ryanodine receptor, cGMP kinetics through PMCA channel, etc. and their impacts on the interactive spatiotemporal system dynamics of [Ca2+], IP3 and NO in neurons. It is concluded that the behavior of different crucial mechanisms is quite different for interactions of two systems of [Ca2+] and NO and the interactions of three systems of [Ca2+], IP3 and nitric oxide in neuronal cell due to mutual regulatory adjustments. The association of several neurological disorders with the alterations in calcium, IP3 and NO has been explored in neurons.
Collapse
Affiliation(s)
- Anand Pawar
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India.
| | - Kamal Raj Pardasani
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India.
| |
Collapse
|
5
|
Feng Y, Feng Y, Gu L, Mo W, Wang X, Song B, Hong M, Geng F, Huang P, Yang H, Zhu W, Jiao Y, Zhang Q, Ding WQ, Cao J, Zhang S. Tetrahydrobiopterin metabolism attenuates ROS generation and radiosensitivity through LDHA S-nitrosylation: novel insight into radiogenic lung injury. Exp Mol Med 2024; 56:1107-1122. [PMID: 38689083 PMCID: PMC11148139 DOI: 10.1038/s12276-024-01208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
- Department of Oncology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 214002, Wuxi, China
| | - Yahui Feng
- Laboratory of Radiation Medicine, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, 610051, Chengdu, China
| | - Liming Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei Mo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Xi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Bin Song
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Min Hong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Fenghao Geng
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Pei Huang
- Department of Oncology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 214002, Wuxi, China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei-Qun Ding
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, 610051, Chengdu, China.
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), 621099, Mianyang, China.
| |
Collapse
|
6
|
Bonomi CG, Martorana A, Fiorelli D, Nuccetelli M, Placidi F, Mercuri NB, Motta C. Constitutive NOS Production Is Modulated by Alzheimer's Disease Pathology Depending on APOE Genotype. Int J Mol Sci 2024; 25:3725. [PMID: 38612537 PMCID: PMC11011586 DOI: 10.3390/ijms25073725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Both the endothelial (eNOS) and the neuronal (nNOS) isoforms of constitutive Nitric Oxide Synthase have been implicated in vascular dysfunctions in Alzheimer's disease (AD). We aimed to explore the relationship between amyloid pathology and NO dynamics by comparing the cerebrospinal fluid (CSF) levels of nNOS and eNOS of 8 healthy controls (HC) and 27 patients with a clinical diagnosis of Alzheimer's disease and isolated CSF amyloid changes, stratified according to APOE ε genotype (APOE ε3 = 13, APOE ε4 = 14). Moreover, we explored the associations between NOS isoforms, CSF AD biomarkers, age, sex, cognitive decline, and blood-brain barrier permeability. In our cohort, both eNOS and nNOS levels were increased in APOE ε3 with respect to HC and APOE ε4. CSF eNOS inversely correlated with CSF Amyloid-β42 selectively in carriers of APOE ε3; CSF nNOS was negatively associated with age and CSF p-tau only in the APOE ε4 subgroup. Increased eNOS could represent compensative vasodilation to face progressive Aβ-induced vasoconstriction in APOE ε3, while nNOS could represent the activation of NO-mediated plasticity strategies in the same group. Our results confirm previous findings that the APOE genotype is linked with different vascular responses to AD pathology.
Collapse
Affiliation(s)
- Chiara Giuseppina Bonomi
- UOSD Memory Clinic, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.G.B.); (C.M.)
| | - Alessandro Martorana
- UOSD Memory Clinic, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.G.B.); (C.M.)
| | - Denise Fiorelli
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (D.F.); (M.N.)
| | - Marzia Nuccetelli
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (D.F.); (M.N.)
| | - Fabio Placidi
- Neurology Unit, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Neurology Unit, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (N.B.M.)
| | - Caterina Motta
- UOSD Memory Clinic, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.G.B.); (C.M.)
