1
|
How to make an undruggable enzyme druggable: lessons from ras proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020. [PMID: 32951811 DOI: 10.1016/bs.apcsb.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Significant advances have been made toward discovering allosteric inhibitors for challenging drug targets such as the Ras family of membrane-associated signaling proteins. Malfunction of Ras proteins due to somatic mutations is associated with up to a quarter of all human cancers. Computational techniques have played critical roles in identifying and characterizing allosteric ligand-binding sites on these proteins, and to screen ligand libraries against those sites. These efforts, combined with a wide range of biophysical, structural, biochemical and cell biological experiments, are beginning to yield promising inhibitors to treat malignancies associated with mutated Ras proteins. In this chapter, we discuss some of these developments and how the lessons learned from Ras might be applied to similar other challenging drug targets.
Collapse
|
2
|
Orgován Z, Ferenczy GG, Keserű GM. Fragment-Based Approaches for Allosteric Metabotropic Glutamate Receptor (mGluR) Modulators. Curr Top Med Chem 2019; 19:1768-1781. [PMID: 31393248 DOI: 10.2174/1568026619666190808150039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022]
Abstract
Metabotropic glutamate receptors (mGluR) are members of the class C G-Protein Coupled Receptors (GPCR-s) and have eight subtypes. These receptors are responsible for a variety of functions in the central and peripheral nervous systems and their modulation has therapeutic utility in neurological and psychiatric disorders. It was previously established that selective orthosteric modulation of these receptors is challenging, and this stimulated the search for allosteric modulators. Fragment-Based Drug Discovery (FBDD) is a viable approach to find ligands binding at allosteric sites owing to their limited size and interactions. However, it was also observed that the structure-activity relationship of allosteric modulators is often sharp and inconsistent. This can be attributed to the characteristics of the allosteric binding site of mGluRs that is a water channel where ligand binding is accompanied with induced fit and interference with the water network, both playing a role in receptor activation. In this review, we summarize fragment-based drug discovery programs on mGluR allosteric modulators and their contribution identifying of new mGluR ligands with better activity and selectivity.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudosok Korutja, Budapest H-1117, Hungary
| |
Collapse
|
3
|
Penteado F, Lopes EF, Alves D, Perin G, Jacob RG, Lenardão EJ. α-Keto Acids: Acylating Agents in Organic Synthesis. Chem Rev 2019; 119:7113-7278. [DOI: 10.1021/acs.chemrev.8b00782] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Filipe Penteado
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Eric F. Lopes
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Raquel G. Jacob
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
4
|
Emmitte KA. mGlu5negative allosteric modulators: a patent review (2013 - 2016). Expert Opin Ther Pat 2017; 27:691-706. [DOI: 10.1080/13543776.2017.1280466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
5
|
Synthesis, structure-activity relationships and biological evaluation of 4,5,6,7-tetrahydropyrazolopyrazines as metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2016; 26:3866-9. [PMID: 27432763 DOI: 10.1016/j.bmcl.2016.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
Abstract
The design, synthesis and SAR studies of novel 4,5,6,7-tetrahydropyrazolopyrazines as metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) are presented in this letter. Starting from a HTS hit compound (1, IC50=477nM), optimization of various groups led to the synthesis of a potent mGluR5 NAM (32, IC50=75nM) with excellent rat PK profile and good brain penetration. This compound produced oral antidepressant-like effect in a mouse tale suspension model (MED: 30mg/kg).
Collapse
|
6
|
Galambos J, Domány G, Nógrádi K, Wágner G, Keserű GM, Bobok A, Kolok S, Mikó-Bakk ML, Vastag M, Sághy K, Kóti J, Szakács Z, Béni Z, Gál K, Szombathelyi Z, Greiner I. 4-Aryl-3-arylsulfonyl-quinolines as negative allosteric modulators of metabotropic GluR5 receptors: From HTS hit to development candidate. Bioorg Med Chem Lett 2016; 26:1249-52. [DOI: 10.1016/j.bmcl.2016.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/16/2022]
|
7
|
Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors – A Structural Perspective of Ligands and Mutants. Sci Rep 2015; 5:13869. [PMID: 26359761 PMCID: PMC4566082 DOI: 10.1038/srep13869] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/27/2015] [Indexed: 01/06/2023] Open
Abstract
The metabotropic glutamate receptors have a wide range of modulatory functions in the central nervous system. They are among the most highly pursued drug targets, with relevance for several neurological diseases, and a number of allosteric modulators have entered clinical trials. However, so far this has not led to a marketed drug, largely because of the difficulties in achieving subtype-selective compounds with desired properties. Very recently the first crystal structures were published for the transmembrane domain of two metabotropic glutamate receptors in complex with negative allosteric modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different mGlu allosteric modulator binding modes relates to selective pharmacological actions will be very valuable for rational design of safer drugs.
