1
|
Zhao L, Liu Y, Jin F, Hu K, Lv M, Zhou Y, Zhao W, Hu Y, Wu J, Yang Y, Wang W. Multifunctional nanoparticles potentiate in-situ tumor vaccines via reversing insufficient Photothermal therapy by disrupting tumor vasculature. J Control Release 2024; 376:842-860. [PMID: 39401677 DOI: 10.1016/j.jconrel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Photothermal therapy can trigger immunogenic cell death and release personalized in-situ tumor vaccine, activating immune responses to eliminate systemic tumors beyond the irradiated zone. However, the immune response of the in-situ tumor vaccines is often undermined by the residual tumor cells and their induced immunosuppressive tumor microenvironment (TME), which is attributed to insufficient photothermal effects stemming from the limited accumulation of photosensitizers. To overcome these limitations, we developed multi-functional nanoparticles (VI@Gd-NPs) that integrate a tumor vasculature-specific disrupting agent (Vadimezan, Phase III clinical drug), a photosensitizer (Indocyanine Green, ICG), and a magnetic resonance imaging contrast agent (Gadolinium, Gd) through chemical self-assembly. By selectively disrupting the tumor vasculature, these nanoparticles enhance the intratumoral delivery of photosensitizers (ICG and blood cells), and Gd. With the guidance of Gd-enhanced MRI, the improved delivery facilitates comprehensive photothermal ablation and regulates the TME, further initiating the in-situ tumor vaccine. Notably, this approach significantly enhances anti-tumor immune responses, improves survival rates, and reduces tumor recurrence and metastasis in various animal models. Moreover, depleting CD8+ T cells reverses these therapeutic benefits, highlighting the critical role of adaptive T cell immunity. Therefore, the VI@Gd-NPs treatment holds great potential for reigniting the in-situ tumor vaccine of photothermal therapy.
Collapse
Affiliation(s)
- Lili Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiran Liu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Fangfei Jin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Kaiyuan Hu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Miao Lv
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yuehua Zhou
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Weijun Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yong Yang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Wenguang Wang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Seadawy MG, Lotfy MM, Saeed AA, Ageez AM. Novel HER2-based multi-epitope vaccine (HER2-MEV) against HER2-positive breast cancer: In silico design and validation. Hum Immunol 2024; 85:110832. [PMID: 38905717 DOI: 10.1016/j.humimm.2024.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Breast cancer (BC) continues to be the malignancy with the highest diagnosis rate worldwide. Between 15 % and 30 % of BC patients show overexpressed human epidermal growth factor receptor 2 (HER2), which is linked to poor clinical results in terms of invasiveness and recurrence risk. Passive immunity-based therapeutic approaches for treating HER2-enriched BC, are not effective and significant problems need to be tackled. Constructing multi-epitope vaccines is favored over single-epitope vaccines due to its ability to induce immunity against a variety of antigenic targets which will improve the efficacy of the vaccine. The current study describes a multi-epitope vaccine from HER2 protein against HER2-positive BC using several immunoinformatic techniques to achieve a potent and durable immune response. Nine Cytotoxic T lymphocytes (CTL) and five Helper T lymphocytes (HTL) epitopes were predicted and validated from HER2 protein using in silico tools. The expressed protein of the designed vaccine is predicted to be highly thermostable with better solubility. The predicted vaccine 3D structure was validated by ProSA servers and by the ERRAT server. Molecular docking analysis revealed a high binding affinity and stability of the designed vaccine with MHCI and TLR-2, 4, 7, and 9 receptors. The analysis of the C-ImmSim server revealed that the novel vaccine construct had the ability to elicit robust anti-cancerous innate, humoral, and cell-mediated immune responses. The vaccine can be a suitable option for HER2-positive BC patients and other patients with HER2-positive cancers to evoke immune responses. However, in vitro and in vivo experiments are needed to assess its effectiveness and safety.
Collapse
Affiliation(s)
- Mohamed G Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt.
| | - Mai M Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Giza 12613, Egypt.
| | - Aya A Saeed
- Cancer Biology Department, National Cancer Institute, Cairo University, Giza 12613, Egypt.
| | - Amr M Ageez
- Faculty of Biotechnology, October University for Modern Sciences and Arts, MSA University, 6 October City 12451, Giza, Egypt.
| |
Collapse
|
3
|
Zhang Y, Ouyang Z, Zhan M, Yang R, Gao Y, Li L, Guo R, Shi X, Cao X. An Intelligent Vascular Disrupting Dendritic Nanodevice Incorporating Copper Sulfide Nanoparticles for Immune Modulation-Mediated Combination Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301914. [PMID: 37259269 DOI: 10.1002/smll.202301914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Development of intelligent nanoplatforms that can simultaneously target multiple factors associated with tumor growth and metastasis remains an extreme challenge. Here, an intelligent dendritic nanodevice incorporating both copper sulfide nanoparticles (CuS NPs) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA, a vascular disrupting agent) within the dendrimer internal cavities and surface modified with a targeting agent LyP-1 peptide is reported. The resulting generation 5 (G5) dendrimer-based nanodevice, known as G5-PEG-LyP-1-CuS-DMXAA NPs (GLCD NPs), possess good colloidal stability, pH-sensitive drug release kinetics, and high photothermal conversion efficiency (59.3%). These functional GLCD NPs exert a LyP-1-targeted killing effect on breast tumors by combining CuS-mediated photothermal therapy (PTT) and DMXAA-induced vascular disruption, while also triggering antitumor immune responses through PTT-induced immunogenic cell death and DMXAA-mediated immune regulation via M1 polarization of tumor-associated macrophages and dendritic cell maturation. In addition, with the LyP-1-mediated proapoptotic activity, the GLCD NPs can specifically kill tumor lymphatic endothelial cells. The simultaneous disruption of tumor blood vessels and lymphatic vessels cuts off the two main pathways of tumor metastasis, which plays a two-pronged role in inhibiting lung metastasis of the breast cancer model. Thus, the developed GLCD NPs represent an advanced intelligent nanoformulation for immune modulation-mediated combination tumor therapy with potential for clinical translations.