| |
Collapse
|
7
|
França AP, Silva TA, Schulz D, Gomes-Pereira L, Cunha LMA, Gonçalves MP, Vieira JVS, Sanches MP, Koehler N, Maluf S, Poli A, da Silva-Santos JE, Assreuy J, Lemos-Senna E. Pharmacokinetics, biodistribution, and in vivo toxicity of 7-nitroindazole loaded in pegylated and non-pegylated nanoemulsions in rats. Eur J Pharm Sci 2024; 194:106695. [PMID: 38191063 DOI: 10.1016/j.ejps.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024]
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. The development of sepsis is associated with excessive nitric oxide (NO) production, which plays an important role in controlling vascular homeostasis. 7-nitroindazole (7-NI) is a selective inhibitor of neuronal nitric oxide synthase (NOS-1) with potential application for treating NO imbalance conditions. However, 7-NI exhibits a low aqueous solubility and a short plasma half-life. To circumvent these biopharmaceutical limitations, pegylated (NEPEG7NI) and non-pegylated nanoemulsions (NENPEG7NI) containing 7-NI were developed. This study evaluates the pharmacokinetic profiles and toxicological properties of 7-NI loaded into the nanoemulsions. After a single intravenous administration of the free drug and the nanoemulsions at a dose of 10 mg.kg-1 in Wistar rats, 7-NI was widely distributed in the organs. The pharmacokinetic parameters of Cmax, t1/2, and AUC0-t were significantly increased after administration of the NEPEG7NI, compared to both free 7-NI and NENPEG7NI (p < 0.05). No observable adverse effects were observed after administering the free 7-NI, NEPEG7NI, or NENPEG7NI in the animals after a single dose of up to 3.0 mg.kg-1. The results indicated that 7-NI-loaded nanoemulsions are safe, constituting a promising approach to treating sepsis.
Collapse
Affiliation(s)
- Angela Patricia França
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Thais Alves Silva
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Daniela Schulz
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Leonardo Gomes-Pereira
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Livia Melo Arruda Cunha
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Merita Pereira Gonçalves
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - João Victor Soares Vieira
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Mariele Paludetto Sanches
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Natalia Koehler
- Citogenetics and Genomic Stability Laboratory, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, 88040-900, Brazil
| | - Sharbel Maluf
- Citogenetics and Genomic Stability Laboratory, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, 88040-900, Brazil
| | - Anicleto Poli
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - José Eduardo da Silva-Santos
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Jamil Assreuy
- Pharmacology Graduate Program, Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Elenara Lemos-Senna
- Pharmacy Graduate Program, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
8
|
Wan C, Xia Y, Yan J, Lin W, Yao L, Zhang M, Gaisler-Salomon I, Mei L, Yin DM, Chen Y. nNOS in Erbb4-positive neurons regulates GABAergic transmission in mouse hippocampus. Cell Death Dis 2024; 15:167. [PMID: 38396027 PMCID: PMC10891175 DOI: 10.1038/s41419-024-06557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Neuronal nitric oxide synthase (nNOS, gene name Nos1) orchestrates the synthesis of nitric oxide (NO) within neurons, pivotal for diverse neural processes encompassing synaptic transmission, plasticity, neuronal excitability, learning, memory, and neurogenesis. Despite its significance, the precise regulation of nNOS activity across distinct neuronal types remains incompletely understood. Erb-b2 receptor tyrosine kinase 4 (ErbB4), selectively expressed in GABAergic interneurons and activated by its ligand neuregulin 1 (NRG1), modulates GABA release in the brain. Our investigation reveals the presence of nNOS in a subset of GABAergic interneurons expressing ErbB4. Notably, NRG1 activates nNOS via ErbB4 and its downstream phosphatidylinositol 3-kinase (PI3K), critical for NRG1-induced GABA release. Genetic removal of nNos from Erbb4-positive neurons impairs GABAergic transmission, partially rescued by the NO donor sodium nitroprusside (SNP). Intriguingly, the genetic deletion of nNos from Erbb4-positive neurons induces schizophrenia-relevant behavioral deficits, including hyperactivity, impaired sensorimotor gating, and deficient working memory and social interaction. These deficits are ameliorated by the atypical antipsychotic clozapine. This study underscores the role and regulation of nNOS within a specific subset of GABAergic interneurons, offering insights into the pathophysiological mechanisms of schizophrenia, given the association of Nrg1, Erbb4, Pi3k, and Nos1 genes with this mental disorder.
Collapse
Affiliation(s)
- Chaofan Wan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Rehabilitation, School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Weipeng Lin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Lin Mei
- Chinese Institute for Medical Research, Beijing, 100069, China
- Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Dong-Min Yin
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200062, China.
| | - Yongjun Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Pawar A, Pardasani KR. Study of disorders in regulatory spatiotemporal neurodynamics of calcium and nitric oxide. Cogn Neurodyn 2023; 17:1661-1682. [PMID: 37974582 PMCID: PMC10640555 DOI: 10.1007/s11571-022-09902-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Experimental studies have reported the dependence of nitric oxide (NO) on the regulation of neuronal calcium ([Ca2+]) dynamics in neurons. But, there is no model available to estimate the disorders caused by various parameters in their regulatory dynamics leading to various neuronal disorders. A mathematical model to analyze the impacts due to alterations in various parameters like buffer, ryanodine receptor, serca pump, source influx, etc. leading to regulation and dysregulation of the spatiotemporal calcium and NO dynamics in neuron cells is constructed using a system of reaction-diffusion equations. The numerical simulation is performed with the finite element approach. The disturbances in the different constitutive processes of [Ca2+] and nitric oxide including source influx, buffer mechanism, ryanodine receptor, serca pump, IP3 receptor, etc. can be responsible for the dysregulation in the [Ca2+] and NO dynamics in neurons. Also, the results reveal novel information about the magnitude and intensity of disorders in response to a range of alterations in various parameters of this neuronal dynamics, which can cause dysregulation leading to neuronal diseases like Parkinson's, cerebral ischemia, trauma, etc.
