1
|
Liu SJ, Zhong YN, Cheng ZQ, Meng N, Zhang J, Jiang CS. Discovery of Novel Marine-Derived Phidiandine/Lipoic Acid Hybrid as a Potential Anti-Atherosclerosis Agent: Design, Synthesis and in Vitro/in Vivo Evaluation. Chem Biodivers 2024; 21:e202301371. [PMID: 38069597 DOI: 10.1002/cbdv.202301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
In the present study, a novel derivative, IOP-LA, was prepared by hybridizing antioxidant lipoic acid (LA) and our recently reported antioxidative marine phidianidine B-inspired indole/1,2,4-oxadiazole derivative. Our results demonstrated that IOP-LA could protect vascular endothelial cells (VECs) from oxidized low-density lipoprotein (oxLDL)-induced oxidative stress by activating the Nrf2 pathway, inhibit the production of atherosclerotic plaque, and promote the stability of atherosclerotic plaque in apoE-/- mice. Moreover, the protective effect of IOP-LA was superior to LA at the same concentration. Mechanistic studies revealed that IOP-LA significantly inhibited the increase of reactive oxygen species (ROS) levels and the translocation of nuclear factor kappa-B (NF-κB) nuclear induced by oxLDL through the nuclear factor erythroid2-related factor 2 (Nrf2) pathway. In summary, the data demonstrate that IOP-LA, as a new antioxidant, protects VECs from oxLDL-induced oxidative stress by activating the Nrf2 pathway. It is worth noting that this study provides a promising lead compound for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shu-Jun Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ying-Nan Zhong
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
2
|
Scheer M, Bischoff AM, Kruzliak P, Opatrilova R, Bovell D, Büsselberg D. Creatine and creatine pyruvate reduce hypoxia-induced effects on phrenic nerve activity in the juvenile mouse respiratory system. Exp Mol Pathol 2016; 101:157-62. [PMID: 27450651 DOI: 10.1016/j.yexmp.2016.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/29/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations.
Collapse
Affiliation(s)
- Monika Scheer
- Onkologie, Hämatologie, Immunologie, Klinikum Stuttgart Olgahospital, Stuttgart, Germany
| | - Anna M Bischoff
- Georg-August-Universität Göttingen, Abteilung für Neuro- und Sinnesphysiologie, Göttingen, Germany
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Douglas Bovell
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar.
| |
Collapse
|
3
|
Affiliation(s)
- J. David Spence
- Stroke Prevention & Atherosclerosis Research CentreRobarts Research InstituteWestern UniversityLondonOntarioCanada
- Division of Clinical PharmacologyDepartment of MedicineWestern UniversityLondonOntarioCanada
| | - George K. Dresser
- Division of Clinical PharmacologyDepartment of MedicineWestern UniversityLondonOntarioCanada
| |
Collapse
|
4
|
Abstract
Coenzyme Q10 (CoQ10), also known as ubiquinone or ubidecarenone, is a powerful, endogenously produced, intracellularly existing lipophilic antioxidant. It combats reactive oxygen species (ROS) known to be responsible for a variety of human pathological conditions. Its target site is the inner mitochondrial membrane (IMM) of each cell. In case of deficiency and/or aging, CoQ10 oral supplementation is warranted. However, CoQ10 has low oral bioavailability due to its lipophilic nature, large molecular weight, regional differences in its gastrointestinal permeability and involvement of multitransporters. Intracellular delivery and mitochondrial target ability issues pose additional hurdles. To maximize CoQ10 delivery to its biopharmaceutical target, numerous approaches have been undertaken. The review summaries the current research on CoQ10 bioavailability and highlights the headways to obtain a satisfactory intracellular and targeted mitochondrial delivery. Unresolved questions and research gaps were identified to bring this promising natural product to the forefront of therapeutic agents for treatment of different pathologies.
