1
|
Akase IE, Agabi OP, Ojo OO, Anyanwu RA, Awodumila S, Ayilara S, Ede OJ, Ghajiga P, Kalejaiye O, Nwanmah C, Nwaokorie F, Ogbenna A, Olajide M, Perez-Giraldo GS, Orban ZS, Jimenez M, Koralnik IJ, Okubadejo NU. A systematic analysis of neurologic manifestations of Long COVID in Nigeria. J Neurovirol 2024:10.1007/s13365-024-01232-9. [PMID: 39446250 DOI: 10.1007/s13365-024-01232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Long COVID, also called post-acute sequelae of SARS-CoV-2 infection (PASC) affects millions of people in the world. The neurologic manifestations of PASC (Neuro-PASC) are among the most debilitating but they are largely unreported in Africa. We sought to compare the demographics, symptoms and cognitive profile of post-hospitalization Neuro-PASC (PNP) and non-hospitalized Neuro-PASC (NNP) patients in Nigeria. In this cross-sectional study performed at the Lagos University Teaching Hospital, 106/2319 (4.6%) SARS-CoV-2 positive individuals contacted via telephone reported Neuro-PASC symptoms with a higher frequency in PNP than in NNP individuals ((23/200 (11.5%) vs. 83/2119 (3.9%), p = < 0.0001). The predominant neurologic symptoms at any time during the disease course were difficulty remembering / brain fog (63/106; 59.4%), fatigue (59/106; 55.7%), sleep problems (34/106; 32%), headache (33/106; 31%), paresthesia (12/106; 11.3%), and myalgia (10/106; 9.4%). Of 66 participants with Neuro-PASC who underwent in-person neurological evaluation and cognitive screening, all had normal scores on the Intervention for Dementia in Elderly Africans cognition screen, while 11/65 (16.9%) that completed the Montreal Cognitive Assessment had results consistent with mild cognitive impairment (3/16 PNP (18.8%) and 8/49 NNP (16.3%); p = 1.0). Finally, 47/66 (71.2%) had digit span test scores consistent with mild cognitive dysfunction (12/16 PNP (75%) and 35/50 (70%) NNP; p = 1.0). Our findings reveal the previously unrecognized occurrence of Neuro-PASC among COVID-19 survivors in Nigeria and highlight the need for improved screening and diagnosis of Neuro-PASC in our population. Development of cognitive support services for persons suffering from Neuro-PASC in Nigeria is warranted.
Collapse
Affiliation(s)
- Iorhen Ephraim Akase
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Osigwe Paul Agabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Oluwadamilola Omolara Ojo
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | | | - Samuel Awodumila
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Sodiq Ayilara
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Obiamaka Jane Ede
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Pheekanmilla Ghajiga
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Olufunto Kalejaiye
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Chibueze Nwanmah
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Francisca Nwaokorie
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Ann Ogbenna
- Department of Hematology & Blood Transfusion, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Moyinoluwa Olajide
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Gina S Perez-Giraldo
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zachary Steven Orban
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Millenia Jimenez
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Igor Jerome Koralnik
- Division of Neuro-Infectious Diseases and Global Neurology, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Njideka Ulunma Okubadejo
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| |
Collapse
|
2
|
Saleki K, Aram C, Alijanizadeh P, Khanmirzaei MH, Vaziri Z, Ramzankhah M, Azadmehr A. Matrix metalloproteinase/Fas ligand (MMP/FasL) interaction dynamics in COVID-19: An in silico study and neuroimmune perspective. Heliyon 2024; 10:e30898. [PMID: 38803919 PMCID: PMC11128882 DOI: 10.1016/j.heliyon.2024.e30898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Background The initiator of cytokine storm in Coronavirus disease (COVID-19) is still unknown. We recently suggested a complex interaction of matrix metalloproteinases (MMPs), Fas ligand (FasL), and viral entry factors could be responsible for the cytokine outrage In COVID-19. We explored the molecular dynamics of FasL/MMP7-9 in COVID-19 conditions in silico and provide neuroimmune insights for future. Methods We enrolled and analyzed a clinical cohort of COVID-19 patients, and recorded their blood Na + levels and temperature at admission. A blood-like molecular dynamics simulation (MDS) box was then built. Four conditions were studied; MMP7/FasL (healthy), MMP7/FasL (COVID-19), MMP9-FasL (healthy), and MMP9/FasL (COVID-19). MDS was performed by GROningen MAchine for Chemical Simulation (GROMACS). We analyzed bonds, short-range energies, and free binding energies to draw conclusions on the interaction of MMP7/MMP9 and FasL to gain insights into COVID-19 immunopathology. Genevestigator was used study RNA-seq/microarray expression data of MMPs in the cells of immune and nervous systems. Finally, epitopes of MMP/FasL complexes were identified as drug targets by machine learning (ML) tools. Results MMP7-FasL (Healthy), MMP7-FasL (COVID-19), MMP9-FasL (Healthy), and MMP9-FasL (COVID-19) systems showed 0, 1, 4, and 2 salt bridges, indicating MMP9 had more salt bridges. Moreover, in both COVID-19 and normal conditions, the number of interacting residues and surface area was higher for MMP9 compared to MMP7 group. The COVID-19 MMP9-FasL group had more H-bonds compared to MMP7-FasL group (12 vs. 7). 