Collapse
Affiliation(s)
- Yiming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Bhatnagar S, Revuri V, Shah M, Larson P, Shao Z, Yu D, Prabha S, Griffith TS, Ferguson D, Panyam J. Combination of STING and TLR 7/8 Agonists as Vaccine Adjuvants for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14246091. [PMID: 36551577 PMCID: PMC9777055 DOI: 10.3390/cancers14246091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Immunostimulatory adjuvants that potently activate antigen-presenting cells and (in turn) prime cytotoxic T cells are a key component of anticancer vaccines. In this study, we investigated a multi-adjuvant approach combining a TLR 7/8 agonist (522) and a STING agonist (DMXAA) to promote enhanced antigen cross-presentation, stimulate specific antitumor T-cell responses, and provide improved anticancer efficacy. In vitro experiments using bone marrow-derived dendritic cells (BMDCs) confirmed enhanced activation with the 522-DMXAA combination based on both co-stimulatory molecule expression and pro-inflammatory cytokine secretion. The immunization of mice with vaccines comprising both 522 and DMXAA resulted in greater antitumor efficacy in B16F10 melanoma and MB49 bladder tumor models relative to mono-agonist vaccines. Flow cytometry-based analysis of immune cells from immunized mice revealed the significant activation of antigen-presenting cells, increased numbers of activated and Ag-specific CD8+ T cells in the spleen and lymph nodes, modest NK cell activation, and an overall reduction in CD206+ macrophages. These results were supported by an increase in the levels of IFN-γ and a reduction in IL-10 levels in the sera. Taken together, these findings demonstrate the potential of the TLR7/8 and STING agonist combination as vaccine adjuvants to activate both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Shubhmita Bhatnagar
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | - Vishnu Revuri
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | - Manan Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter Larson
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zekun Shao
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daohai Yu
- Center for Biostatistics and Epidemiology, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Swayam Prabha
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Fox Chase Comprehensive Cancer Institute, Temple University, Philadelphia, PA 19111, USA
| | - Thomas S. Griffith
- Department of Urology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Ferguson
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jayanth Panyam
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
- Fox Chase Comprehensive Cancer Institute, Temple University, Philadelphia, PA 19111, USA
- Correspondence: ; Tel.: +1-215-926-2006
| |
Collapse
|
5
|
Tong S, Zhao W, Zhao D, Zhang W, Zhang Z. Biomaterials-Mediated Tumor Infarction Therapy. Front Bioeng Biotechnol 2022; 10:916926. [PMID: 35757801 PMCID: PMC9218593 DOI: 10.3389/fbioe.2022.916926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Agents for tumor vascular infarction are recently developed therapeutic agents for the vascular destruction of tumors. They can suppress the progression of the tumor by preventing the flow of nutrition and oxygen to its tissues. Agents of tumor vascular infarction can be divided into three categories according to the differences in their pathways of action: those that use the thrombin-activating pathway, fibrin-activating pathway, and platelet-activating pathway. However, poor targeting ability, low permeation, and potential side-effects restrict the development of the corresponding drugs. Biomaterials can subtly avoid these drawbacks to suppress the tumor. In this article, the authors summarize currently used biomaterials for tumor infarction therapy with the goal of identifying its mechanism, and discuss outstanding deficiencies in methods of this kind.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Zhao D, Huang X, Zhang Z, Ding J, Cui Y, Chen X. Engineered nanomedicines for tumor vasculature blockade therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1691. [PMID: 33480163 DOI: 10.1002/wnan.1691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Tumor vasculature blockade therapy (TVBT), including angiogenesis inhibition, vascular disruption, and vascular infarction, provides a promising treatment modality for solid tumors. However, low selectivity, drug resistance, and possible severe side effects have limited the clinical transformation of TVBT. Engineered nanoparticles offer potential solutions, including prolonged circulation time, targeted transportation, and controlled release of TVBT agents. Moreover, engineered nanomedicines provide a promising combination platform of TVBT with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, ultrasound therapy, and gene therapy. In this article, we offer a comprehensive summary of the current progress of engineered nanomedicines for TVBT and also discuss current deficiencies and future directions for TVBT development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xu Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
7
|
Ayesa U, Chong PLG. Polar Lipid Fraction E from Sulfolobus acidocaldarius and Dipalmitoylphosphatidylcholine Can Form Stable yet Thermo-Sensitive Tetraether/Diester Hybrid Archaeosomes with Controlled Release Capability. Int J Mol Sci 2020; 21:ijms21218388. [PMID: 33182284 PMCID: PMC7664881 DOI: 10.3390/ijms21218388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
Archaeosomes have drawn increasing attention in recent years as novel nano-carriers for therapeutics. The main obstacle of using archaeosomes for therapeutics delivery has been the lack of an efficient method to trigger the release of entrapped content from the otherwise extremely stable structure. Our present study tackles this long-standing problem. We made hybrid archaeosomes composed of tetraether lipids, called the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius, and the synthetic diester lipid dipalmitoylphosphatidylcholine (DPPC). Differential polarized phase-modulation and steady-state fluorometry, confocal fluorescence microscopy, zeta potential (ZP) measurements, and biochemical assays were employed to characterize the physical properties and drug behaviors in PLFE/DPPC hybrid archaeosomes in the presence and absence of live cells. We found that PLFE lipids have an ordering effect on fluid DPPC liposomal membranes, which can slow down the release of entrapped drugs, while PLFE provides high negative charges on the outer surface of liposomes, which can increase vesicle stability against coalescence among liposomes or with cells. Furthermore, we found that the zeta potential in hybrid archaeosomes with 30 mol% PLFE and 70 mol% DPPC (designated as PLFE/DPPC(3:7) archaeosomes) undergoes an abrupt increase from −48 mV at 37 °C to −16 mV at 44 °C (termed the ZP transition), which we hypothesize results from DPPC domain melting and PLFE lipid ‘flip-flop’. The anticancer drug doxorubicin (DXO) can be readily incorporated into PLFE/DPPC(3:7) archaeosomes. The rate constant of DXO release from PLFE/DPPC(3:7) archaeosomes into Tris buffer exhibited a sharp increase (~2.5 times), when the temperature was raised from 37 to 42 °C, which is believed to result from the liposomal structural changes associated with the ZP transition. This thermo-induced sharp increase in drug release was not affected by serum proteins as a similar temperature dependence of drug release kinetics was observed in human blood serum. A 15-min pre-incubation of PLFE/DPPC(3:7) archaeosomal DXO with MCF-7 breast cancer cells at 42 °C caused a significant increase in the amount of DXO entering into the nuclei and a considerable increase in the cell’s cytotoxicity under the 37 °C growth temperature. Taken together, our data suggests that PLFE/DPPC(3:7) archaeosomes are stable yet potentially useful thermo-sensitive liposomes wherein the temperature range (from 37 to 42–44 °C) clinically used for mild hyperthermia treatment of tumors can be used to trigger drug release for medical interventions.