Collapse
Affiliation(s)
- Noha M Zaki
- a Toronto Health Economics and Technology Assessment (THETA) Collaborative Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
5
|
Abstract
Although mitochondrial disorders are among the most common inherited conditions that cause neurologic impairment, there are currently no U.S. Food and Drug Administration (FDA)-approved medications designed to treat primary mitochondrial disease. This is in part related to the lack of biomarkers to monitor disease status or response to treatment and the paucity of randomized, controlled clinical trials focused on mitochondrial disease therapies. Despite this discouraging historical precedent, a number of new approaches to mitochondrial disease therapy are on the horizon. By studying metabolites central to redox chemistry, investigators are gaining new insights into potential noninvasive biomarkers. Controlled clinical trials designed to study the effects of novel redox-modulating therapies, such as EPI-743, in patients with inherited mitochondrial disease are also underway. Furthermore, several new compounds with potential effects on inner mitochondrial membrane function and mitochondrial biogenesis are in development. Such advances are providing the foundation for a new era in mitochondrial disease therapeutics.
Collapse
Affiliation(s)
- Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University and the Lucile Packard Children's Hospital, Stanford, CA, USA
| |
Collapse
|
6
|
Liu J, Ames BN. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Nutr Neurosci 2013; 8:67-89. [PMID: 16053240 DOI: 10.1080/10284150500047161] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial decay due to oxidative damage is a contributor to brain aging and age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). One type of mitochondrial decay is oxidative modification of key mitochondrial enzymes. Enzyme dysfunction, that is due to poor binding of substrates and coenzymes may be ameliorated by supplementing adequate levels of substrates or coenzyme precursors. Such supplementation with mitochondrial nutrients (mt-nutrients) may be useful to prevent or delay mitochondrial decay, thus prevent or treat AD and PD. In the present review, we survey the literature to identify mt-nutrients that can (1) protect mitochondrial enzymes and/or stimulate enzyme activity by elevating levels of substrates and cofactors; (2) induce phase-2 enzymes to enhance antioxidant defenses; (3) scavenge free radicals and prevent oxidant production in mitochondria, and (4) repair mitochondrial membrane. Then, we discuss the relationships among mt-nutrient deficiency, mitochondrial decay, and cognitive dysfunction, and summarize available evidence suggesting an effect of mt-nutrient supplementation on AD and PD. It appears that greater effects might be obtained by longer-term administration of combinations of mt-nutrients. Thus, optimal doses of combinations of mt-nutrients to delay and repair mitochondrial decay could be a strategy for preventing and treating cognitive dysfunction, including AD and PD.
Collapse
Affiliation(s)
- Jiankang Liu
- Nutritional Genomic Center, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|
7
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
8
|
Creatine as a therapeutic strategy for myopathies. Amino Acids 2011; 40:1397-407. [PMID: 21399918 DOI: 10.1007/s00726-011-0876-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022]
Abstract
Myopathies are genetic or acquired disorders of skeletal muscle that lead to varying degrees of weakness, atrophy, and exercise intolerance. In theory, creatine supplementation could have a number of beneficial effects that could enhance function in myopathy patients, including muscle mass, strength and endurance enhancement, lower calcium levels, anti-oxidant effects, and reduced apoptosis. Patients with muscular dystrophy respond to several months of creatine monohydrate supplementation (~0.075-0.1 g/kg/day) with greater strength (~9%) and fat-free mass (~0.63 kg). Patients with myotonic dystrophy do not show as consistent an effect, possibly due to creatine transport issues. Creatine monohydrate supplementation shows modest benefits only at lower doses and possibly negative effects (cramping) at higher doses in McArdle's disease patients. Patients with MELAS syndrome show some evidence of benefit from creatine supplementation in exercise capacity, with the effects in patients with CPEO being less robust, again, possibly due to limited muscle creatine uptake. The evidence for side effects or negative impact upon serological metrics from creatine supplementation in all groups of myopathy patients is almost non-existent and pale in comparison to the very substantial and well-known side effects from our current chemotherapeutic interventions for some myopathies (i.e., corticosteroids).