15 epitopes for FasL-MMP9 and 10 epitopes for FasL-MMP7 were detected. Extended MD simulation for 100 ns confirmed stronger binding of MMP9 based on Molecular Mechanics Generalized Borne Surface analysis (MM-GBSA) and Coul and Leonard-Jones (LJ) short-range energies. Conclusions MMP9 interacts stronger than MMP7 with FasL, however, both molecules maintained strong interaction through the MDS. We suggested epitopes for MMP-FasL complexes as valuable therapeutic targets in COVID-19. These data could be utilized in future immune drug and protein design and repurposing efforts.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hossein Khanmirzaei
- School of Medicine, Tehran University of Medical Sciences, Babol, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ramzankhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
- Department of Immunology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Bhattacharya M, Chatterjee S, Saxena S, Nandi SS, Lee SS, Chakraborty C. Current landscape of long COVID clinical trials. Int Immunopharmacol 2024; 132:111930. [PMID: 38537538 DOI: 10.1016/j.intimp.2024.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 05/01/2024]
Abstract
Long COVID was reported as a multi-systemic condition after the infection of SARS-CoV-2, and more than 65 million people are suffering from this disease. It has been noted that around 10% of severe SARS-CoV-2 infected individuals are suffering from the enduring effects of long COVID. The symptoms of long COVID have also been noted in several mild or asymptomatic SARS-CoV-2 infected individuals. While limited reports on clinical trials investigating new therapeutics for long COVID exist, there is an abundance of scattered information available regarding these trials. This review explores the extensive literature search, and complete clinical trial database search to map the current status of long COVID clinical trials worldwide. The study listed about 110 long COVID clinical trials. In addition to conducting extensive long COVID clinical trials, we have comprehensively presented an overview of the condition, its symptoms, notable manifestations, associated clinical trials, the unique challenges it poses, and our recommendations for addressing long COVID.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sanskriti Saxena
- Division of Biology, Indian Institute of Science Education and Research-Tirupati, Panguru, Tirupati 517619, Andhra Pradesh, India
| | - Shyam Sundar Nandi
- ICMR-National Institute of Virology, (Mumbai unit), Indian Council of Medical Research, Haffkine Institute Compound, A. D. Marg, Parel, Mumbai 400012, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
4
|
Cheyne I, Gopinath VS, Muppa N, Armas AE, Gil Agurto MS, Akula SA, Nagpal S, Yousaf MS, Haider A. The Neurological Implications of COVID-19: A Comprehensive Narrative Review. Cureus 2024; 16:e60376. [PMID: 38887342 PMCID: PMC11181960 DOI: 10.7759/cureus.60376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 revealed a huge number of problems as well as discoveries in medicine, notably, regarding the effects of the virus on the central nervous system (CNS) and peripheral nervous system (PNS). This paper is a narrative review that takes a deep dive into the complex interactions between COVID-19 and the NS. Therefore, this paper explains the broad range of neurological manifestations and neurodegenerative diseases caused by the virus. It carefully considers the routes through which SARS-CoV-2 reaches the NS, including the olfactory system and of course, the hematogenous route, which are also covered when discussing the virus's direct and indirect mechanisms of neuropathogenesis. Besides neurological pathologies such as stroke, encephalitis, Guillain-Barré syndrome, Parkinson's disease, and multiple sclerosis, the focus area is also given to the challenges of making diagnosis, treatment, and management of these conditions during the pandemic. The review also examines the strategic and interventional approaches utilized to prevent these disorders, as well as the ACE2 receptors implicated in the mediation of neurological effects caused by COVID-19. This detailed overview, which combines research outputs with case data, is directed at tackling this pandemic challenge, with a view toward better patient care and outcomes in the future.