Collapse
Affiliation(s)
- Anand Pawar
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| | - Kamal Raj Pardasani
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| |
Collapse
|
10
|
Mazur U, Lepiarczyk E, Janikiewicz P, Łopieńska-Biernat E, Majewski MK, Bossowska A. Distribution and Chemistry of Phoenixin-14, a Newly Discovered Sensory Transmission Molecule in Porcine Afferent Neurons. Int J Mol Sci 2023; 24:16647. [PMID: 38068975 PMCID: PMC10706208 DOI: 10.3390/ijms242316647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Phoenixin-14 (PNX), initially discovered in the rat hypothalamus, was also detected in dorsal root ganglion (DRG) cells, where its involvement in the regulation of pain and/or itch sensation was suggested. However, there is a lack of data not only on its distribution in DRGs along individual segments of the spinal cord, but also on the pattern(s) of its co-occurrence with other sensory neurotransmitters. To fill the above-mentioned gap and expand our knowledge about the occurrence of PNX in mammalian species other than rodents, this study examined (i) the pattern(s) of PNX occurrence in DRG neurons of subsequent neuromeres along the porcine spinal cord, (ii) their intraganglionic distribution and (iii) the pattern(s) of PNX co-occurrence with other biologically active agents. PNX was found in approximately 20% of all nerve cells of each DRG examined; the largest subpopulation of PNX-positive (PNX+) cells were small-diameter neurons, accounting for 74% of all PNX-positive neurons found. PNX+ neurons also co-contained calcitonin gene-related peptide (CGRP; 96.1%), substance P (SP; 88.5%), nitric oxide synthase (nNOS; 52.1%), galanin (GAL; 20.7%), calretinin (CRT; 10%), pituitary adenylate cyclase-activating polypeptide (PACAP; 7.4%), cocaine and amphetamine related transcript (CART; 5.1%) or somatostatin (SOM; 4.7%). Although the exact function of PNX in DRGs is not yet known, the high degree of co-localization of this peptide with the main nociceptive transmitters SP and CGRP may suggests its function in modulation of pain transmission.
Collapse
Affiliation(s)
- Urszula Mazur
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Paweł Janikiewicz
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
11
|
Roy R, Wilcox J, Webb AJ, O’Gallagher K. Dysfunctional and Dysregulated Nitric Oxide Synthases in Cardiovascular Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2023; 24:15200. [PMID: 37894881 PMCID: PMC10607291 DOI: 10.3390/ijms242015200] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Nitric oxide (NO) plays an important and diverse signalling role in the cardiovascular system, contributing to the regulation of vascular tone, endothelial function, myocardial function, haemostasis, and thrombosis, amongst many other roles. NO is synthesised through the nitric oxide synthase (NOS)-dependent L-arginine-NO pathway, as well as the nitrate-nitrite-NO pathway. The three isoforms of NOS, namely neuronal (NOS1), inducible (NOS2), and endothelial (NOS3), have different localisation and functions in the human body, and are consequently thought to have differing pathophysiological roles. Furthermore, as we continue to develop a deepened understanding of the different roles of NOS isoforms in disease, the possibility of therapeutically modulating NOS activity has emerged. Indeed, impaired (or dysfunctional), as well as overactive (or dysregulated) NOS activity are attractive therapeutic targets in cardiovascular disease. This review aims to describe recent advances in elucidating the physiological role of NOS isoforms within the cardiovascular system, as well as mechanisms of dysfunctional and dysregulated NOS in cardiovascular disease. We then discuss the modulation of NO and NOS activity as a target in the development of novel cardiovascular therapeutics.
