1
|
Persia D, Mangiavacchi F, Marcotullio MC, Rosati O. Cannabinoids as multifaceted compounds. PHYTOCHEMISTRY 2023; 212:113718. [PMID: 37196772 DOI: 10.1016/j.phytochem.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Since ancient times, Cannabis and its preparations have found various applications such as for medical, recreational and industrial purposes. Subsequently the 1930s, legislation in many countries has restricted its use due to its psychotropic properties. More recently, the discovery of endocannabinoid system, including new receptors, ligands, and mediators, its role in maintaining the homeostasis of the human body and the possible implication in various physiological and pathophysiological processes has also been understood. Based on this evidence, researchers were able to develop new therapeutic targets for the treatment of various pathological disorders. For this purpose, Cannabis and cannabinoids were subjected for the evaluation of their pharmacological activities. The renewed interest in the medical use of cannabis for its potential therapeutic application has prompted legislators to take action to regulate the safe use of cannabis and products containing cannabinoids. However, each country has an enormous heterogeneity in the regulation of laws. Here, we are pleased to show a general and prevailing overview of the findings regarding cannabinoids and the multiple research fields such as chemistry, phytochemistry, pharmacology and analytics in which they are involved.
Collapse
Affiliation(s)
- Diana Persia
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy
| | - Francesca Mangiavacchi
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy; Current Address: Department of Chemistry 'Ugo Schiff', Via Della Lastruccia, 16 - Università Degli Studi di Firenze, 50019, Sesto Fiorentino, Italy
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy
| | - Ornelio Rosati
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy.
| |
Collapse
|
2
|
Graziano G, Delre P, Carofiglio F, Brea J, Ligresti A, Kostrzewa M, Riganti C, Gioè-Gallo C, Majellaro M, Nicolotti O, Colabufo NA, Abate C, Loza MI, Sotelo E, Mangiatordi GF, Contino M, Stefanachi A, Leonetti F. N-adamantyl-anthranil amide derivatives: New selective ligands for the cannabinoid receptor subtype 2 (CB2R). Eur J Med Chem 2023; 248:115109. [PMID: 36657299 DOI: 10.1016/j.ejmech.2023.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach. The design of selective ligands is however hampered by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior and molecular docking simulations provided a sound rationale by highlighting the relevance of the arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-inflammatory cytokines production was also investigated to exert the ability of the best compounds to modulate the inflammatory cascade.
Collapse
Affiliation(s)
- Giovanni Graziano
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Pietro Delre
- CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Francesca Carofiglio
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Josè Brea
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Claudia Gioè-Gallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Carmen Abate
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy; CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Maria Isabel Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | - Marialessandra Contino
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Angela Stefanachi
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| |
Collapse
|
3
|
Detection of Cannabinoid Receptor Expression by Endometriotic Lesions in Women with Endometriosis as an Alternative to Opioid-Based Pain Medication. J Immunol Res 2022; 2022:4323259. [PMID: 35692500 PMCID: PMC9184153 DOI: 10.1155/2022/4323259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging information suggests a potential role of medicinal cannabis in pain medication in addition to enhancing immune functions. Endometriosis is a disease of women of reproductive age associated with infertility and reproductive failure as well as chronic pain of varying degrees depending on the stage of the disease. Currently, opioids are being preferred over nonsteroidal anti-inflammatory drugs (NSAID) due to the latter’s side effects. However, as the opioids are becoming a source of addiction, additional pain medication is urgently needed. Cannabis offers an alternative therapy for treating the pain associated with endometriosis. Information on the use and effectiveness of cannabis against endometriotic pain is lacking. Moreover, expression of receptors for endocannabinoids by the ovarian endometriotic lesions is not known. The goal of this study was to examine whether cannabinoid receptors 1 and 2 (CB1 and CB2) are expressed by ovarian endometriotic lesions. Archived normal ovarian tissues, ovaries with endometriotic lesions, and normal endometrial tissues were examined for the presence of endometrial stromal cells using CD10 (a marker of endometrial stromal cells). Expression of CB1 and CB2 were determined by immunohistochemistry, immunoblotting, and gene expression studies. Intense expression for CB1 and CB2 was detected in the epithelial cells in ovarian endometriotic lesions. Compared with stroma in ovaries with endometriotic lesions, the expression of CB1 and CB2 was significantly higher in the epithelial cells in endometriotic lesions in the ovary (
and
, respectively). Immunoblotting and gene expression assays showed similar patterns for CB1 and CB2 protein and CNR1 (gene encoding CB1) and CNR2 (gene encoding CB2) gene expression. These results suggest that ovarian endometriotic lesions express CB1 and CB2 receptors, and these lesions may respond to cannabinoids as pain medication. These results will form a foundation for a clinical study with larger cohorts.