Collapse
Affiliation(s)
- Ithamar Cheyne
- Critical Care, Medical University of Warsaw, Warsaw, POL
| | | | - Neeharika Muppa
- School of Medicine, St. George's University, St. George's, GRD
| | - Angel Emanuel Armas
- Internal Medicine, Cardiac Arrhythmia Service, Harvard Medical School, Boston, USA
| | | | - Sai Abhigna Akula
- Internal Medicine, School of Medicine, St. George's University, St. George's, GRD
| | - Shubhangi Nagpal
- Internal Medicine, Guru Gobind Singh Government Hospital, New Delhi, IND
| | | | - Ali Haider
- Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| |
Collapse
|
5
|
Thakur A, Sharma V, Averbek S, Liang L, Pandya N, Kumar G, Cili A, Zhang K. Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death Dis 2023; 14:593. [PMID: 37673862 PMCID: PMC10482955 DOI: 10.1038/s41419-023-06102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) has prompted the scientific community to explore potential treatments or vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the illness. While SARS-CoV-2 is mostly considered a respiratory pathogen, several neurological complications have been reported, raising questions about how it may enter the Central Nervous System (CNS). Receptors such as ACE2, CD147, TMPRSS2, and NRP1 have been identified in brain cells and may be involved in facilitating SARS-CoV-2 entry into the CNS. Moreover, proteins like P2X7 and Panx-1 may contribute to the pathogenesis of COVID-19. Additionally, the role of the immune system in the gravity of COVID-19 has been investigated with respect to both innate and adaptive immune responses caused by SARS-CoV-2 infection, which can lead to a cytokine storm, tissue damage, and neurological manifestations. A redox imbalance has also been linked to the pathogenesis of COVID-19, potentially causing mitochondrial dysfunction, and generating proinflammatory cytokines. This review summarizes different mechanisms of reactive oxygen species and neuro-inflammation that may contribute to the development of severe COVID-19, and recent progress in the study of immunological events and redox imbalance in neurological complications of COVID-19, and the role of bioinformatics in the study of neurological implications of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong SAR, Hong Kong.
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sera Averbek
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lifan Liang
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Nirali Pandya
- Department of Chemistry, Faculty of Sciences, National University of Singapore, Singapore, Singapore
| | - Gaurav Kumar
- School of Biosciences and Biomedical Engineering, Department of Clinical Research, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Alma Cili
- Clinic of Hematology, University of Medicine, University Hospital center "Mother Teresa", Tirane, Albania
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass sciences, Southwest University, Chongqing, China.