Collapse
|
8
|
Huang H, Zhang G, Chen Y. Dual Hypervalent Iodine(III) Reagents and Photoredox Catalysis Enable Decarboxylative Ynonylation under Mild Conditions. Angew Chem Int Ed Engl 2015; 54:7872-6. [PMID: 26014919 DOI: 10.1002/anie.201502369] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/18/2022]
Abstract
A combination of hypervalent iodine(III) reagents (HIR) and photoredox catalysis with visible light has enabled chemoselective decarboxylative ynonylation to construct ynones, ynamides, and ynoates. This ynonylation occurs effectively under mild reaction conditions at room temperature and on substrates with various sensitive and reactive functional groups. The reaction represents the first HIR/photoredox dual catalysis to form acyl radicals from α-ketoacids, followed by an unprecedented acyl radical addition to HIR-bound alkynes. Its efficient construction of an mGlu5 receptor inhibitor under neutral aqueous conditions suggests future visible-light-induced biological applications.
Collapse
Affiliation(s)
- Hanchu Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China)
| | - Guojin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China)
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China).
| |
Collapse
|
9
|
Huang H, Zhang G, Chen Y. Dual Hypervalent Iodine(III) Reagents and Photoredox Catalysis Enable Decarboxylative Ynonylation under Mild Conditions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502369] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Nógrádi K, Wágner G, Domány G, Bobok A, Magdó I, Kolok S, Mikó-Bakk ML, Vastag M, Sághy K, Gyertyán I, Kóti J, Gál K, Farkas S, Keserű GM, Greiner I, Szombathelyi Z. Thieno[2,3- b ]pyridines as negative allosteric modulators of metabotropic GluR5 receptors: Lead optimization. Bioorg Med Chem Lett 2015; 25:1724-1729. [DOI: 10.1016/j.bmcl.2015.02.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
11
|
Lindemann L, Porter RH, Scharf SH, Kuennecke B, Bruns A, von Kienlin M, Harrison AC, Paehler A, Funk C, Gloge A, Schneider M, Parrott NJ, Polonchuk L, Niederhauser U, Morairty SR, Kilduff TS, Vieira E, Kolczewski S, Wichmann J, Hartung T, Honer M, Borroni E, Moreau JL, Prinssen E, Spooren W, Wettstein JG, Jaeschke G. Pharmacology of Basimglurant (RO4917523, RG7090), a Unique Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator in Clinical Development for Depression. J Pharmacol Exp Ther 2015; 353:213-33. [DOI: 10.1124/jpet.114.222463] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
12
|
Jaeschke G, Kolczewski S, Spooren W, Vieira E, Bitter-Stoll N, Boissin P, Borroni E, Büttelmann B, Ceccarelli S, Clemann N, David B, Funk C, Guba W, Harrison A, Hartung T, Honer M, Huwyler J, Kuratli M, Niederhauser U, Pähler A, Peters JU, Petersen A, Prinssen E, Ricci A, Rueher D, Rueher M, Schneider M, Spurr P, Stoll T, Tännler D, Wichmann J, Porter RH, Wettstein JG, Lindemann L. Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators: Discovery of 2-Chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (Basimglurant, RO4917523), a Promising Novel Medicine for Psychiatric Diseases. J Med Chem 2015; 58:1358-71. [DOI: 10.1021/jm501642c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jörg Huwyler
- Pharmaceutical
Technology, Pharmacenter, University of Basel, , Klingelbergstrasse
50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Metabotropic glutamate receptor 5 as drug target for Fragile X syndrome. Curr Opin Pharmacol 2015; 20:124-34. [DOI: 10.1016/j.coph.2014.11.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022]
|
14
|
Nógrádi K, Wágner G, Domány G, Bobok A, Magdó I, Kiss B, Kolok S, Fónagy K, Gyertyán I, Háda V, Kóti J, Gál K, Farkas S, Keserű GM, Greiner I, Szombathelyi Z. Thieno[2,3-b]pyridines as negative allosteric modulators of metabotropic GluR5 receptors: Hit-to-lead optimization. Bioorg Med Chem Lett 2014; 24:3845-9. [DOI: 10.1016/j.bmcl.2014.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022]
|
15
|
Scaffold hopping approach towards various AFQ-056 analogs as potent metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2013; 23:6370-6. [DOI: 10.1016/j.bmcl.2013.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 09/21/2013] [Indexed: 11/23/2022]
|
16
|
Duvey G, Perry B, Le Poul E, Poli S, Bonnet B, Lambeng N, Charvin D, Donovan-Rodrigues T, Haddouk H, Gagliardi S, Rocher JP. A novel series of metabotropic glutamate receptor 5 negative allosteric modulators based on a 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine core. Bioorg Med Chem Lett 2013; 23:4523-7. [DOI: 10.1016/j.bmcl.2013.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