Collapse
|
9
|
Hosamani R, Ramesh SR, Muralidhara. Attenuation of Rotenone-Induced Mitochondrial Oxidative Damage and Neurotoxicty in Drosophila melanogaster Supplemented with Creatine. Neurochem Res 2010; 35:1402-12. [DOI: 10.1007/s11064-010-0198-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2010] [Indexed: 12/21/2022]
|
10
|
Chang N, Kim E, Kim KN, Kim H, Kim SY, Jeong BS. Folate nutrition is related to neuropsychological functions in the elderly. Nutr Res Pract 2009; 3:43-8. [PMID: 20016701 PMCID: PMC2788167 DOI: 10.4162/nrp.2009.3.1.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/10/2009] [Accepted: 02/15/2009] [Indexed: 11/04/2022] Open
Abstract
We investigated the nutritional state of B vitamins and the neuropsychological functions in 25 subjects, aged 63.1 +/- 6.3 years, residing in rural areas of Korea. Nutritional states of thiamin, riboflavin, and pyridoxine were assessed enzymatically in the erythrocytes, and folate concentrations were measured microbiologically in the plasma and erythrocytes. A battery of composite neuropsychological test was administered to the subjects. Plasma folate was correlated with the total intelligence score (p=0.049). Folate levels in the erythrocytes were correlated with the performance intelligence scores such as block design (p=0.017) and picture arrangement (p=0.016). The red cell folate was correlated with memory scores such as general memory (p=0.009) and delayed recall (p=0.000). Although it did not reach statistical significance, verbal memory (p=0.053) was highly correlated with the red cell folate. The red cell folate was also correlated positively with the percent of conceptual level response number score (p=0.029), and negatively with the grooved pegboard test score for the non-dominant hand (p=0.010). Fine motor coordination was also influenced by folate nutrition, as finger tapping scores in both hands were significantly correlated with red cell folate (dominant hand; p=0.026, non-dominant hand; p=0.004). Other B vitamins such as thiamin, riboflavin, and vitamin B(6) were not as strongly correlated with neuropsychological function test scores as folate was. These results suggest that folate nutrition influences neuropsychological function test scores significantly in humans. Further studies are needed to explore the relationship between folate or other vitamin B nutrition and neuropsychological functions and the implications thereof.
Collapse
Affiliation(s)
- Namsoo Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Bender A, Samtleben W, Elstner M, Klopstock T. Long-term creatine supplementation is safe in aged patients with Parkinson disease. Nutr Res 2009; 28:172-8. [PMID: 19083405 DOI: 10.1016/j.nutres.2008.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 12/12/2022]
Abstract
The food supplement creatine (Cr) is widely used by athletes as a natural ergogenic compound. It has also been increasingly tested in neurodegenerative diseases as a potential neuroprotective agent. Weight gain is the most common side effect of Cr, but sporadic reports about the impairment of renal function cause the most concerns with regard to its long-term use. Data from randomized controlled trials on renal function in Cr-supplemented patients are scarce and apply mainly to healthy young athletes. We systematically evaluated potential side effects of Cr with a special focus on renal function in aged patients with Parkinson disease as well as its current use in clinical medical research. Sixty patients with Parkinson disease received either oral Cr (n = 40) or placebo (n = 20) with a dose of 4 g/d for a period of 2 years. Possible side effects as indicated by a broad range of laboratory blood and urine tests were evaluated during 6 follow-up study visits. Overall, Cr was well tolerated. Main side effects were gastrointestinal complaints. Although serum creatinine levels increased in Cr patients because of the degradation of Cr, all other markers of tubular or glomerular renal function, especially cystatin C, remained normal, indicating unaltered kidney function. The data in this trial provide a thorough analysis and give a detailed overview about the safety profile of Cr in older age patients.
Collapse
Affiliation(s)
- Andreas Bender
- Department of Neurology, University of Munich-Klinikum Grosshadern, 81377 Munich, Germany.