Collapse
Affiliation(s)
- Roman Roy
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
| | - Joshua Wilcox
- Cardiovascular Department, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | - Andrew J. Webb
- Department of Clinical Pharmacology, British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London SE1 7EH, UK;
| | - Kevin O’Gallagher
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 9NU, UK
| |
Collapse
|
12
|
Hu Z, Liu Q, Ni Z. Facilitating the drug repurposing with iC/E strategy: A practice on novel nNOS inhibitor discovery. J Bioinform Comput Biol 2023; 21:2350018. [PMID: 37675491 DOI: 10.1142/s021972002350018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Over the past decades, many existing drugs and clinical/preclinical compounds have been repositioned as new therapeutic indication from which they were originally intended and to treat off-target diseases by targeting their noncognate protein receptors, such as Sildenafil and Paxlovid, termed drug repurposing (DRP). Despite its significant attraction in the current medicinal community, the DRP is usually considered as a matter of accidents that cannot be fulfilled reliably by traditional drug discovery protocol. In this study, we proposed an integrated computational/experimental (iC/E) strategy to facilitate the DRP within a framework of rational drug design, which was practiced on the identification of new neuronal nitric oxide synthase (nNOS) inhibitors from a structurally diverse, functionally distinct drug pool. We demonstrated that the iC/E strategy is very efficient and readily feasible, which confirmed that the phosphodiesterase inhibitor DB06237 showed a high inhibitory potency against nNOS synthase domain, while other two general drugs, i.e. DB02302 and DB08258, can also inhibit the synthase at nanomolar level. Structural bioinformatics analysis revealed diverse noncovalent interactions such as hydrogen bonds, hydrophobic forces and van der Waals contacts across the complex interface of nNOS active site with these identified drugs, conferring both stability and specificity for the complex recognition and association.
Collapse
Affiliation(s)
- Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qingsen Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
13
|
Kodidela S, Shaik FB, Mittameedi CM, Mugudeeswaran S. Influence of green tea on alcohol aggravated neurodegeneration of cortex, cerebellum and hippocampus of STZ-induced diabetic rats. Heliyon 2023; 9:e17385. [PMID: 37449181 PMCID: PMC10336454 DOI: 10.1016/j.heliyon.2023.e17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
The main aim of this study was to evaluate the cytotoxic effects of chronic alcohol consumption on various regions of diabetic brain and preventive role of GTE. Clinical, experimental and histopathological observations indicate chronic, excessive alcohol consumption aggravates the free radical-mediated oxidative and nitrosative stress in several tissues including brain. Treatment with Epigallocatechin gallate (EGCG) significantly reduced the levels of oxidative/nitrosative stress paradigms, increased glutathione (GSH) levels and enhanced the activities of antioxidant enzymes. Histopathology evaluation revealed the possible influence of EGCG in reversing alcohol exacerbated diabetes-induced damage in cortex, cerebellum and hippocampus of brain. Furthermore, these studies have provided evidence to show how EGCG can exactly occupy the position in functional sites of nNOS (neuronal nitric oxide synthase) and induce a conformational change, inhibition of enzymatic activity and prevention of neurodegeneration/necrotic changes of tissue, in comparison with the rosiglitazone and glibenclamide. To summarise, this research has offered useful information on the action of EGCG that would provide potential protection against ethanol exacerbated diabetic brain damageand additional evidence for the use of EGCG as a lead compound for drug discovery.
Collapse
Affiliation(s)
- Swarnalatha Kodidela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Fareeda Begum Shaik
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | | - Sivanandam Mugudeeswaran
- Department of Physics, Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamilnadu, India
| |
Collapse
|
14
|
Moezi L, Pirsalami F, Dastgheib M, Oftadehgan S, Purkhosrow A, Sattarinezhad E. Acute and Sub-chronic Anticonvulsant Effects of Edaravone on Seizure Induced by Pentylenetetrazole or Electroshock in Mice, Nitric Oxide Involvement. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:329-340. [PMID: 37791336 PMCID: PMC10542921 DOI: 10.30476/ijms.2022.94177.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 10/05/2023]
Abstract
Background Edaravone is an anti-stroke medication that may have nitric oxide (NO) modulating properties. This study evaluated the role of NO in the acute and sub-chronic anticonvulsant effects of edaravone in murine models of seizures induced by intraperitoneal (IP) or intravenous (IV) injections of pentylenetetrazole (PTZ) or electroshock (maximal electroshock seizure [MES]). Methods 132 male albino mice were randomly divided into 22 groups (n=6) and given IP injections of vehicle or edaravone either acutely or for eight days (sub-chronically). The seizure was induced by electroshock or PTZ (IP or IV). The following edaravone doses were used: 7.5, 10, 12.5 (acute); 5, 7.5, 10 (sub-chronic) in IP PTZ model; 5, 7.5, 10 in IV PTZ model; and 5, 10 mg/Kg in the MES. To evaluate NO involvement, 216 mice were randomly divided into 36 groups (n=6) and pretreated with vehicle, edaravone, a non-specific nitric oxide synthase (NOS) inhibitor: N(ω)-nitro-L-arginine methyl ester (L-NAME) (5 mg/Kg), a specific nNOS inhibitor: 7-nitroindazole (7-NI) (60 mg/Kg), or a combination of edaravone plus L-NAME or 7-NI, either acutely or for eight days before seizure induction. Doses of edaravone were as follows: in IP PTZ model: 12.5 (acute) and 10 (sub-chronic); in IV PTZ model: 10; and in the MES: 5 mg/Kg. Data were analyzed using the one-way analysis of variance (ANOVA) followed by Tukey's test (SPSS 18). P≤0.05 was considered statistically significant. Results In the IP PTZ model, edaravone increased time latencies to seizures (P<0.001), prevented tonic seizures, and death. Edaravone increased the seizure threshold (P<0.001) in the IV PTZ model and shortened the duration of tonic hind-limb extension (THE) in the MES model (P<0.001). In comparison to mice treated with edaravone alone, adding L-NAME or 7-NI reduced seizure time latencies (P<0.001), reduced seizure threshold (P<0.001), and increased THE duration (P<0.001). Conclusion Edaravone (acute or sub-chronic) could prevent seizures by modulating NO signaling pathways.