|
17
|
Discovery, synthesis, and structure–activity relationships of 2-aminoquinazoline derivatives as a novel class of metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2013; 23:4493-500. [DOI: 10.1016/j.bmcl.2013.06.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
|
18
|
Hao J, Dehlinger V, Fivush AM, Rudyk HC, Britton TC, Hollinshead SP, Vokits BP, Clark BP, Henry SS, Massey SM, Peng L, Dressman BA, Heinz BA, Roberts EF, Bracey-Walker MR, Swanson S, Catlow JT, Love PL, Tepool AD, Peters SC, Simmons RMA, Iyengar S, McKinzie DL, Monn JA. Discovery of (1R,2R)-N-(4-(6-isopropylpyridin-2-yl)-3-(2-methyl-2H-indazol-5-yl)isothiazol-5-yl)-2-methylcyclopropanecarboxamide, a potent and orally efficacious mGlu5 receptor negative allosteric modulator. Bioorg Med Chem Lett 2013; 23:1249-52. [DOI: 10.1016/j.bmcl.2013.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
19
|
Abstract
INTRODUCTION The design and development of small molecule negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu5) has been an area of intense interest for over a decade. Potential roles have been established for mGlu5 NAMs in the treatment of diseases such as pain, anxiety, gastroesophageal reflux disease (GERD), Parkinson's disease levodopa-induced dyskinesia (PD-LID), fragile X syndrome (FXS), autism, addiction, and depression. AREAS COVERED This review begins with an update of the clinical trial efforts with mGlu5 NAMs. Following that update, the review summarizes small molecule mGlu5 NAM patent applications published between 2010 and 2012. These summaries are subdivided into three separate groups: inventions related to improvements in drug properties and/or developability, new chemical entities that contain a disubstituted alkyne, and new chemical entities that do not contain a disubstituted alkyne. EXPERT OPINION Given the abundant promise found within the mGlu5 NAM field, optimism remains that a drug will emerge from this therapeutic class. Still, the launch of a new drug is far from a certainty. It is encouraging to observe the ever-increasing chemical diversity among mGlu5 NAMs. Finally, in spite of the mature nature of this field, room remains for new advancements.
Collapse
Affiliation(s)
- Kyle A Emmitte
- Vanderbilt University Medical Center, Vanderbilt Center for Neuroscience Drug Discovery, Department of Chemistry, Nashville, TN 37232, USA.
| |
Collapse
|
20
|
Watterson LR, Kufahl PR, Nemirovsky NE, Sewalia K, Hood LE, Olive MF. Attenuation of reinstatement of methamphetamine-, sucrose-, and food-seeking behavior in rats by fenobam, a metabotropic glutamate receptor 5 negative allosteric modulator. Psychopharmacology (Berl) 2013; 225:151-9. [PMID: 22820868 PMCID: PMC3742304 DOI: 10.1007/s00213-012-2804-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 07/04/2012] [Indexed: 12/22/2022]
Abstract
RATIONALE Methamphetamine (METH) is a highly potent and addictive psychostimulant with severe detrimental effects to the health of users. Currently, METH addiction is treated with a combination of cognitive and behavioral therapies, but these traditional approaches suffer from high relapse rates. Furthermore, there are currently no pharmacological treatment interventions approved by the FDA specifically for the treatment of METH addiction. OBJECTIVES Metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) have shown promise in significantly attenuating drug self-administration and drug-seeking in reinstatement paradigms. However, studies assessing the potential efficacy of mGluR5 NAMs that have been tested in human subjects are lacking. The current study sought to assess the effect of the mGluR5 NAM fenobam on METH-seeking behavior. METHODS Rats were trained to self-administer METH (0.05 mg/kg i.v.), and following extinction, tested for effects of fenobam (5, 10, or 15 mg/kg intraperitoneal) on cue- and drug-induced reinstatement of METH-seeking. To determine if fenobam also alters reinstatement of seeking of natural reinforcers, separate groups of rats were trained to self-administer sucrose or food pellets and were tested for the effects of fenobam on cue-induced reinstatement of sucrose- and food-seeking. RESULTS Fenobam attenuated drug- and cue-induced reinstatement of METH-seeking behavior at doses of 10 and 15 mg/kg. Fenobam also attenuated cue-induced reinstatement of sucrose- and food-seeking at all doses tested. CONCLUSIONS The mGluR5 NAM fenobam attenuates the reinstatement of METH-seeking behavior, but these effects may be due to nonspecific suppression of general appetitive behaviors.