Collapse
|
8
|
Fernandes C, Carraro ML, Ribeiro J, Araújo J, Tiritan ME, Pinto MMM. Synthetic Chiral Derivatives of Xanthones: Biological Activities and Enantioselectivity Studies. Molecules 2019; 24:E791. [PMID: 30813236 PMCID: PMC6412826 DOI: 10.3390/molecules24040791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many naturally occurring xanthones are chiral and present a wide range of biological and pharmacological activities. Some of them have been exhaustively studied and subsequently, obtained by synthesis. In order to obtain libraries of compounds for structure activity relationship (SAR) studies as well as to improve the biological activity, new bioactive analogues and derivatives inspired in natural prototypes were synthetized. Bioactive natural xanthones compromise a large structural multiplicity of compounds, including a diversity of chiral derivatives. Thus, recently an exponential interest in synthetic chiral derivatives of xanthones (CDXs) has been witnessed. The synthetic methodologies can afford structures that otherwise could not be reached within the natural products for biological activity and SAR studies. Another reason that justifies this trend is that both enantiomers can be obtained by using appropriate synthetic pathways, allowing the possibility to perform enantioselectivity studies. In this work, a literature review of synthetic CDXs is presented. The structures, the approaches used for their synthesis and the biological activities are described, emphasizing the enantioselectivity studies.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Maria Letícia Carraro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Joana Araújo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Cooperativa de Ensino Superior, Politécnico e Universitário (CESPU), Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
9
|
The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus-induced neurological disease. Virology 2019; 529:23-28. [PMID: 30648635 DOI: 10.1016/j.virol.2019.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus (HSV)- 1 is the most common cause of sporadic viral encephalitis and accounts for 5-10% of cases worldwide. A key factor in host control of viral infection is the initiation of the interferon (IFN) response, mediated in part by the stimulator of interferon genes (STING) pathway. In these studies, we examined the ability of 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a STING agonist, to protect against HSV-1 infection. DMXAA reduced viral replication through increased production of type I IFN in vitro. Furthermore, administration of DMXAA to HSV-1 infected mice resulted in a reduction of viral burden in the peripheral and central nervous systems. This reduced viral burden also correlated with increased survival of DMXAA-treated infected mice. These results therefore demonstrate the potential of STING agonists for immunotherapy against HSV-1.
Collapse
|
10
|
Ribeiro J, Veloso C, Fernandes C, Tiritan ME, Pinto MMM. Carboxyxanthones: Bioactive Agents and Molecular Scaffold for Synthesis of Analogues and Derivatives. Molecules 2019; 24:E180. [PMID: 30621303 PMCID: PMC6337274 DOI: 10.3390/molecules24010180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Xanthones represent a structurally diverse group of compounds with a broad range of biological and pharmacological activities, depending on the nature and position of various substituents in the dibenzo-γ-pyrone scaffold. Among the large number of natural and synthetic xanthone derivatives, carboxyxanthones are very interesting bioactive compounds as well as important chemical substrates for molecular modifications to obtain new derivatives. A remarkable example is 5,6-dimethylxanthone-4-acetic acid (DMXAA), a simple carboxyxanthone derivative, originally developed as an anti-tumor agent and the first of its class to enter phase III clinical trials. From DMXAA new bioactive analogues and derivatives were also described. In this review, a literature survey covering the report on carboxyxanthone derivatives is presented, emphasizing their biological activities as well as their application as suitable building blocks to obtain new bioactive derivatives. The data assembled in this review intends to highlight the therapeutic potential of carboxyxanthone derivatives and guide the design for new bioactive xanthone derivatives.
Collapse
Affiliation(s)
- João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Cláudia Veloso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Cooperativa de Ensino Superior, Politécnico e Universitário (CESPU), Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
11
|
Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on Vadimezan (DMXAA): The vascular disrupting agent. Chem Biol Drug Des 2018; 91:996-1006. [DOI: 10.1111/cbdd.13166] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/29/2017] [Accepted: 12/17/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Amir Daei Farshchi Adli
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee; Tabriz University of Medical Sciences; Tabriz Iran
| | - Khaled Seidi
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sonia Samandari-Rad
- Faculty of Medicine; Physiology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Physiology; Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Iranian National Science Foundation; Tehran Iran
| |
Collapse
|
12
|
Khalid EB, Ayman EMEK, Rahman H, Abdelkarim G, Najda A. Natural products against cancer angiogenesis. Tumour Biol 2016; 37:14513-14536. [PMID: 27651162 DOI: 10.1007/s13277-016-5364-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/07/2016] [Indexed: 02/08/2023] Open
Abstract
The process of angiogenesis is quite well-known nowadays. Some medicines and extracts affecting this process are already used routinely in supporting the conventional treatment of many diseases that are considered angiogenic such as cancer. However, we must be aware that the area of currently used drugs of this type is much narrower than the theoretical possibilities existing in therapeutic angiogenesis. Plant substances are a large and diverse group of compounds that are found naturally in fruits, vegetables, spices, and medicinal plants. They also have different anticancer properties. The aim of this literature review article is to present the current state of knowledge concerning the molecular targets of tumor angiogenesis and the active substances (polyphenols, alkaloids, phytohormones, carbohydrates, and terpenes) derived from natural sources, whose activity against cancer angiogenesis has been confirmed.