| | | | | | | |
Collapse
|
12
|
Adhihetty PJ, Beal MF. Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromolecular Med 2008; 10:275-90. [PMID: 19005780 DOI: 10.1007/s12017-008-8053-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 10/14/2008] [Indexed: 02/07/2023]
Abstract
Substantial evidence indicates bioenergetic dysfunction and mitochondrial impairment contribute either directly and/or indirectly to the pathogenesis of numerous neurodegenerative disorders. Treatment paradigms aimed at ameliorating this cellular energy deficit and/or improving mitochondrial function in these neurodegenerative disorders may prove to be useful as a therapeutic intervention. Creatine is a molecule that is produced both endogenously, and acquired exogenously through diet, and is an extremely important molecule that participates in buffering intracellular energy stores. Once creatine is transported into cells, creatine kinase catalyzes the reversible transphosphorylation of creatine via ATP to enhance the phosphocreatine energy pool. Creatine kinase enzymes are located at strategic intracellular sites to couple areas of high energy expenditure to the efficient regeneration of ATP. Thus, the creatine kinase/phosphocreatine system plays an integral role in energy buffering and overall cellular bioenergetics. Originally, exogenous creatine supplementation was widely used only as an ergogenic aid to increase the phosphocreatine pool within muscle to bolster athletic performance. However, the potential therapeutic value of creatine supplementation has recently been investigated with respect to various neurodegenerative disorders that have been associated with bioenergetic deficits as playing a role in disease etiology and/or progression which include; Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), and Huntington's disease. This review discusses the contribution of mitochondria and bioenergetics to the progression of these neurodegenerative diseases and investigates the potential neuroprotective value of creatine supplementation in each of these neurological diseases. In summary, current literature suggests that exogenous creatine supplementation is most efficacious as a treatment paradigm in Huntington's and Parkinson's disease but appears to be less effective for ALS and Alzheimer's disease.
Collapse
Affiliation(s)
- Peter J Adhihetty
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA
| | | |
Collapse
|
13
|
Schober MS, Chidlow G, Wood JP, Casson RJ. Bioenergetic-based neuroprotection and glaucoma. Clin Exp Ophthalmol 2008; 36:377-85. [PMID: 18700928 DOI: 10.1111/j.1442-9071.2008.01740.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary open-angle glaucoma (POAG) is a pressure-sensitive optic neuropathy which results in the death of retinal ganglion cells and causes associated loss of vision. Presently, the only accepted treatment strategy is to lower the intraocular pressure; however, for some patients this is insufficient to prevent progressive disease. Although the pathogenesis of POAG remains unclear, there is considerable evidence that energy failure at the optic nerve head may be involved. Neuroprotection, a strategy which directly enhances the survival of neurons, is desirable, but remains clinically elusive. One particular form of neuroprotection involves the notion of enhancing the energy supply of neurons. These 'bioenergetic' methods of neuroprotection have proven successful in animal models of other neurodegenerative diseases and conditions, including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and traumatic brain injury, but have been relatively unexplored in glaucoma models. This review focuses on some of the potential approaches for bioenergetic neuroprotection in the retina, including increasing the energy buffering capacity of damaged cells, decreasing the permeability of the mitochondrial membrane pore and free radical scavenging.
Collapse
Affiliation(s)
- Michael S Schober
- South Australian Institute of Ophthalmology, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
14
|
Abstract
Many of the neuromuscular (e.g., muscular dystrophy) and neurometabolic (e.g., mitochondrial cytopathies) disorders share similar final common pathways of cellular dysfunction that may be favorably influenced by creatine monohydrate (CrM) supplementation. Studies using the mdx model of Duchenne muscular dystrophy have found evidence of enhanced mitochondrial function, reduced intra-cellular calcium and improved performance with CrM supplementation. Clinical trials in patients with Duchenne and Becker's muscular dystrophy have shown improved function, fat-free mass, and some evidence of improved bone health with CrM supplementation. In contrast, the improvements in function in myotonic dystrophy and inherited neuropathies (e.g., Charcot-Marie-Tooth) have not been significant. Some studies in patients with mitochondrial cytopathies have shown improved muscle endurance and body composition, yet other studies did not find significant improvements in patients with mitochondrial