Collapse
|
21
|
To QH, Lee YR, Kim SH. Efficient synthesis of tetrahydroquinolinones by acetic acid-mediated formal [3+3] cycloaddition. MONATSHEFTE FUR CHEMIE 2012. [DOI: 10.1007/s00706-012-0762-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Discovery of 1H-pyrrolo[2,3-c]pyridine-7-carboxamides as novel, allosteric mGluR5 antagonists. Bioorg Med Chem Lett 2012; 22:6454-9. [DOI: 10.1016/j.bmcl.2012.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 11/21/2022]
|
23
|
Keck TM, Zou MF, Zhang P, Rutledge RP, Newman AH. Metabotropic glutamate receptor 5 negative allosteric modulators as novel tools for in vivo investigation. ACS Med Chem Lett 2012; 3:544-549. [PMID: 22924094 DOI: 10.1021/ml3000726] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) have shown promising results in preclinical models for anxiety and drug abuse. Here we describe a series of aryl-substituted alkynyl analogues of the prototypic mGluR5 NAM 2-methyl-6-(phenylethynyl)pyridine (MPEP, 1). Displacement of [(3)H]1 binding in rat brain membranes showed that several of these novel compounds displayed high affinity binding (K(i) < 10 nM) for mGluR5, with up to a 24-fold increase in affinity over 1. Replacements of the 2-position Me on the pyridyl ring of 1 along with various 3'-CN, 5'-substitutions were generally well tolerated. All of the active analogues in this series had cLogP values in the 2-5 range and displayed inverse agonist characteristics in an ELISA-based assay of G(q)α-mediated IP3 production. Compounds 7i and 7j produced in vivo effects in mouse models of anxiety-like behaviors more potently than 1 or 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP, 2), supporting their utility as in vivo tools.
Collapse
Affiliation(s)
- Thomas M. Keck
- Medicinal Chemistry
Section, Molecular Targets and Medications Discovery Branch, National
Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive Baltimore,
Maryland 21224, United States
| | - Mu-Fa Zou
- Medicinal Chemistry
Section, Molecular Targets and Medications Discovery Branch, National
Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive Baltimore,
Maryland 21224, United States
| | - Peng Zhang
- Medicinal Chemistry
Section, Molecular Targets and Medications Discovery Branch, National
Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive Baltimore,
Maryland 21224, United States
| | - Rebecca P. Rutledge
- Medicinal Chemistry
Section, Molecular Targets and Medications Discovery Branch, National
Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive Baltimore,
Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal Chemistry
Section, Molecular Targets and Medications Discovery Branch, National
Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive Baltimore,
Maryland 21224, United States
| |
Collapse
|
24
|
Cleva RM, Olive MF. Metabotropic glutamate receptors and drug addiction. ACTA ACUST UNITED AC 2012; 1:281-295. [DOI: 10.1002/wmts.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Lindsley CW, Bates BS, Menon UN, Jadhav SB, Kane AS, Jones CK, Rodriguez AL, Conn PJ, Olsen CM, Winder DG, Emmitte KA. (3-Cyano-5-fluorophenyl)biaryl negative allosteric modulators of mGlu(5): Discovery of a new tool compound with activity in the OSS mouse model of addiction. ACS Chem Neurosci 2011; 2:471-482. [PMID: 21927650 DOI: 10.1021/cn100099n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Glutamate is the major excitatory transmitter in the mammalian CNS, exerting its effects through both ionotropic and metabotropic glutamate receptors. The metabotropic glutamate receptors (mGlus) belong to family C of the G-protein-coupled receptors (GPCRs). The eight mGlus identified to date are classified into three groups based on their structure, preferred signal transduction mechanisms, and pharmacology (Group I: mGlu(1) and mGlu(5); Group II: mGlu(2) and mGlu(3); Group III: mGlu(4), mGlu(6), mGlu(7), and mGlu(8)). Non-competitive antagonists, also known as negative allosteric modulators (NAMs), of mGlu(5) offer potential therapeutic applications in diseases such as pain, anxiety, gastroesophageal reflux disease (GERD), Parkinson's disease (PD), fragile X syndrome, and addiction. The development of SAR in a (3-cyano-5-fluorophenyl)biaryl series using our functional cell-based assay is described in this communication. Further characterization of a selected compound, 3-fluoro-5-(2-methylbenzo[d]thiazol-5-yl)benzonitrile, in additional cell based assays as well as in vitro assays designed to measure its metabolic stability and protein binding indicated its potential utility as an in vivo tool. Subsequent evaluation of the same compound in a pharmacokinetic study using intraperitoneal dosing in mice showed good exposure in both plasma and brain samples. The compound was efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu(5) antagonists. A new operant model of addiction termed operant sensation seeking (OSS) was chosen as a second behavioral assay. The compound also proved efficacious in the OSS model and constitutes the first reported example of efficacy with a small molecule mGlu(5) NAM in this novel assay.