Collapse
Affiliation(s)
- Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Dastgheib
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Oftadehgan
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Purkhosrow
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Sattarinezhad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Vaquero-Rodríguez A, Ortuzar N, Lafuente JV, Bengoetxea H. Enriched environment as a nonpharmacological neuroprotective strategy. Exp Biol Med (Maywood) 2023; 248:553-560. [PMID: 37309729 PMCID: PMC10350798 DOI: 10.1177/15353702231171915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
The structure and functions of the central nervous system are influenced by environmental stimuli, which also play an important role in brain diseases. Enriched environment (EE) consists of producing modifications in the environment of standard laboratory animals to induce an improvement in their biological conditions. This paradigm promotes transcriptional and translational effects that result in ameliorated motor, sensory, and cognitive stimulation. EE has been shown to enhance experience-dependent cellular plasticity and cognitive performance in animals housed under these conditions compared with animals housed under standard conditions. In addition, several studies claim that EE induces nerve repair by restoring functional activities through morphological, cellular, and molecular adaptations in the brain that have clinical relevance in neurological and psychiatric disorders. In fact, the effects of EE have been studied in different animal models of psychiatric and neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, ischemic brain injury, or traumatic brain injury, delaying the onset and progression of a wide variety of symptoms of these disorders. In this review, we analyze the action of EE focused on diseases of the central nervous system and the translation to humans to develop a bridge to its application.
Collapse
Affiliation(s)
- Andrea Vaquero-Rodríguez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Naiara Ortuzar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - José Vicente Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
16
|
Iova OM, Marin GE, Lazar I, Stanescu I, Dogaru G, Nicula CA, Bulboacă AE. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview. Antioxidants (Basel) 2023; 12:antiox12030753. [PMID: 36979000 PMCID: PMC10045816 DOI: 10.3390/antiox12030753] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Nitric oxide, a ubiquitous molecule found throughout the natural world, is a key molecule implicated in many central and benefic molecular pathways and has a well-established role in the function of the central nervous system, as numerous studies have previously shown. Dysregulation of its metabolism, mainly the upregulation of nitric oxide production, has been proposed as a trigger and/or aggravator for many neurological affections. Increasing evidence supports the implication of this molecule in prevalent neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, or amyotrophic lateral sclerosis. The mechanisms proposed for its neurotoxicity mainly center around the increased quantities of nitric oxide that are produced in the brain, their cause, and, most importantly, the pathological metabolic cascades created. These cascades lead to the formation of neuronal toxic substances that impair the neurons' function and structure on multiple levels. The purpose of this review is to present the main causes of increased pathological production, as well as the most important pathophysiological mechanisms triggered by nitric oxide, mechanisms that could help explain a part of the complex picture of neurodegenerative diseases and help develop targeted therapies.
Collapse
Affiliation(s)
- Olga-Maria Iova
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Gheorghe-Eduard Marin
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Izabella Lazar
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, No. 46-50, 400347 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Neuronal nitric oxide synthase positive neurons in the human corpus callosum: a possible link with the callosal blood-oxygen-level dependent (BOLD) effect. Brain Struct Funct 2023; 228:511-523. [PMID: 36460768 DOI: 10.1007/s00429-022-02599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Brain functions have been investigated in the past decades via the blood-oxygen-level dependent (BOLD) effect using functional magnetic resonance imaging. One hypothesis explaining the BOLD effect involves the Nitric Oxide (NO) gaseous neurotransmitter, possibly released also by cells in the corpus callosum (CC). The eventual presence of NO releasing neurons and/or glial cells in the CC can be assessed by immunohistochemistry. Serial sections both from paraffin-embedded and frozen samples of CC obtained from adult human brains autopsy were studied with immunohistochemistry and immunofluorescence analysis, using an antibody against the neuronal isoform of Nitric Oxide Synthase (nNOS), the enzyme synthetizing the NO. The staining revealed the presence of many nNOS-immunopositive cells in the CC, shown to be neurons with immunofluorescence. Neuronal NOS-positive neurons presented different morphologies, were more numerous 4 mm apart from the midline, and displayed a peak in the body of the CC. In some cases, they were located at the upper boundary of the CC, more densely packed in the proximity of the callosal arterioles. The significant presence of nNOS-immunopositive neurons within the commissure suggests their probable role in the CC neurovascular regulation in the adult brain and could explain the BOLD effect detected in human CC.