cytopathy. Lower-dose CrM supplementation in patients with McArdle's disease (myophosphorylase deficiency) improved exercise capacity, yet higher doses actually showed some indication of worsened function. Based upon known cellular pathologies, there are potential benefits from CrM supplementation in patients with steroid myopathy, inflammatory myopathy, myoadenylate deaminase deficiency, and fatty acid oxidation defects. Larger randomized control trials (RCT) using homogeneous patient groups and objective and clinically relevant outcome variables are needed to determine whether creatine supplementation will be of therapeutic benefit to patients with neuromuscular or neurometabolic disorders. Given the relatively low prevalence of some of the neuromuscular and neurometabolic disorders, it will be necessary to use surrogate markers of potential clinical efficacy including markers of oxidative stress, cellular energy charge, and gene expression patterns.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics and Medicine (Neurology and Rehabilitation), Neuromuscular and Neurometabolic Clinic, Rm 2H26, McMaster University Medical Center, 1200 Main St. W., Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
15
|
Abstract
Significant progress has been made in identifying neuroprotective agents and their translation to patients with neurological disorders. While the direct causative pathways of neurodegeneration remain unclear, they are under great clinical and experimental investigation. There are a number of interrelated pathogenic mechanisms triggering molecular events that lead to neuronal death. One putative mechanism reported to play a prominent role in the pathogenesis of neurological diseases is impaired energy metabolism. If reduced energy stores play a role in neuronal loss, then therapeutic strategies that buffer intracellular energy levels may prevent or impede the neurodegenerative process. Recent studies suggest that impaired energy production promotes neurological disease onset and progression. Sustained ATP levels are critical to cellular homeostasis and may have both direct and indirect influence on pathogenic mechanisms associated with neurological disorders. Creatine is a critical component in maintaining cellular energy homeostasis, and its administration has been reported to be neuroprotective in a wide number of both acute and chronic experimental models of neurological disease. In the context of this chapter, we will review the experimental evidence for creatine supplementation as a neurotherapeutic strategy in patients with neurological disorders, including Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease, as well as in ischemic stroke, brain and spinal cord trauma, and epilepsy.
Collapse
|
16
|
Liu J. The Effects and Mechanisms of Mitochondrial Nutrient α-Lipoic Acid on Improving Age-Associated Mitochondrial and Cognitive Dysfunction: An Overview. Neurochem Res 2007; 33:194-203. [PMID: 17605107 DOI: 10.1007/s11064-007-9403-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/05/2007] [Indexed: 12/31/2022]
Abstract
We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them "mitochondrial nutrients". The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis-Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take alpha-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-L: -carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.
Collapse
Affiliation(s)
- Jiankang Liu
- Institute for Brain Aging and Dementia, University of California, 1261 Gillespie Neuroscience Research Facility, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Brosnan ME, Edison EE, da Silva R, Brosnan JT. New insights into creatine function and synthesis. ACTA ACUST UNITED AC 2007; 47:252-60. [PMID: 17335874 DOI: 10.1016/j.advenzreg.2006.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | | | | | | |
Collapse
|
18
|
Land JM, Heales SJR, Duncan AJ, Hargreaves IP. Some Observations upon Biochemical Causes of Ataxia and a New Disease Entity Ubiquinone, CoQ10 Deficiency. Neurochem Res 2006; 32:837-43. [PMID: 17186372 DOI: 10.1007/s11064-006-9222-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 11/06/2006] [Indexed: 11/29/2022]
Abstract
Some hereditary ataxias are treatable and the insight required for this has come from an in depth knowledge of the phenotypes and clinical biochemistry of the conditions. This has required both fundamental and translational clinical research. Prof John Blass was fortunate to begin his career at what we can now recognise as a golden era for such studies and he worked upon two important conditions; Refsum's disease and Friedreich's ataxia. More recently the mitochondrial encephalomyopathies have been described and similar investigative work has been undertaken upon them. Ubiquinone, CoQ(10), deficiency is the most recently recognised encephalomyopathy and is itself treatable. Though rare, it is becoming increasingly recognised and patients are benefiting from the same scholarly approach to its investigation as was afforded Refsums' disease and Friedreich's ataxia.