Collapse
Affiliation(s)
| | | | | | | | | | - Carrie K. Jones
- Tennesse Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, Tennessee 37212, United States
| | | | | | | | | | | |
Collapse
|
26
|
Lindemann L, Jaeschke G, Michalon A, Vieira E, Honer M, Spooren W, Porter R, Hartung T, Kolczewski S, Büttelmann B, Flament C, Diener C, Fischer C, Gatti S, Prinssen EP, Parrott N, Hoffmann G, Wettstein JG. CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor. J Pharmacol Exp Ther 2011; 339:474-86. [PMID: 21849627 DOI: 10.1124/jpet.111.185660] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinson's disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors. CTEP penetrates the brain with a brain/plasma ratio of 2.6 and displaces the tracer [(3)H]3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-methyl-oxime (ABP688) in vivo in mice from brain regions expressing mGlu5 with an average ED(50) equivalent to a drug concentration of 77.5 ng/g in brain tissue. This novel mGlu5 inhibitor is active in the stress-induced hyperthermia procedure in mice and the Vogel conflict drinking test in rats with minimal effective doses of 0.1 and 0.3 mg/kg, respectively, reflecting a 30- to 100-fold higher in vivo potency compared with 2-methyl-6-(phenylethynyl)pyridine (MPEP) and fenobam. CTEP is the first reported mGlu5 inhibitor with both long half-life of approximately 18 h and high oral bioavailability allowing chronic treatment with continuous receptor blockade with one dose every 48 h in adult and newborn animals. By enabling long-term treatment through a wide age range, CTEP allows the exploration of the full therapeutic potential of mGlu5 inhibitors for indications requiring chronic receptor inhibition.
Collapse
Affiliation(s)
- Lothar Lindemann
- F. Hoffmann-La Roche Ltd. Pharmaceuticals Division, Discovery Neuroscience, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Emmitte KA. Recent advances in the design and development of novel negative allosteric modulators of mGlu(5). ACS Chem Neurosci 2011; 2:411-432. [PMID: 21927649 DOI: 10.1021/cn2000266] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have remained attractive to researchers as potential therapies for a number of central nervous system related diseases, including anxiety, pain, gastroesophageal reflux disease (GERD), addiction, Parkinson's disease (PD), and fragile X syndrome (FXS). In addition to the many publications with supportive preclinical data with key tool molecules, recent positive reports from the clinic have bolstered the confidence in this approach. During the two year time span from 2009 through 2010, a number of new mGlu(5) NAM chemotypes have been disclosed and discussed in the primary and patent literature. A summary of several efforts representing many diverse chemotypes are presented here, along with a discussion of representative structure activity relationships (SAR) and synthetic approaches to the templates where possible.
Collapse
Affiliation(s)
- Kyle A. Emmitte
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, and Department of Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
28
|
Healy A, Rush R, Ocain T. Fragile X syndrome: an update on developing treatment modalities. ACS Chem Neurosci 2011; 2:402-10. [PMID: 22860169 DOI: 10.1021/cn200019z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/22/2011] [Indexed: 11/28/2022] Open
Abstract
Intellectual disability (ID; mental retardation) is considered an immutable condition. Current medical practices are aimed at relieving symptoms and not at altering the underlying cognitive deficits. Scientific advancements from the past decade have led to the exciting possibility that ID may now be treatable. Moreover, pharmaceutical therapies targeting the most common form of inherited ID, Fragile X syndrome (FXS), may become the new benchmark for central nervous system (CNS) drug discovery: seeking cures for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aileen Healy
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| | - Roger Rush
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| | - Timothy Ocain
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| |
Collapse
|
29
|
Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63:59-126. [PMID: 21228259 DOI: 10.1124/pr.109.002501] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allosteric receptor modulation is an attractive concept in drug targeting because it offers important potential advantages over conventional orthosteric agonism or antagonism. Allosteric ligands modulate receptor function by binding to a site distinct from the recognition site for the endogenous agonist. They often have no effect on their own and therefore act only in conjunction with physiological receptor activation. This article reviews the current status of allosteric modulation at family C G-protein coupled receptors in the light of their specific structural features on the one hand and current concepts in receptor theory on the other hand. Family C G-protein-coupled receptors are characterized by a large extracellular domain containing the orthosteric agonist binding site known as the "venus flytrap module" because of its bilobal structure and the dynamics of its activation mechanism. Mutational analysis and chimeric constructs have revealed that allosteric modulators of the calcium-sensing, metabotropic glutamate and GABA(B) receptors bind to the seven transmembrane domain, through which they modify signal transduction after receptor activation. This is in contrast to taste-enhancing molecules, which bind to different parts of sweet and umami receptors. The complexity of interactions between orthosteric and allosteric ligands is revealed by a number of adequate biochemical and electrophysiological assay systems. Many allosteric family C GPCR modulators show in vivo efficacy in behavioral models for a variety of clinical indications. The positive allosteric calcium sensing receptor modulator cinacalcet is the first drug of this type to enter the market and therefore provides proof of principle in humans.