Collapse
|
18
|
Gao J, Li C, Wang X, Sun X, Zhang R, chen C, Yu M, Liu Y, Zhu Y, Chen J. Oridonin attenuates lung inflammation and fibrosis in silicosis via covalent targeting iNOS. Biomed Pharmacother 2022; 153:113532. [DOI: 10.1016/j.biopha.2022.113532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
|
19
|
Microelectrode implants, inflammatory response and long-lasting effects on NADPH diaphorase neurons in the rat frontal cortex. Exp Brain Res 2022; 240:2569-2580. [PMID: 35947168 DOI: 10.1007/s00221-022-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
At present, one of the main therapeutic challenges comprises the development of technologies to improve the life quality of people suffering from different types of body paralysis, through the reestablishment of sensory and motor functions. In this regard, brain-machine interfaces (BMI) offer hope to effectively mitigate body paralysis through the control of paralyzed body parts by brain activity. Invasive BMI use chronic multielectrode implants to record neural activity directly from the brain tissue. While such invasive devices provide the highest amount of usable neural activity for BMI control, they also involve direct damage to the nervous tissue. In the cerebral cortex, high levels of the enzyme NADPH diaphorase (NADPH-d) characterize a particular class of interneurons that regulates neuronal excitability and blood supply. To gain insight into the biocompatibility of invasive BMI, we assessed the impact of chronic implanted tungsten multielectrode bundles on the distribution and morphology of NADPH-d-reactive neurons in the rat frontal cortex. NADPH-d neuronal labeling was correlated with glial response markers and with indices of healthy neuronal activity measured by electrophysiological recordings performed up to 3 months after multielectrode implantation. Chronic electrode arrays caused a small and quite localized structural disturbance on the implanted site, with neuronal loss and glial activation circumscribed to the site of implant. Electrodes remained viable during the entire period of implantation. Moreover, neither the distribution nor the morphology of NADPH-d neurons was altered. Overall, our findings provide additional evidence that tungsten multielectrodes can be employed as a viable element for long-lasting therapeutic BMI applications.
Collapse
|
20
|
Tykhonenko T, Guzyk M, Tykhomyrov A, Korsa V, Yanitska L, Kuchmerovska T. Modulatory effects of vitamin B3 and its derivative on the levels of apoptotic and vascular regulators and cytoskeletal proteins in diabetic rat brain as signs of neuroprotection. Biochim Biophys Acta Gen Subj 2022; 1866:130207. [PMID: 35882257 DOI: 10.1016/j.bbagen.2022.130207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Beneficial effects of nicotinamide (NAm) and its derivates have been earlier shown in animal models of diabetes mellitus (DM), but the mechanisms of their neuroprotective activities are still largely unknown. The aim of the present study was to investigate if NAm and conjugate of nicotinic acid with gamma-aminobutyric acid (N-GABA) are able to modulate expression levels of apoptosis regulators, angiogenesis-related molecules, and specific cytoskeletal proteins in diabetic rat brain. METHODS After six weeks of streptozotocin induced type 1 DM, rats were daily administered either by NAm (100 mg/kg) or N-GABA (55 mg/kg) intraperitoneally for two weeks. Protein levels were assessed by western blot and immunohistochemistry. RESULTS Both NAm and N-GABA down-regulated NF-κB and Bax levels in diabetic rat brain, suggesting their anti-apoptotic activities. Tested compounds normalized VEGF and nNOS contents improving pro-angiogenic signaling reduced by hyperglycemia. Western blot showed marked up-regulation of astroglial marker GFAP and lowering neurofilament protein levels in DM group, confirmed immunohistochemically, indicating the development of reactive astrogliosis as a major response to diabetes-induced neurodegeneration. NAm had no effects on GFAP and Nf-L levels in the diabetic brain, while N-GABA increased their expression. Inversely, NAm and N-GABA dramatically reduced enhanced levels of GFAP and Nf-L found in the blood serum of diabetic rats, providing for the first time strong evidence for preserving blood-brain barrier integrity by studied compounds. CONCLUSION Thus, NAm and N-GABA may exert neuroprotective effects by decreasing pro-apoptotic regulators levels and improving expression of angiogenic and cytoskeletal proteins impaired by hyperglycemia in rat brain.