Collapse
Affiliation(s)
- John M Land
- Neurometabolic Unit Box 105, National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
19
|
Ryu H, Rosas HD, Hersch SM, Ferrante RJ. The therapeutic role of creatine in Huntington's disease. Pharmacol Ther 2005; 108:193-207. [PMID: 16055197 DOI: 10.1016/j.pharmthera.2005.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant and fatal neurological disorder characterized by a clinical triad of progressive choreiform movements, psychiatric symptoms, and cognitive decline. HD is caused by an expanded trinucleotide CAG repeat in the gene coding for the protein huntingtin. No proven treatment to prevent the onset or to delay the progression of HD currently exists. While a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear, it has been hypothesized that interactions of the mutant huntingtin protein or its fragments may result in a number of interrelated pathogenic mechanisms triggering a cascade of molecular events that lead to the untimely neuronal death observed in HD. One putative pathological mechanism reported to play a prominent role in the pathogenesis of HD is mitochondrial dysfunction and the subsequent reduction of cellular energy. Indeed, if mitochondrial impairment and reduced energy stores play roles in the neuronal loss in HD, then a therapeutic strategy that buffers intracellular energy levels may ameliorate the neurodegenerative process. Sustained ATP levels may have both direct and indirect importance in ameliorating the severity of many of the pathogenic mechanisms associated with HD. Creatine, a guanidino compound produced endogenously and acquired exogenously through diet, is a critical component in maintaining much needed cellular energy. As such, creatine is one of a number of ergogens that may provide a relatively safe and immediately available therapeutic strategy to HD patients that may be the cornerstone of a combined treatment necessary to delay the relentless progression of HD.
Collapse
Affiliation(s)
- Hoon Ryu
- Experimental Neuropathology Unit and Translational Therapeutics Laboratory, Geriatric Research Education Clinical Center, Bedford VA Medical Center, MA 01730, USA
| | | | | | | |
Collapse
|
20
|
Berneburg M, Gremmel T, Kürten V, Schroeder P, Hertel I, von Mikecz A, Wild S, Chen M, Declercq L, Matsui M, Ruzicka T, Krutmann J. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J Invest Dermatol 2005; 125:213-20. [PMID: 16098029 DOI: 10.1111/j.0022-202x.2005.23806.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations of mitochondrial (mt) DNA play a role in neurodegeneration, normal aging, premature aging of the skin (photoaging), and tumors. We and others could demonstrate that mtDNA mutations can be induced in skin cells in vitro and in normal human skin in vivo by repetitive, sublethal ultraviolet (UV)-A-irradiation. These mutations are mediated by singlet oxygen and persist in human skin as long-term biomarkers of UV exposure. Although mtDNA exclusively encodes for the respiratory chain, involvement of the energy metabolism in mtDNA mutagenesis and a protective role of the energy precursor creatine have thus far not been shown. We assessed the amount of a marker mutation of mtDNA, the so-called common deletion, by real-time PCR. Induction of the common deletion was paralleled by a measurable decrease of oxygen consumption, mitochondrial membrane potential, and ATP content, as well as an increase of matrix metalloproteinase-1. Mitochondrial mutagenesis as well as functional consequences could be normalized by increasing intracellular creatine levels. These data indicate that increase of the energy precursor creatine protects from functionally relevant, aging-associated mutations of mitochondrial DNA.
Collapse
Affiliation(s)
- Mark Berneburg
- Molecular Oncology and Aging, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zeevalk GD, Bernard LP, Song C, Gluck M, Ehrhart J. Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 2005; 7:1117-39. [PMID: 16115016 DOI: 10.1089/ars.2005.7.1117] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the etiology for many neurodegenerative diseases is unknown, the common findings of mitochondrial defects and oxidative damage posit these events as contributing factors. The temporal conundrum of whether mitochondrial defects lead to enhanced reactive oxygen species generation, or conversely, if oxidative stress is the underlying cause of the mitochondrial defects remains enigmatic. This review focuses on evidence to show that either event can lead to the evolution of the other with subsequent neuronal cell loss. Glutathione is a major antioxidant system used by cells and mitochondria for protection and is altered in a number of neurodegenerative and neuropathological conditions. This review also addresses the multiple roles for glutathione during mitochondrial inhibition or oxidative stress. Protein aggregation and inclusions are hallmarks of a number of neurodegenerative diseases. Recent evidence that links protein aggregation to oxidative stress and mitochondrial dysfunction will also be examined. Lastly, current therapies that target mitochondrial dysfunction or oxidative stress are discussed.