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Chee YJ, Fan BE, Young BE, Dalan R, Lye DC. Clinical trials on the pharmacological treatment of long COVID: A systematic review. J Med Virol 2023; 95:e28289. [PMID: 36349400 PMCID: PMC9878018 DOI: 10.1002/jmv.28289] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
The postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC), also known as post-acute coronavirus disease 19 (COVID-19) or the long COVID syndrome (long COVID) is an emerging public health concern. A substantial proportion of individuals may remain symptomatic months after initial recovery. An updated review of published and ongoing trials focusing on managing long COVID will help identify gaps and address the unmet needs of patients suffering from this potentially debilitating syndrome. A comprehensive literature search was conducted on the international databases and clinical trial registries from inception to 31 July 2022. This review included 6 published trials and 54 trial registration records. There is significant heterogeneity in the characterization of long COVID and ascertainment of primary outcomes. Most of the trials are focused on individual symptoms of long COVID or isolated organ dysfunction, classified according to cardiovascular, respiratory and functional capacity, neurological and psychological, fatigue, and olfactory dysfunction. Most of the interventions are related to the mechanisms causing the individual symptoms. Although the six published trials showed significant improvement in the symptoms or organ dysfunction studied, these initial studies lack internal and external validity limiting the generalizability. This review provides an update of the pharmacological agents that could be used to treat long COVID. Further standardization of the diagnostic criteria, inclusion of participants with concomitant chronic cardiometabolic diseases and standardization of outcomes will be essential in future clinical trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of EndocrinologyTan Tock Seng HospitalSingaporeSingapore
| | | | - Barnaby Edward Young
- National Centre for Infectious DiseasesSingaporeSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingaporeSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Rinkoo Dalan
- Department of EndocrinologyTan Tock Seng HospitalSingaporeSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - David C. Lye
- National Centre for Infectious DiseasesSingaporeSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingaporeSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore,Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
7
|
Post-COVID-19 neurologic syndrome. JAAPA 2022; 35:19-24. [DOI: 10.1097/01.jaa.0000854524.40560.f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Abdolahi S, Ashayeri Ahmadabad R, Gorji A, Mirzaasgari Z. Status epilepticus and the presence of SARS-COV-2 in the cerebrospinal fluid: A case report. Clin Case Rep 2022; 10:e6214. [PMID: 35957773 PMCID: PMC9361715 DOI: 10.1002/ccr3.6214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
A growing number of studies indicate a broad range of neurological manifestations, including seizures, occur in patients with COVID-19 infection. We report a 29-year-old female patient with status epilepticus and positive SARS-CoV-2 in the cerebrospinal fluid. Our findings support previous reports suggesting seizure as a possible symptom of COVID-19 infection.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
| | | | - Ali Gorji
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Neurosurgery and NeurologyWestfälische Wilhelms‐Universitat MünsterMünsterGermany
- Epilepsy Research Center, Department of NeurosurgeryWestfälische Wilhelms‐Universitat MünsterMünsterGermany
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
- Department of Neurology, Firoozgar hospital, School of MedicineIran University of Medical ScienceTehranIran
| |
Collapse
|
9
|
Rahmani B, Ghashghayi E, Zendehdel M, Baghbanzadeh A, Khodadadi M. Molecular mechanisms highlighting the potential role of COVID-19 in the development of neurodegenerative diseases. Physiol Int 2022; 109:135-162. [DOI: 10.1556/2060.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023]
Abstract
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to the pulmonary manifestations, COVID-19 patients may present a wide range of neurological disorders as extrapulmonary presentations. In this view, several studies have recently documented the worsening of neurological symptoms within COVID-19 morbidity in patients previously diagnosed with neurodegenerative diseases (NDs). Moreover, several cases have also been reported in which the patients presented parkinsonian features after initial COVID-19 symptoms. These data raise a major concern about the possibility of communication between SARS-CoV-2 infection and the initiation and/or worsening of NDs. In this review, we have collected compelling evidence suggesting SARS-CoV-2, as an environmental factor, may be capable of developing NDs. In this respect, the possible links between SARS-CoV-2 infection and molecular pathways related to most NDs and the pathophysiological mechanisms of the NDs such as Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, and amyotrophic lateral sclerosis will be explained.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Elham Ghashghayi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Ali Baghbanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Mina Khodadadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
10
|