Collapse
Affiliation(s)
- Stephan Urwyler
- Department of Chemistry and Biochemistry, University of Berne, P/A Weissensteinweg 3, CH-3303 Jegenstorf, Berne, Switzerland.
| |
Collapse
|
30
|
Burdi DF, Hunt R, Fan L, Hu T, Wang J, Guo Z, Huang Z, Wu C, Hardy L, Detheux M, Orsini MA, Quinton MS, Lew R, Spear K. Design, synthesis, and structure-activity relationships of novel bicyclic azole-amines as negative allosteric modulators of metabotropic glutamate receptor 5. J Med Chem 2010; 53:7107-18. [PMID: 20809633 DOI: 10.1021/jm100736h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of diaryl bicyclic azole-amines that are potent selective negative modulators of metabotropic glutamate receptor 5 (mGluR5) were identified through rational design. An initial hit compound 5a of modest potency (IC(50) = 1.2 μM) was synthesized. Evaluation of structure-activity relationships (SAR) on the left-hand side of the molecule revealed a preference for a 2-substituted pyridine group linked directly to the central heterocycle. Variation of the central azolo-amine portion of the molecule revealed a preference for the [4,5-c]-oxazoloazepine scaffold, while right-hand side variants showed a preference for ortho- and meta-substituted benzene rings linked directly to the tertiary amine of the saturated heterocycle. These iterations led to the synthesis of 29b, a potent (IC(50) = 16 nM) and selective negative modulator that showed good brain penetrance, high receptor occupancy, and a duration of action greater than 1 h in rat when administered intraperitoneally. Formal PK studies in rat and Rhesus monkey revealed a short half-life that was attributable to high first-pass clearance.
Collapse
Affiliation(s)
- Douglas F Burdi
- Discovery & Early Clinical Research, Sepracor Inc., 84 Waterford Drive, Marlborough, Massachusetts 01752, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pilla M, Andreoli M, Tessari M, Delle-Fratte S, Roth A, Butler S, Brown F, Shah P, Bettini E, Cavallini P, Benedetti R, Minick D, Smith P, Tehan B, D'Alessandro P, Lorthioir O, Ball C, Garzya V, Goodacre C, Watson S. The identification of novel orally active mGluR5 antagonist GSK2210875. Bioorg Med Chem Lett 2010; 20:7521-4. [PMID: 21051228 DOI: 10.1016/j.bmcl.2010.09.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/30/2022]
Abstract
The identification of novel orally active mGluR5 antagonist GSK2210875 is described.
Collapse
|
32
|
Simonyi A, Schachtman TR, Christoffersen GRJ. Metabotropic glutamate receptor subtype 5 antagonism in learning and memory. Eur J Pharmacol 2010; 639:17-25. [PMID: 20363219 PMCID: PMC2892203 DOI: 10.1016/j.ejphar.2009.12.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/04/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022]
Abstract
The role of the metabotropic glutamate receptor 5 (mGlu(5) receptor) in learning and memory and other behaviors are reviewed by examining the influence of selective antagonists and genetic knockout on performance. This receptor is involved in spatial learning, contextual fear conditioning, inhibitory avoidance, fear potentiated startle, and conditioned taste aversion. However, mGlu(5) receptor antagonists have proven to be ineffective in other learning tasks, such as the delayed-match-to-position test and a three-hole spatial learning task. Locomotion is often decreased by mGlu(5) receptor antagonists; and other behaviors such as social interaction and consummatory responses can also be affected. In mGlu(5) receptor knockout mice, performance in contextual fear conditioning and spatial water maze tasks is impaired. Although the available evidence is suggestive of an important contribution of mGlu(5) receptors to cognitive functions, further studies are needed, particularly those with in vivo evaluation of the role of mGlu(5) receptors in selective brain regions in different stages of memory formation.