Collapse
Affiliation(s)
- Tetiana Tykhonenko
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Mykhailo Guzyk
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Artem Tykhomyrov
- Department of Enzyme Chemistry and Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Victoria Korsa
- Department of Enzyme Chemistry and Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Lesya Yanitska
- Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Tamara Kuchmerovska
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine.
| |
Collapse
|
21
|
Pham LT, Yamanaka K, Miyamoto Y, Waki H, Gouraud SSS. Estradiol-dependent gene expression profile in the amygdala of young ovariectomized spontaneously hypertensive rats. Physiol Genomics 2022; 54:99-114. [DOI: 10.1152/physiolgenomics.00082.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen plays a role in cardiovascular functions, emotional health, and energy homeostasis via estrogen receptors expressed in the brain. The comorbid relationship between rising blood pressure, a decline in mood and motivation, and body weight gain after menopause, when estrogen levels drop, suggests that the same brain area(s) contributes to protection from all of these postmenopausal disorders. The amygdala, a major limbic system nucleus known to express high estrogen receptor levels, is involved in the regulation of such physiological and psychological responses. We hypothesized that elevated estrogen levels contribute to premenopausal characteristics by activating specific genes and pathways in the amygdala. We examined the effect of 1-month estradiol treatment on the gene expression profile in the amygdala of ovariectomized young adult female spontaneously hypertensive rats. Estradiol substitution significantly decreased blood pressure, prevented body weight gain, and enhanced the voluntary physical activity of ovariectomized rats. In the amygdala of ovariectomized rats, estradiol treatment downregulated the expression of genes associated with estrogen signaling, cholinergic synapse, dopaminergic synapse, and long-term depression pathways. These findings indicate that the transcriptomic characteristics of the amygdala may be involved in estrogen-dependent regulation of blood pressure, physical activity motivation, and body weight control in young adult female spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Linh T Pham
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Sciences, Juntendo University, Inzai, Chiba, Japan
| | | | - Hidefumi Waki
- Department of Physiolgy, Graduate School of Health and Sports Sciences, Juntendo University, Inzai, Chiba, Japan
| | - Sabine S. S. Gouraud
- College of Liberal Arts, Department of Natural Sciences, International Christian University, Tokyo, 東京都, Japan
| |
Collapse
|
22
|
Li Y, Lv H, Xue C, Dong N, Bi C, Shan A. Plant Polyphenols: Potential Antidotes for Lead Exposure. Biol Trace Elem Res 2021; 199:3960-3976. [PMID: 33236294 DOI: 10.1007/s12011-020-02498-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Lead is one of the most common heavy metal elements and has high biological toxicity. Long-term lead exposure will induce the contamination of animal feed, water, and food, which can cause chronic lead poisoning including nephrotoxicity, hepatotoxicity, neurotoxicity, and reproductive toxicity in humans and animals. In the past few decades, lead has caused widespread concern because of its significant threat to health. A large number of in vitro and animal experiments have shown that oxidative stress plays a key role in lead toxicity, and endoplasmic reticulum (ER) stress and the mitochondrial apoptosis pathway can also be induced by lead toxicity. Therefore, plant polyphenols have attracted attention, with their advantages of being natural antioxidants and having low toxicity. Plant polyphenols can resist lead toxicity by chelating lead with their special chemical molecular structure. In addition, scavenging active oxygen and improving the level of antioxidant enzymes, anti-inflammatory, and anti-apoptosis are also the key to relieving lead poisoning by plant polyphenols. Various plant polyphenols have been suggested to be useful in alleviating lead toxicity in animals and humans and are believed to have good application prospects.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Chongpeng Bi
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
23
|
Lee SW, Han HC. Methylene Blue Application to Lessen Pain: Its Analgesic Effect and Mechanism. Front Neurosci 2021; 15:663650. [PMID: 34079436 PMCID: PMC8165385 DOI: 10.3389/fnins.2021.663650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Methylene blue (MB) is a cationic thiazine dye, widely used as a biological stain and chemical indicator. Growing evidence have revealed that MB functions to restore abnormal vasodilation and notably it is implicated even in pain relief. Physicians began to inject MB into degenerated disks to relieve pain in patients with chronic discogenic low back pain (CDLBP), and some of them achieved remarkable outcomes. For osteoarthritis and colitis, MB abates inflammation by suppressing nitric oxide production, and ultimately relieves pain. However, despite this clinical efficacy, MB has not attracted much public attention in terms of pain relief. Accordingly, this review focuses on how MB lessens pain, noting three major actions of this dye: anti-inflammation, sodium current reduction, and denervation. Moreover, we showed controversies over the efficacy of MB on CDLBP and raised also toxicity issues to look into the limitation of MB application. This analysis is the first attempt to illustrate its analgesic effects, which may offer a novel insight into MB as a pain-relief dye.