Etemadifar M, Abhari AP, Nouri H, Salari M, Maleki S, Amin A, Sedaghat N. Does COVID-19 increase the long-term relapsing-remitting multiple sclerosis clinical activity? A cohort study. BMC Neurol 2022; 22:64. [PMID: 35193507 PMCID: PMC8861623 DOI: 10.1186/s12883-022-02590-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Background Some current evidence is pointing towards an association between COVID-19 and worsening of multiple sclerosis (MS), stressing the importance of preventing COVID-19 among people with MS (pwMS). However, population-based evidence regarding the long-term post-COVID-19 course of relapsing-remitting multiple sclerosis (RRMS) was limited when this study was initiated. Objective To detect possible changes in MS clinical disease activity after COVID-19. Methods We conducted an observational study from July 2020 until July 2021 in the Isfahan MS clinic, comparing the trends of probable disability progression (PDP) – defined as a three-month sustained increase in expanded disability status scale (EDSS) score – and relapses before and after probable/definitive COVID-19 diagnosis in a cohort of people with RRMS (pwRRMS). Results Ninety pwRRMS were identified with definitive COVID-19, 53 of which were included in the final analysis. The PDP rate was significantly (0.06 vs 0.19, P = 0.04), and the relapse rate was insignificantly (0.21 vs 0.30, P = 0.30) lower post-COVID-19, compared to the pre-COVID-19 period. The results were maintained after offsetting by follow-up period in the matched binary logistic model. Survival analysis did not indicate significant difference in PDP-free (Hazard Ratio [HR] [95% CI]: 0.46 [0.12, 1.73], P = 0.25) and relapse-free (HR [95% CI]: 0.69 [0.31, 1.53], P = 0.36) survivals between the pre- and post-COVID-19 periods. Sensitivity analysis resulted similar measurements, although statistical significance was not achieved. Conclusion While subject to replication in future research settings, our results did not confirm any increase in the long-term clinical disease activity measures after COVID-19 contraction among pwRRMS. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02590-9.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Parsa Abhari
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific, Education, and Research Network (USERN), Isfahan, Iran
| | - Hosein Nouri
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific, Education, and Research Network (USERN), Isfahan, Iran
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Maleki
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Amin
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahad Sedaghat
- Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran. .,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific, Education, and Research Network (USERN), Isfahan, Iran.
| |
Collapse
|
11
|
Clinical and Radiological Deterioration in a Case of Creutzfeldt-Jakob Disease following SARS-CoV-2 Infection: Hints to Accelerated Age-Dependent Neurodegeneration. Biomedicines 2021; 9:biomedicines9111730. [PMID: 34829958 PMCID: PMC8615966 DOI: 10.3390/biomedicines9111730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023] Open
Abstract
Systemic inflammation and the host immune responses associated with certain viral infections may accelerate the rate of neurodegeneration in patients with Creutzfeldt–Jakob disease (CJD), a rare, transmissible neurodegenerative disease. However, the effects of the newly emerged SARS-CoV-2 infection on the pathogenesis of CJD are unknown. In this study, we describe the case of an elderly female patient with sporadic CJD that exhibited clinical deterioration with the emergence of seizures and radiological neurodegenerative progression following an infection with SARS-CoV-2 and severe COVID-19. Despite efforts to control the progression of the disease, a dismal outcome ensued. This report further evidences the age-dependent neurological effects of SARS-CoV-2 infection and proposes a vulnerability to CJD and increased CJD progression following COVID-19.
Collapse
|
12
|
Groppa SA, Ciolac D, Duarte C, Garcia C, Gasnaș D, Leahu P, Efremova D, Gasnaș A, Bălănuță T, Mîrzac D, Movila A. Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:1-27. [PMID: 34735712 DOI: 10.1007/5584_2021_675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has dramatically impacted the global healthcare systems, constantly challenging both research and clinical practice. Although it was initially believed that the SARS-CoV-2 infection is limited merely to the respiratory system, emerging evidence indicates that COVID-19 affects multiple other systems including the central nervous system (CNS). Furthermore, most of the published clinical studies indicate that the confirmed CNS inflammatory manifestations in COVID-19 patients are meningitis, encephalitis, acute necrotizing encephalopathy, acute transverse myelitis, and acute disseminated encephalomyelitis. In addition, the neuroinflammation along with accelerated neurosenescence and susceptible genetic signatures in COVID-19 patients might prime the CNS to neurodegeneration and precipitate the occurrence of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Thus, this review provides a critical evaluation and interpretive analysis of existing published preclinical as well as clinical studies on the key molecular mechanisms modulating neuroinflammation and neurodegeneration induced by the SARS-CoV-2. In addition, the essential age- and gender-dependent impacts of SARS-CoV-2 on the CNS of COVID-19 patients are also discussed.