Collapse
Affiliation(s)
- El Bairi Khalid
- Independent Research Team in Cancer Biology and Bioactive Compounds, Faculty of Medicine and Pharmacy, University Mohammed 1st, Oujda, Morocco.
| | - El-Meghawry El-Kenawy Ayman
- Department of Molecular Biology GEBRI, University of Sadat City, Sadat, Egypt
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heshu Rahman
- Department of Veterinary Clinical Diagnosis, Faculty of Veterinary Medicine, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Medical Laboratory Science, Komar University of Science and Technology, ChaqChaq, Qularasy, Sulaimani City, Kurdistan Region, Iraq
| | - Guaadaoui Abdelkarim
- Laboratory of Genetics and Biotechnology (LGB), Faculty of Sciences, Mohammed 1st University (UMP), Oujda, Morocco
| | - Agnieszka Najda
- Quality Laboratory of Vegetable and Medicinal Materials, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Leszczyńskiego Street 58, 20-068, Lublin, Poland
| |
Collapse
|
13
|
Song W, Tang Z, Zhang D, Li M, Gu J, Chen X. A cooperative polymeric platform for tumor-targeted drug delivery. Chem Sci 2015; 7:728-736. [PMID: 28791115 PMCID: PMC5530016 DOI: 10.1039/c5sc01698c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/22/2015] [Indexed: 12/30/2022] Open
Abstract
A tumor-targeted drug delivery system with small-molecule vascular disrupting agents inducing coagulation environment inside tumor and coagulation-targeted nanoparticles accumulating there.
In the pursuit of effective treatments for cancer, an emerging strategy is “active targeting”, where nanoparticles are decorated with targeting ligands able to recognize and bind specific receptors overexpressed by tumor cells or tumor vasculature so that a greater fraction of the administered drugs are selectively trafficked to tumor sites. However, the implementation of this strategy has faced a major obstacle. The interpatient, inter- and intra-tumoral heterogeneity in receptor expression can pose challenges for the design of clinical trials and result in the paucity of targetable receptors within a tumor, which limits the effectiveness of “active targeting” strategy in cancer treatment. Here we report a cooperative drug delivery platform that overcomes the heterogeneity barrier unique to solid tumors. The cooperative platform comprises a coagulation-inducing agent and coagulation-targeted polymeric nanoparticles. As a typical small-molecule vascular disrupting agent (VDA), DMXAA can create a unique artificial coagulation environment with additional binding sites in a solid tumor by locally activating a coagulation cascade. Coagulation-targeted cisplatin-loaded nanoparticles, which are surface-decorated with a substrate of activated blood coagulation factor XIII, can selectively accumulate in the solid tumor by homing to the VDA-induced artificial coagulation environment through transglutamination. In vivo studies show that the cooperative tumor-selective platform recruits up to 7.5-fold increases in therapeutic cargos to the tumors and decreases tumor burden with low systemic toxicity as compared with non-cooperative controls. These indicate that the use of coagulation-targeted nanoparticles, in conjunction with free small-molecule VDAs, may be a valuable strategy for improving standard chemotherapy.
Collapse
Affiliation(s)
- Wantong Song
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . ;
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . ;
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . ;
| | - Mingqiang Li
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . ;
| | - Jingkai Gu
- Research Center for Drug Metabolism , College of Life Science , Jilin University , Changchun, 130012 , P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . ;
| |
Collapse
|
14
|
Song W, Tang Z, Zhang D, Yu H, Chen X. Coadministration of Vascular Disrupting Agents and Nanomedicines to Eradicate Tumors from Peripheral and Central Regions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3755-3761. [PMID: 25919954 DOI: 10.1002/smll.201500324] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/24/2015] [Indexed: 06/04/2023]
Abstract
A strategy for enhancing the treatment efficacy of nanomedicines within the central region of solid tumors is developed by combining nanomedicines and free small-molecule vascular disrupting agents (VDAs). The nanomedicines (cis-diamminedichloroplatinum-loaded nanoparticles) primarily target cells at the tumor periphery whereas the free small-molecule VDA (combretastatin A4 disodium phosphate) efficiently kills the cancer cells within the central regions of the tumor.
Collapse
Affiliation(s)
- Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
15
|
Abstract
Although type I IFNs were initially described based on their anti-viral properties, it was quickly realized that these cytokines had anti-proliferative and anti-cancer activities. These observations ultimately led to the clinical development and utility of IFN-α2b for the treatment of patients with melanoma, renal cell carcinoma, and chronic myelogenous leukemia, among others. However, the mechanism of action of type I IFNs in vivo was never fully elucidated, and the pleiotropic effects of IFNs on multiple cell types had made it challenging to decipher. Advancement of genetically engineered mouse models has provided new tools for interrogating these mechanisms. Recent evidence has indicated that spontaneous innate immune sensing of cancers that leads to adaptive immune responses is dependent on host type I IFN production and signaling. The major innate immune receptor pathway that leads to type I IFN production in response to a growing tumor appears to be the STING pathway of cytosolic DNA sensing. STING agonists drive type I IFN production and are impressively therapeutic in mouse tumor models. Targeting low doses of type I IFNs to the tumor microenvironment also promotes anti-tumor activity via host adaptive immunity that is T cell-dependent. However, high doses of intratumoral type I IFNs largely function via an anti-angiogenic effect. Understanding these mechanistic details should enable improved clinical manipulation of the type I IFN system in cancer.