Collapse
Affiliation(s)
- Seung Won Lee
- Good Doctor Research Institute, College of Medicine, Korea University, Seoul, South Korea
| | - Hee Chul Han
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| |
Collapse
|
24
|
Marchetta P, Rüttiger L, Hobbs AJ, Singer W, Knipper M. The role of cGMP signalling in auditory processing in health and disease. Br J Pharmacol 2021; 179:2378-2393. [PMID: 33768519 DOI: 10.1111/bph.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
cGMP is generated by the cGMP-forming guanylyl cyclases (GCs), the intracellular nitric oxide (NO)-sensitive (soluble) guanylyl cyclase (sGC) and transmembrane GC (e.g. GC-A and GC-B). In summarizing the particular role of cGMP signalling for hearing, we show that GC generally do not interfere significantly with basic hearing function but rather sustain a healthy state for proper temporal coding, fast discrimination and adjustments during injury. sGC is critical for the integrity of the first synapse in the ascending auditory pathway, the inner hair cell synapse. GC-A promotes hair cell stability under stressful conditions such as acoustic trauma or ageing. GC-B plays a role in the development of efferent feed-back and gain control. Regarding the crucial role hearing has for language development, speech discrimination and cognitive brain functions, differential pharmaceutical targeting of GCs offers therapeutic promise for the restoration of hearing.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Flohé L. Looking Back at the Early Stages of Redox Biology. Antioxidants (Basel) 2020; 9:E1254. [PMID: 33317108 PMCID: PMC7763103 DOI: 10.3390/antiox9121254] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The beginnings of redox biology are recalled with special emphasis on formation, metabolism and function of reactive oxygen and nitrogen species in mammalian systems. The review covers the early history of heme peroxidases and the metabolism of hydrogen peroxide, the discovery of selenium as integral part of glutathione peroxidases, which expanded the scope of the field to other hydroperoxides including lipid hydroperoxides, the discovery of superoxide dismutases and superoxide radicals in biological systems and their role in host defense, tissue damage, metabolic regulation and signaling, the identification of the endothelial-derived relaxing factor as the nitrogen monoxide radical (more commonly named nitric oxide) and its physiological and pathological implications. The article highlights the perception of hydrogen peroxide and other hydroperoxides as signaling molecules, which marks the beginning of the flourishing fields of redox regulation and redox signaling. Final comments describe the development of the redox language. In the 18th and 19th century, it was highly individualized and hard to translate into modern terminology. In the 20th century, the redox language co-developed with the chemical terminology and became clearer. More recently, the introduction and inflationary use of poorly defined terms has unfortunately impaired the understanding of redox events in biological systems.
Collapse
Affiliation(s)
- Leopold Flohé
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, v.le G. Colombo 3, 35121 Padova, Italy;
- Departamento de Bioquímica, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
26
|
An Enriched Environment Enhances Angiogenesis Surrounding the Cingulum in Ischaemic Stroke Rats. Neural Plast 2020; 2020:8840319. [PMID: 33273907 PMCID: PMC7676980 DOI: 10.1155/2020/8840319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
An enriched environment (EE) has been demonstrated to improve functional recovery in animal models of ischaemic stroke through enhancing vascular endothelial growth factor- (VEGF-) mediated neuroprotection accompanied by angiogenesis in the ischaemic hemisphere. Whether EEs also promote VEGF-mediated neuroprotection and angiogenesis in the contralateral hemisphere remains unclear. Here, we explored the effect of EEs on VEGF expression and angiogenesis within the contralateral cerebral cortex in a rat middle cerebral artery occlusion/reperfusion (MCAO/r) model. We assessed the expression levels of platelet endothelial cell adhesion molecule-1 (CD31), VEGF, and endothelial nitric oxide synthase (eNOS) in the whole contralateral cerebral cortex using Western blotting assay but did not find an increase in the expression of CD31, VEGF, or eNOS in MCAO/r rats housed in EEs, which suggested that EEs did not enhance the overall expression of VEGF and eNOS or angiogenesis in the entire contralateral cortex. We further analysed the local effect of EEs by immunohistochemistry and found that in and around the bilateral cingulum in MCAO/r rats housed in EEs, haematopoietic progenitor cell antigen- (CD34-) positive endothelial progenitor cells were significantly increased compared with those of rats housed in standard cages (SCs). Further experiments showed that EEs increased neuronal VEGF expression surrounding the cingulum in MCAO/r rats and robustly upregulated eNOS expression. These results revealed that EEs enhanced angiogenesis, VEGF expression, and activation of the VEGF-eNOS pathway in and/or around the cingulum in MCAO/r rats, which were involved in the functional recovery of MCAO/r rats.
Collapse
|