Collapse
Affiliation(s)
- Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
33
|
Galambos J, Wágner G, Nógrádi K, Bielik A, Molnár L, Bobok A, Horváth A, Kiss B, Kolok S, Nagy J, Kurkó D, Bakk ML, Vastag M, Sághy K, Gyertyán I, Gál K, Greiner I, Szombathelyi Z, Keseru GM, Domány G. Carbamoyloximes as novel non-competitive mGlu5 receptor antagonists. Bioorg Med Chem Lett 2010; 20:4371-5. [PMID: 20615697 DOI: 10.1016/j.bmcl.2010.06.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Hit-to-lead optimization of a HTS hit led to new carbamoyloxime derivatives. After identification of an advanced hit (8d) the CYP enzyme inhibitory activity of this class of compounds was successfully eliminated. Systematic exploration of different parts of the advanced hit led us to some promising lead compounds with mGluR5 affinities comparable to that of MPEP.
Collapse
|
34
|
3-Cyano-5-fluoro-N-arylbenzamides as negative allosteric modulators of mGlu(5): Identification of easily prepared tool compounds with CNS exposure in rats. Bioorg Med Chem Lett 2010; 20:4390-4. [PMID: 20598884 DOI: 10.1016/j.bmcl.2010.06.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 11/21/2022]
Abstract
Development of SAR in a 3-cyano-5-fluoro-N-arylbenzamide series of non-competitive antagonists of mGlu(5) using a functional cell-based assay is described in this Letter. Further characterization of selected potent compounds in in vitro assays designed to measure their metabolic stability and protein binding is also presented. Subsequent evaluation of two new compounds in pharmacokinetic studies using intraperitoneal dosing in rats demonstrated good exposure in both plasma and brain samples.
Collapse
|
35
|
Wágner G, Wéber C, Nyéki O, Nógrádi K, Bielik A, Molnár L, Bobok A, Horváth A, Kiss B, Kolok S, Nagy J, Kurkó D, Gál K, Greiner I, Szombathelyi Z, Keseru GM, Domány G. Hit-to-lead optimization of disubstituted oxadiazoles and tetrazoles as mGluR5 NAMs. Bioorg Med Chem Lett 2010; 20:3737-41. [PMID: 20483612 DOI: 10.1016/j.bmcl.2010.04.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Here we report the discovery and early SAR of a series of mGluR5 negative allosteric modulators (NAMs). Starting from a moderately active HTS hit we synthesized 3,5-disubstituted-oxadiazoles and tetrazoles as mGluR5 NAMs. Based on the analysis of ligand efficiency and lipophilic efficiency metrics we identified a promising lead candidate as a starting point for further optimization.
Collapse
|
36
|
Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639:47-58. [PMID: 20371237 DOI: 10.1016/j.ejphar.2010.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5) receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu(5) receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu(5) receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu(5) receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|
37
|
Zhang P, Zou MF, Rodriguez AL, Conn PJ, Newman AH. Structure-activity relationships in a novel series of 7-substituted-aryl quinolines and 5-substituted-aryl benzothiazoles at the metabotropic glutamate receptor subtype 5. Bioorg Med Chem 2010; 18:3026-35. [PMID: 20382541 DOI: 10.1016/j.bmc.2010.03.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/18/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in numerous neuropsychiatric disorders including addiction. We have discovered that the rigid diaryl alkyne template, derived from the potent and selective noncompetitive mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), can serve to guide the design of novel quinoline analogues and pharmacophore optimization has resulted in potent mGluR5 noncompetitive antagonists (EC(50) range 60-100 nM) in the quinoline series.
Collapse
Affiliation(s)
- Peng Zhang
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
38
|
Erickson CA, Mullett JE, McDougle CJ. Brief Report: Acamprosate in Fragile X Syndrome. J Autism Dev Disord 2010; 40:1412-6. [DOI: 10.1007/s10803-010-0988-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Doller D, Li G, Brodbeck RM, Thomsen C. Novel heterocyclic compounds as mGlu5 antagonists: WO2009015897. Expert Opin Ther Pat 2010; 20:435-9. [DOI: 10.1517/13543770903547848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Spooren W, Lesage A, Lavreysen H, Gasparini F, Steckler T. Metabotropic glutamate receptors: their therapeutic potential in anxiety. Curr Top Behav Neurosci 2010; 2:391-413. [PMID: 21309118 DOI: 10.1007/7854_2010_36] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors.