Collapse
Affiliation(s)
- Thomas F Gajewski
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL 60637, United States.
| | - Leticia Corrales
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL 60637, United States
| |
Collapse
|
16
|
Downey CM, Aghaei M, Schwendener RA, Jirik FR. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2'3'-cGAMP, induces M2 macrophage repolarization. PLoS One 2014; 9:e99988. [PMID: 24940883 DOI: 10.1371/journal.pone.0099988] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/21/2014] [Indexed: 11/18/2022] Open
Abstract
The vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a murine agonist of the stimulator of interferon genes (STING), appears to target the tumor vasculature primarily as a result of stimulating pro-inflammatory cytokine production from tumor-associated macrophages (TAMs). Since there were relatively few reports of DMXAA effects in genetically-engineered mutant mice (GEMM), and models of non-small cell lung cancer (NSCLC) in particular, we examined both the effectiveness and macrophage dependence of DMXAA in various NSCLC models. The DMXAA responses of primary adenocarcinomas in K-rasLA1/+ transgenic mice, as well as syngeneic subcutaneous and metastatic tumors, generated by a p53R172HΔg/+; K-rasLA1/+ NSCLC line (344SQ-ELuc), were assessed both by in vivo bioluminescence imaging as well as by histopathology. Macrophage-dependence of DMXAA effects was explored by clodronate liposome-mediated TAM depletion. Furthermore, a comparison of the vascular structure between subcutaneous tumors and metastases was carried out using micro-computed tomography (micro-CT). Interestingly, in contrast to the characteristic hemorrhagic necrosis produced by DMXAA in 344SQ-ELuc subcutaneous tumors, this agent failed to cause hemorrhagic necrosis of either 344SQ-ELuc-derived metastases or autochthonous K-rasLA1/+ NSCLCs. In addition, we found that clodronate liposome-mediated depletion of TAMs in 344SQ-ELuc subcutaneous tumors led to non-hemorrhagic necrosis due to tumor feeding-vessel occlusion. Since NSCLC were comprised exclusively of TAMs with anti-inflammatory M2-like phenotype, the ability of DMXAA to re-educate M2-polarized macrophages was examined. Using various macrophage phenotypic markers, we found that the STING agonists, DMXAA and the non-canonical endogenous cyclic dinucleotide, 2'3'-cGAMP, were both capable of re-educating M2 cells towards an M1 phenotype. Our findings demonstrate that the choice of preclinical model and the anatomical site of a tumor can determine the vascular disrupting effectiveness of DMXAA, and they also support the idea of STING agonists having therapeutic utility as TAM repolarizing agents.
Collapse
Affiliation(s)
- Charlene M Downey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Mehrnoosh Aghaei
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Reto A Schwendener
- Institute of Molecular Cancer Research, Laboratory of Liposome Research, University of Zurich, Zurich, Switzerland
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Zhang SJ, Ding ZS, Jiang FS, Ge QF, Guo DW, Li HB, Hu WX. Synthesis, anticancer evaluation and docking study of vadimezan derivatives with carboxyl substitution. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00372h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of xanthone analogues modified from vadimezan were synthesized and their anticancer activities were evaluated.
Collapse
Affiliation(s)
- Shi-Jie Zhang
- Graduate School
- Zhejiang Chinese Medical University
- Hangzhou 310053, PR China
| | - Zhi-Shan Ding
- Institute of Biotechnology
- College of Life Science
- Zhejiang Chinese Medical University
- Hangzhou 310053, PR China
| | - Fu-Sheng Jiang
- Institute of Biotechnology
- College of Life Science
- Zhejiang Chinese Medical University
- Hangzhou 310053, PR China
| | - Qiu-Fu Ge
- R&D Center
- Hangzhou Minsheng Pharmaceutical Group Co., Ltd
- Hangzhou 311100, PR China
| | - Dian-Wu Guo
- R&D Center
- Hangzhou Minsheng Pharmaceutical Group Co., Ltd
- Hangzhou 311100, PR China
| | - Hai-Bo Li
- Laboratory of Microbiology
- Nantong Center for Disease Control and Prevention
- Nantong 226007, PR China
| | - Wei-Xiao Hu
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310032, PR China
| |
Collapse
|
18
|
Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, Rathinam VAK, Monks B, Jin T, Xiao TS, Vogel SN, Vance RE, Fitzgerald KA. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. THE JOURNAL OF IMMUNOLOGY 2013; 190:5216-25. [PMID: 23585680 DOI: 10.4049/jimmunol.1300097] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vascular disrupting agents such as 5,6-dimethylxanthenone-4-acetic acid (DMXAA) represent a novel approach for cancer treatment. DMXAA has potent antitumor activity in mice and, despite significant preclinical promise, failed human clinical trials. The antitumor activity of DMXAA has been linked to its ability to induce type I IFNs in macrophages, although the molecular mechanisms involved are poorly understood. In this study, we identify stimulator of IFN gene (STING) as a direct receptor for DMXAA leading to TANK-binding kinase 1 and IFN regulatory factor 3 signaling. Remarkably, the ability to sense DMXAA was restricted to murine STING. Human STING failed to bind to or signal in response to DMXAA. Human STING also failed to signal in response to cyclic dinucleotides, conserved bacterial second messengers known to bind and activate murine STING signaling. Collectively, these findings detail an unexpected species-specific role for STING as a receptor for an anticancer drug and uncover important insights that may explain the failure of DMXAA in clinical trials for human cancer.