Collapse
Affiliation(s)
- Stanislav A Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Dumitru Ciolac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Daniela Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Pavel Leahu
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Efremova
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Tatiana Bălănuță
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Mîrzac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Institute of Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
13
|
Peterson CJ, Sarangi A, Bangash F. Neurological sequelae of COVID-19: a review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021; 57:122. [PMID: 34511868 PMCID: PMC8424148 DOI: 10.1186/s41983-021-00379-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2021] [Indexed: 01/28/2023] Open
Abstract
Background The COVID-19 pandemic has produced a myriad of challenges, including identifying and treating neurological sequelae. Main body COVID-19 can cause olfactory and respiratory dysfunction with average recovery within 1 month and a minority of patients experiencing symptoms at 8-month follow-up. Headaches are also very common (up to 93%) amongst patients with persistent COVID-19 symptoms. COVID-19 illness may also affect cognition, although results are mixed. Conclusion While many studies have focused on acute COVID-19 symptoms, more longitudinal studies will need to assess the neurological sequelae of the disease. Furthermore, care must be taken when attributing sequelae to COVID-19 illness and not an unrelated cause. Finally, there is concern that COVID-19 may be associated with secondary illnesses, such as Guillain–Barre, and may even contribute to the development of diseases, such as Alzheimer’s.
Collapse
Affiliation(s)
- Christopher J Peterson
- Menninger Department of Psychiatry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Ashish Sarangi
- Department of Psychiatry, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430 USA
| | - Fariha Bangash
- SUNY Upstate Medical University, 750E Adams St, Syracuse, NY 13210 USA
| |
Collapse
|
14
|
Ashwal S, Siebold L, Krueger AC, Wilson CG. Post-traumatic Neuroinflammation: Relevance to Pediatrics. Pediatr Neurol 2021; 122:50-58. [PMID: 34304972 DOI: 10.1016/j.pediatrneurol.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Both detrimental and beneficial effects of post-traumatic neuroinflammation have become a major research focus as they offer the potential for immediate as well as delayed targeted reparative therapies. Understanding the complex interactions of central and peripheral immunocompetent cells as well as their mediators on brain injury and recovery is complicated by the temporal, regional, and developmental differences in their response to injuries. Microglia, the brain-resident macrophages, have become central in these investigations as they serve a major surveillance function, have the ability to react swiftly to injury, recruit various cellular and chemical mediators, and monitor the reparative/degenerative processes. In this review we describe selected aspects of this burgeoning literature, describing the critical role of cytokines and chemokines, microglia, advances in neuroimaging, genetics and fractal morphology analysis, our research efforts in this area, and selected aspects of pediatric post-traumatic neuroinflammation.
Collapse
Affiliation(s)
- Stephen Ashwal
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, California.
| | - Lorraine Siebold
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, California
| | - A Camille Krueger
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, California
| | - Christopher G Wilson
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, California
| |
Collapse
|
15
|
Xu Y, Zhuang Y, Kang L. A Review of Neurological Involvement in Patients with SARS-CoV-2 Infection. Med Sci Monit 2021; 27:e932962. [PMID: 34145211 PMCID: PMC8221270 DOI: 10.12659/msm.932962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of the recent pandemic of coronavirus disease 19 (COVID-19). As the infection spreads, there is increasing evidence of neurological and psychiatric involvement in COVID-19. Headache, impaired consciousness, and olfactory and gustatory dysfunctions are common neurological manifestations described in the literature. Studies demonstrating more specific and more severe neurological involvement such as cerebrovascular insults, encephalitis and Guillain-Barre syndrome are also emerging. Respiratory failure, a significant condition that leads to mortality in COVID-19, is hypothesized to be partly due to brainstem impairment. Notably, some of these neurological complications seem to persist long after infection. This review aims to provide an update on what is currently known about neurological involvement in patients with COVID-19 due to SARS-CoV-2 infection. In this review, we demonstrate invasion routes of SARS-CoV-2, provide evidence to support the neurotropism hypothesis of the virus, and investigate the pathological mechanisms that underlie neurological complications associated with SARS-CoV-2.
Collapse
Affiliation(s)
- Yidan Xu
- Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yu Zhuang
- Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, P.R. China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Lumei Kang
- Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Animal Science, Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|