Collapse
Affiliation(s)
- G D Zeevalk
- Department of Neurology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
22
|
Judge BS, Eisenga BH. Disorders of Fuel Metabolism: Medical Complications Associated with Starvation, Eating Disorders, Dietary Fads, and Supplements. Emerg Med Clin North Am 2005; 23:789-813, ix. [PMID: 15982546 DOI: 10.1016/j.emc.2005.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Disorders of fuel metabolism as they relate to abnormal fuel intake,abnormal fuel expenditure, and dietary supplements are the focus of this article. The emergency physician should be aware of the medical complications that can occur as a result of starvation states,eating disorders, fad diets, hypermetabolic states, and ergogenic aids. Knowledge and understanding of the complications associated with these disorders will facilitate the diagnosis and management of patients who present to the emergency department with any of the disorders reviewed.
Collapse
Affiliation(s)
- Bryan S Judge
- DeVos Children's Hospital Regional Poison Center, 1300 Michigan NE Suite 203, Grand Rapids, MI 49503, USA.
| | | |
Collapse
|
23
|
Lynch GS. Update on therapies for sarcopenia: novel approaches for age-related muscle wasting and weakness. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.9.1329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Abstract
Sarcopenia is the term widely used to describe the progressive loss of muscle mass with advancing age. Even before significant muscle wasting becomes apparent, ageing is associated with a slowing of movement and a gradual decline in muscle strength, factors that increase the risk of injury from sudden falls and the reliance of the frail elderly on assistance in accomplishing even basic tasks of independent living. Sarcopenia is recognised as one of the major public health problems now facing industrialised nations, and its effects are expected to place increasing demands on public healthcare systems worldwide. Although the effects of ageing on skeletal muscle are unlikely to be halted or reversed, the underlying mechanisms responsible for these deleterious changes present numerous targets for drug discovery with potential opportunities to attenuate muscle wasting, improve muscle function, and preserve functional independence. Very few drugs have been developed with sarcopenia specifically in mind. However, because many of the effects of ageing on skeletal muscle resemble those indicated in many neuromuscular disorders, drugs that target neurodegenerative diseases may also have important relevance for treating age-related muscle wasting and weakness. This review describes a selection of the emerging drugs that have been developed during the period 1997 - 2004, relevant to sarcopenia.
Collapse
Affiliation(s)
- Gordon S Lynch
- The University of Melbourne, Department of Physiology and Centre for Neuroscience, Victoria, 3010, Australia.
| |
Collapse
|
25
|
Quiroz JA, Singh J, Gould TD, Denicoff KD, Zarate CA, Manji HK. Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol Psychiatry 2004; 9:756-76. [PMID: 15136795 DOI: 10.1038/sj.mp.4001521] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bipolar affective disorder (manic-depressive illness) is a common, severe, chronic, and often life-threatening illness, associated with significant comorbidity. The recognition of the significant morbidity and mortality of patients with bipolar disorder, as well as the growing appreciation that a high percentage of patients respond poorly to existing treatments, has made the task of discovering new therapeutic agents, that are both efficacious and have few side effects increasingly more important. Most recent agents introduced into the pharmacopeia for the treatment of bipolar disorder have been anticonvulsants and atypical antipsychotics. We propose that novel treatments developed specifically for bipolar disorder will arise from (1) understanding more precisely the molecular mechanisms of treatments that are clearly efficacious or (2) developing medications based on the knowledge obtained of the underlying pathophysiology of bipolar disorder. Knowledge with regard to the underlying pathophysiology of bipolar disorder is increasing at a rapid pace, including alterations in intracellular signaling cascades as well as impairments of cellular plasticity and resilience in critical neuronal circuits. We propose that therapeutics designed to enhance cellular plasticity and resilience and that counter maladaptive stress-responsive systems may have considerable utility for the treatment of bipolar disorder. Therapeutic strategies designed to address cellular resilience and plasticity include the regulation of neurotrophic pathways, glucocorticoid signaling, phosphodiesterase activity, and glutamatergic throughput and mitochondrial function. While the task of developing novel medications for bipolar disorder is truly daunting, these and similar approaches will ultimately lead to better medications for the millions who suffer from this devastating illness.
Collapse
Affiliation(s)
- J A Quiroz
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|