Collapse
Affiliation(s)
- Joseph Conlon
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mimeault M, Batra SK. Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials. Drug Discov Today 2013; 18:128-40. [PMID: 22903142 PMCID: PMC3562372 DOI: 10.1016/j.drudis.2012.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/04/2012] [Accepted: 08/03/2012] [Indexed: 12/16/2022]
Abstract
The in vivo zebrafish models have recently attracted great attention in molecular oncology to investigate multiple genetic alterations associated with the development of human cancers and validate novel anticancer drug targets. Particularly, the transparent zebrafish models can be used as a xenotransplantation system to rapidly assess the tumorigenicity and metastatic behavior of cancer stem and/or progenitor cells and their progenies. Moreover, the zebrafish models have emerged as powerful tools for an in vivo testing of novel anticancer agents and nanomaterials for counteracting tumor formation and metastases and improving the efficacy of current radiation and chemotherapeutic treatments against aggressive, metastatic and lethal cancers.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
20
|
Goertz DE, Todorova M, Mortazavi O, Agache V, Chen B, Karshafian R, Hynynen K. Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS One 2012; 7:e52307. [PMID: 23284980 PMCID: PMC3527530 DOI: 10.1371/journal.pone.0052307] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/12/2012] [Indexed: 11/25/2022] Open
Abstract
Ultrasound stimulated microbubbles (USMB) are being investigated for their potential to promote the uptake of anticancer agents into tumor tissue by exploiting their ability to enhance microvascular permeability. At sufficiently high ultrasound transmit amplitudes it has also recently been shown that USMB treatments can, on their own, induce vascular damage, shutdown blood flow, and inhibit tumor growth. The objective of this study is to examine the antitumor effects of ‘antivascular’ USMB treatments in conjunction with chemotherapy, which differs from previous work which has sought to enhance drug uptake with USMBs by increasing vascular permeability. Conceptually this is a strategy similar to combining vascular disrupting agents with a chemotherapy, and we have selected the taxane docetaxel (Taxotere) for evaluating this approach as it has previously been shown to have potent antitumor effects when combined with small molecule vascular disrupting agents. Experiments were conducted on PC3 tumors implanted in athymic mice. USMB treatments were performed at a frequency of 1 MHz employing sequences of 50 ms bursts (0.00024 duty cycle) at 1.65 MPa. USMB treatments were administered on a weekly basis for 4 weeks with docetaxel (DTX) being given intravenously at a dose level of 5 mg/kg. The USMB treatments, either alone or in combination with DTX, induced an acute reduction in tumor perfusion which was accompanied at the 24 hour point by significantly enhanced necrosis and apoptosis. Longitudinal experiments showed a modest prolongation in survival but no significant growth inhibition occurred in DTX–only and USMB-only treatment groups relative to control tumors. The combined USMB-DTX treatment group produced tumor shrinkage in weeks 4–6, and significant growth inhibition and survival prolongation relative to the control (p<0.001), USMB-only (p<0.01) and DTX-only treatment groups (p<0.01). These results suggest the potential of enhancing the antitumor activity of docetaxel by combining it with antivascular USMB effects.
Collapse
Affiliation(s)
- David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
21
|
Pallis AG, Syrigos KN. Targeting tumor neovasculature in non-small-cell lung cancer. Crit Rev Oncol Hematol 2012; 86:130-42. [PMID: 23159217 DOI: 10.1016/j.critrevonc.2012.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 10/11/2012] [Accepted: 10/24/2012] [Indexed: 12/16/2022] Open
Abstract
Recent insight into the molecular biology of cancer and mechanisms of tumorigenesis, has allowed for the identification of several potential molecular targets and the development of novel "targeted therapies". One of the most active research fields in NSCLC is the discovery of therapies that target angiogenesis. The vascular endothelial growth factor (VEGF) pathway represents a crucial component of the tumor angiogenesis process. Two different strategies have been developed in clinical practice in order to restrict tumor vasculature development; either the use of monoclonal antibodies against VEGF or small molecule tyrosine kinase inhibitors to target the tyrosine kinase domain of VEGF receptor. Among these agents that have been tested bevacizumab, a monoclonal antibody against VEGF, has been approved for the treatment of metastatic NSCLC in combination with chemotherapy, while several other agents are under phase III investigation. Moreover, several issues such as predictive biomarkers of response to antiangiogenic therapy and mechanisms of resistance to these agents remain to be elucidated. The purpose of this paper is to present the current status of antiangiogenic therapies in the treatment of NSCLC and to discuss these issues.
Collapse
Affiliation(s)
- Athanasios G Pallis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Crete, Greece.
| | | |
Collapse
|
22
|
Kim S, Peshkin L, Mitchison TJ. Vascular disrupting agent drug classes differ in effects on the cytoskeleton. PLoS One 2012; 7:e40177. [PMID: 22848372 PMCID: PMC3404093 DOI: 10.1371/journal.pone.0040177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/01/2012] [Indexed: 01/01/2023] Open
Abstract
Vascular disrupting agents (VDAs), anti-cancer drugs that target established tumor blood vessels, fall into two main classes: microtubule targeting drugs, exemplified by combretastatin A4 (CA4), and flavonoids, exemplified by 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Both classes increase permeability of tumor vasculature in mouse models, and DMXAA in particular can cause massive tumor necrosis. The molecular target of CA4 is clearly microtubules. The molecular target(s) of DMXAA remains unclear. It is thought to promote inflammatory signaling in leukocytes, and has been assumed to not target microtubules, though it is not clear from the literature how carefully this assumption has been tested. An earlier flavone analog, flavone acetic acid, was reported to promote mitotic arrest suggesting flavones might possess anti-microtubule activity, and endothelial cells are sensitive to even mild disruption of microtubules. We carefully investigated whether DMXAA directly affects the microtubule or actin cytoskeletons of endothelial cells by comparing effects of CA4 and DMXAA on human umbilical vein endothelial cells (HUVEC) using time-lapse imaging and assays for cytoskeleton integrity. CA4 caused retraction of the cell margin, mitotic arrest and microtubule depolymerization, while DMXAA, up to 500 µM, showed none of these effects. DMXAA also had no effect on pure tubulin nucleation and polymerization, unlike CA4. We conclude that DMXAA exhibits no direct anti-microtubule action and thus cleanly differs from CA4 in its mechanism of action at the molecular level.