Collapse
Affiliation(s)
- Will Spooren
- CNS Disease Biology Area, pRED, Building 74/3W308, Basel CH-4070, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Waeber C, Hargreaves R. Current and emerging therapies for migraine prevention and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2010; 97:789-809. [PMID: 20816471 DOI: 10.1016/s0072-9752(10)97065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
42
|
Felts AS, Saleh SA, Le U, Rodriguez AL, Weaver CD, Conn PJ, Lindsley CW, Emmitte KA. Discovery and SAR of 6-substituted-4-anilinoquinazolines as non-competitive antagonists of mGlu5. Bioorg Med Chem Lett 2009; 19:6623-6. [PMID: 19854049 DOI: 10.1016/j.bmcl.2009.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 11/30/2022]
Abstract
A high-throughput cell-based screen identified a series of 6-substituted-4-anilinoquinazolines as non-competitive antagonists of metabotropic glutamate receptor 5 (mGlu(5)). This Letter describes the SAR of this series and the profile of selected compounds in selectivity and radioligand binding assays.
Collapse
Affiliation(s)
- Andrew S Felts
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jiménez A, Bonastre M, Aguilar E, Marin C. Effect of the metabotropic glutamate antagonist MPEP on striatal expression of the Homer family proteins in levodopa-treated hemiparkinsonian rats. Psychopharmacology (Berl) 2009; 206:233-42. [PMID: 19636538 DOI: 10.1007/s00213-009-1600-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 06/21/2009] [Indexed: 01/02/2023]
Abstract
RATIONALE Striatal glutamatergic hyperactivity through the metabotropic receptors and their intracellular signaling pathways is considered critical in the development of levodopa-induced dyskinesias in Parkinson's disease and in experimental parkinsonism. OBJECTIVE We investigated whether the administration of the metabotropic glutamate antagonist, MPEP, modifies striatal expression of Homer family proteins which are involved in the intracellular mechanisms mediated by these receptors. MATERIALS AND METHODS Sprague-Dawley rats were unilaterally lesioned in the nigrostriatal pathway with 6-hydroxydopamine (8 microg) and treated with: levodopa (12 mg/kg, i.p.) plus vehicle (n=10) divided in two daily injections; levodopa plus MPEP (1.5 and 3 mg/kg, i.p.; n=6-13) divided in two daily injections; or saline (n=7) for 10 consecutive days. Axial, limb, and orolingual dyskinesias were evaluated. Striatal expression of tyrosine hydroxylase (TH), Homer 1a, 1b/c, and deltaFosB were measured by Western Blot. RESULTS Animals treated with levodopa showed an increase of dyskinesia score (p<0.01) that was attenuated by the administration of MPEP (p<0.01). In the ipsilateral side of the lesion, striatal TH expression was decreased (p<0.01). No significant differences in striatal Homer 1a or b/c expression were observed between the groups of treatment. Striatal deltaFosB expression increased in the animals treated with levodopa (p<0.05) being attenuated after MPEP administration (p<0.05). MPEP effect was not paralleled by any modification of striatal Homer proteins expression. CONCLUSIONS These results suggest that Homer protein family is not causally involved in the development of dyskinetic movements induced by levodopa treatment in this animal model of parkinsonism.
Collapse
Affiliation(s)
- Anna Jiménez
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Kulkarni SS, Zou MF, Cao J, Deschamps JR, Rodriguez AL, Conn PJ, Newman AH. Structure-activity relationships comparing N-(6-methylpyridin-yl)-substituted aryl amides to 2-methyl-6-(substituted-arylethynyl)pyridines or 2-methyl-4-(substituted-arylethynyl)thiazoles as novel metabotropic glutamate receptor subtype 5 antagonists. J Med Chem 2009; 52:3563-75. [PMID: 19445453 DOI: 10.1021/jm900172f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in anxiety, depression, pain, mental retardation, and addiction. The potent and selective noncompetitive mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 1) has been a critically important tool used to further elucidate the role of mGluR5 in these CNS disorders. In an effort to provide novel and structurally diverse selective mGluR5 antagonists, we previously described a set of analogues with moderate activity wherein the alkyne bond was replaced with an amide group. In the present report, extended series of both amide and alkyne-based ligands were synthesized. MGluR5 binding and functional data were obtained that identified (1) several novel alkynes with comparable affinities to 1 at mGluR5 (e.g., 10 and 20-23), but (2) most structural variations to the amide template were not well tolerated, although a few potent amides were discovered (e.g., 55 and 56). Several of these novel analogues show drug-like physical properties (e.g., cLogP range = 2-5) that support their use for in vivo investigation into the role of mGluR5 in CNS disorders.
Collapse
Affiliation(s)
- Santosh S Kulkarni
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Dray A. New Horizons in Pharmacologic Treatment for Rheumatic Disease Pain. Rheum Dis Clin North Am 2008; 34:481-505. [DOI: 10.1016/j.rdc.2008.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|