Collapse
Affiliation(s)
- Sujeong Kim
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
23
|
Leach MO, Morgan B, Tofts PS, Buckley DL, Huang W, Horsfield MA, Chenevert TL, Collins DJ, Jackson A, Lomas D, Whitcher B, Clarke L, Plummer R, Judson I, Jones R, Alonzi R, Brunner T, Koh DM, Murphy P, Waterton JC, Parker G, Graves MJ, Scheenen TWJ, Redpath TW, Orton M, Karczmar G, Huisman H, Barentsz J, Padhani A. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 2012; 22:1451-64. [PMID: 22562143 DOI: 10.1007/s00330-012-2446-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 12/11/2022]
Abstract
Many therapeutic approaches to cancer affect the tumour vasculature, either indirectly or as a direct target. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important means of investigating this action, both pre-clinically and in early stage clinical trials. For such trials, it is essential that the measurement process (i.e. image acquisition and analysis) can be performed effectively and with consistency among contributing centres. As the technique continues to develop in order to provide potential improvements in sensitivity and physiological relevance, there is considerable scope for between-centre variation in techniques. A workshop was convened by the Imaging Committee of the Experimental Cancer Medicine Centres (ECMC) to review the current status of DCE-MRI and to provide recommendations on how the technique can best be used for early stage trials. This review and the consequent recommendations are summarised here. Key Points • Tumour vascular function is key to tumour development and treatment • Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess tumour vascular function • Thus DCE-MRI with pharmacokinetic models can assess novel treatments • Many recent developments are advancing the accuracy of and information from DCE-MRI • Establishing common methodology across multiple centres is challenging and requires accepted guidelines.
Collapse
Affiliation(s)
- M O Leach
- Cancer Research UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research & Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2, 5PT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
He X, Li S, Huang H, Li Z, Chen L, Ye S, Huang J, Zhan J, Lin T. A pharmacokinetic and safety study of single dose intravenous combretastatin A4 phosphate in Chinese patients with refractory solid tumours. Br J Clin Pharmacol 2011; 71:860-70. [PMID: 21276042 DOI: 10.1111/j.1365-2125.2011.03928.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Three pharmacokinetic and safety studies for combretastatin A4 phosphate (CA4P), the first vascular disrupting agent, have been conducted in Western countries. • The maximum tolerated dose (MTD) was approximately 60-68 mg m(-2). • CA4P-related grade 3 or 4 adverse events were tumour pain, dyspnoea, hypoxia and syncope in patients who received doses ≥ 50 mg m(-2). WHAT THIS STUDY ADDS • This is the first pharmacokinetic and safety study conducted in East Asian patients. • There appeared to be a trend that Chinese patients metabolized CA4 more rapidly and had greater neurotoxicity than patients in Western countries. • We observed favourable clinical responses in patients with refractory nasopharyngeal carcinoma. • CA4P-induced acute renal failure was seen in one dehydrated Chinese patient. AIMS This trial was conducted to evaluate the safety and pharmacokinetics of combretastatin A4 phosphate (CA4P) given intravenously as a single dose to Chinese patients with refractory solid tumours. METHODS Twenty-five patients were treated with single doses of CA4P according to a dose escalation scheme: 5, 10, 20, 33, 50, 65 and 85 mg m(-2) infused intravenously over 30 min. RESULTS CA4P was generally well tolerated at ≤ 65 mg m(-2). Transient, moderate increases in the heart rate-corrected QT interval occurred at all doses. CA4P produced a transient dose-dependent increase in neural and gastrointestinal toxicities. Acute renal failure occurred in one dehydrated patient who had also taken paracetamol. There were seven episodes of dose-limiting toxicity at doses ≥65 mg m(-2), including two episodes of reversible ataxia at 85 mg m(-2).For CA4, at 50 mg m(-2),mean (SD) peak plasma concentration (C(max) was 0.99 (0.33) mM, area under the curve from time zero to time of last quantifiable concentration (AUC(0,t)) was 1.42 (0.30) mM h and terminal elimination half-life (t(1/2)was 1.81 (0.61) h. At 65 mg m-2,C(max) was 1.73 (0.62) mM,AUC(0,t) was 3.19 (1.47) mM h and t (1/2) was 1.90 (0.61) h [corrected]One patient with nasopharyngeal carcinoma had an obvious clinical response with central necrosis in the metastatic lung mass. CONCLUSION Doses ≤ 65 mg m(-2) given as 30 min infusions define the maximum tolerated dose in East Asian patients, and doses in the range of 50-65 mg m(-2) have been selected for further studies.
Collapse
Affiliation(s)
- Xuexin He
- Department of Medical Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jameson MB, Head M. Pharmacokinetic evaluation of vadimezan (ASA404, 5,6-dimethylxanthenone-4-acetic acid, DMXAA). Expert Opin Drug Metab Toxicol 2011; 7:1315-26. [DOI: 10.1517/17425255.2011.614389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
LoRusso PM, Boerner SA, Hunsberger S. Clinical Development of Vascular Disrupting Agents: What Lessons Can We Learn From ASA404? J Clin Oncol 2011; 29:2952-5. [DOI: 10.1200/jco.2011.36.1311] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
27
|
Li W, Lin H, Smith HT, Tse FL. Developing a robust ultrafiltration-LC–MS/MS method for quantitative analysis of unbound vadimezan (ASA404) in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1927-33. [DOI: 10.1016/j.jchromb.2011.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/29/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022]
|
28
|
Zeng Q, Peng S, Monie A, Yang M, Pang X, Hung CF, Wu TC. Control of cervicovaginal HPV-16 E7-expressing tumors by the combination of therapeutic HPV vaccination and vascular disrupting agents. Hum Gene Ther 2011; 22:809-19. [PMID: 21128743 DOI: 10.1089/hum.2010.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Antigen-specific immunotherapy and vascular disrupting agents, such as 5,6-dimethylxanthenone-4-acetic acid (DMXAA), have emerged as attractive approaches for the treatment of cancers. In the current study, we tested the combination of DMXAA treatment with therapeutic human papillomavirus type 16 (HPV-16) E7 peptide-based vaccination for their ability to generate E7-specific CD8+ T-cell immune responses, as well as their ability to control E7-expressing tumors in a subcutaneous and a cervicovaginal tumor model. We found that the combination of DMXAA treatment with E7 long peptide (amino acids 43-62) vaccination mixed with polyriboinosinic:polyribocytidylic generated significantly stronger E7-specific CD8+ T-cell immune responses and antitumor effects compared with treatment with DMXAA alone or HPV peptide vaccination alone in the subcutaneous model. Additionally, we found that the DMXAA-mediated enhancement of E7-specific CD8+ T-cell immune responses generated by the therapeutic HPV peptide-based vaccine was dependent on the timing of administration of DMXAA. Treatment with DMXAA in tumor-bearing mice was also shown to lead to increased dendritic cell maturation and increased production of inflammatory cytokines in the tumor. Furthermore, we observed that the combination of DMXAA with HPV-16 E7 peptide vaccination generated a significant enhancement in the antitumor effects in the cervicovaginal TC-1 tumor growth model, which closely resembles the tumor microenvironment of cervical cancer. Taken together, our data demonstrated that administration of the vascular disrupting agent, DMXAA, enhances therapeutic HPV vaccine-induced cytotoxic T-lymphocyte responses and antitumor effects against E7-expressing tumors in two different locations. Our study has significant implications for future clinical translation.
Collapse
Affiliation(s)
- Qi Zeng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China 200433
| | | | | | | | | | | | | |
Collapse
|
29
|
A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels. Br J Cancer 2011; 104:1106-15. [PMID: 21386847 PMCID: PMC3068510 DOI: 10.1038/bjc.2011.78] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: The possibility of eradicating cancer by selective destruction of tumour blood vessels may represent an attractive therapeutic avenue, but most pharmaceutical agents investigated so far did not achieve complete cures and are not completely specific. Antibody conjugates now allow us to evaluate the impact of selective vascular shutdown on tumour viability and to study mechanisms of action. Methods: We synthesised a novel porphyrin-based photosensitiser suitable for conjugation to antibodies and assessed anticancer properties of its conjugate with L19, a clinical-stage human monoclonal antibody specific to the alternatively spliced EDB domain of fibronectin, a marker of tumour angiogenesis. Results: Here we show in two mouse model of cancer (F9 and A431) that L19 is capable of highly selective in vivo localisation around tumour blood vessels and that its conjugate with a photosensitiser allows selective disruption of tumour vasculature upon irradiation, leading to complete and long-lasting cancer eradication. Furthermore, depletion experiments revealed that natural killer cells are essential for the induction of long-lasting complete responses. Conclusions: These results reinforce the concept that vascular shutdown can induce a curative avalanche of tumour cell death. Immuno-photodynamic therapy may be particularly indicated for squamous cell carcinoma of the skin, which we show to be strongly positive for markers of angiogenesis.
Collapse
|
30
|
Shirey KA, Nhu QM, Yim KC, Roberts ZJ, Teijaro JR, Farber DL, Blanco JC, Vogel SN. The anti-tumor agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), induces IFN-beta-mediated antiviral activity in vitro and in vivo. J Leukoc Biol 2011; 89:351-7. [PMID: 21084628 PMCID: PMC3040469 DOI: 10.1189/jlb.0410216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/07/2010] [Accepted: 10/01/2010] [Indexed: 02/02/2023] Open
Abstract
The 2009 outbreak of pandemic H1N1 influenza, increased drug resistance, and the significant delay in obtaining adequate numbers of vaccine doses have heightened awareness of the need to develop new antiviral drugs that can be used prophylactically or therapeutically. Previously, we showed that the experimental anti-tumor drug DMXAA potently induced IFN-β but relatively low TNF-α expression in vitro. This study confirms these findings in vivo and demonstrates further that DMXAA induces potent antiviral activity in vitro and in vivo. In vitro, DMXAA protected RAW 264.7 macrophage-like cells from VSV-induced cytotoxicity and moreover, inhibited replication of influenza, including the Tamiflu®-resistant H1N1 influenza A/Br strain, in MDCK cells. In vivo, DMXAA protected WT C57BL/6J but not IFN-β(-/-) mice from lethality induced by the mouse-adapted H1N1 PR8 influenza strain when administered before or after infection. Protection was accompanied by mitigation of weight loss, increased IFN-β mRNA and protein levels in the lung, and significant inhibition of viral replication in vivo early after DMXAA treatment. Collectively, this study provides data to support the use of DMXAA as a novel antiviral agent.
Collapse
Affiliation(s)
| | - Quan M. Nhu
- Departments of Microbiology and Immunology and
| | | | | | | | - Donna L. Farber
- Departments of Microbiology and Immunology and
- Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | | | | |
Collapse
|
31
|
Abstract
Claiming more than 150,000 lives each year, lung cancer is the deadliest cancer in the USA. First-line treatments in lung cancer include surgical resection and chemotherapy, the latter of which offers only modest survival benefits at the expense of often severe and debilitating side effects. Recent advances in elucidating the molecular biology of lung carcinogenesis have elucidated novel drug targets, and treatments are rapidly evolving into specialized agents that hone in on specific aspects of the disease. Of particular interest is blocking tumor growth by targeting the physiological processes surrounding angiogenesis, pro-tumorigenic growth factor activation, anti-apoptotic cascades and other cancer-promoting signal transduction events. This article looks at several areas of interest to lung cancer therapeutics and considers the current state of affairs surrounding the development of these therapies.
Collapse
Affiliation(s)
- M Roshni Ray
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - David Jablons
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Zhang SJ, Hu WX. Vadimezan: 2-(5,6-dimethyl-9-oxo-9 H-xanthen-4-yl)acetic acid. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o2082-3. [PMID: 21588382 PMCID: PMC3007383 DOI: 10.1107/s1600536810028394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 07/15/2010] [Indexed: 12/02/2022]
Abstract
In the title molecule, C17H14O4, the C atom of the carboxyl group deviates by 1.221 (3) Å from the plane [maximum deviation = 0.0122(2) Å] of the tricycic ring system. In the crystal structure, intermolecular O—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers, and π–π interactions [centroid–centroid distances = 3.491 (3), 3.591 (3), 3.639 (3) and 3.735 (3) Å] link these dimers into layers parallel to the ac plane. Weak intermolecular C—H⋯O interactions further consolidate the crystal packing.
Collapse
|