Collapse
|
4
|
Role of Cannabinoid CB2 Receptor in Alcohol Use Disorders: From Animal to Human Studies. Int J Mol Sci 2022; 23:ijms23115908. [PMID: 35682586 PMCID: PMC9180470 DOI: 10.3390/ijms23115908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: “Receptor, Cannabinoid, CB2” AND “Alcohol-Related Disorders” AND “human/or patients”; “Receptor, Cannabinoid, CB2” AND “Alcohol” OR “Ethanol” AND “rodents/or mice/or rats”. Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.
Collapse
|
5
|
Pantoja-Ruiz C, Restrepo-Jimenez P, Castañeda-Cardona C, Ferreirós A, Rosselli D. Cannabis and pain: a scoping review. Braz J Anesthesiol 2021; 72:142-151. [PMID: 34280454 PMCID: PMC9373074 DOI: 10.1016/j.bjane.2021.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 11/05/2022] Open
Abstract
For centuries, cannabis has been used with many different purposes, including medicinal use, usually bypassing any formal approval process. However, during the last decade, interest in cannabis in medicine has been increasing, and several countries, including the United States and Canada, have produced their own legislation about marihuana and cannabis-based medicines. Because of this, interest in research has been increasing and evidence about its medical effects is becoming necessary. We conducted a review examining the evidence of cannabis in pain. Cannabis had been shown to be useful in acute and chronic pain, however recently, these results have been controverted. Within the different types of chronic pain, it has a weak evidence for neuropathic, rheumatic pain, and headache, modest evidence for multiple sclerosis related pain, and as adjuvant therapy in cancer pain. There is no strong evidence to recommend cannabis in order to decrease opioids in patients with chronic use. Even though cannabis-based medications appear to be mostly safe, mild adverse effects are common; somnolence, sedation, amnesia, euphoric mood, hyperhidrosis, paranoia, and confusion may limit the use of cannabis in clinical practice. Risks have not been systematically analyzed. Special concern arises on how adverse effect might affect vulnerable population such as elderly patients. More research is needed in order to evaluate benefits and risks, as well as the ideal administration route and dosages. As cannabis use increases in several countries, answers to these questions might be coming soon.
Collapse
Affiliation(s)
- Camila Pantoja-Ruiz
- Pontificia Universidad Javeriana, Medical School, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paula Restrepo-Jimenez
- Pontificia Universidad Javeriana, Medical School, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | | | - Diego Rosselli
- Pontificia Universidad Javeriana, Medical School, Bogotá, Colombia.
| |
Collapse
|
6
|
Veerasamy R, Roy A, Karunakaran R, Rajak H. Structure-Activity Relationship Analysis of Benzimidazoles as Emerging Anti-Inflammatory Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:ph14070663. [PMID: 34358089 PMCID: PMC8308831 DOI: 10.3390/ph14070663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
A significant number of the anti-inflammatory drugs currently in use are becoming obsolete. These are exceptionally hazardous for long-term use because of their possible unfavourable impacts. Subsequently, in the ebb-and-flow decade, analysts and researchers are engaged in developing new anti-inflammatory drugs, and many such agents are in the later phases of clinical trials. Molecules with heterocyclic nuclei are similar to various natural antecedents, thus acquiring immense consideration from scientific experts and researchers. The arguably most adaptable heterocyclic cores are benzimidazoles containing nitrogen in a bicyclic scaffold. Numerous benzimidazole drugs are broadly used in the treatment of numerous diseases, showing promising therapeutic potential. Benzimidazole derivatives exert anti-inflammatory effects mainly by interacting with transient receptor potential vanilloid-1, cannabinoid receptors, bradykinin receptors, specific cytokines, 5-lipoxygenase activating protein and cyclooxygenase. Literature on structure–activity relationship (SAR) and investigations of benzimidazoles highlight that the substituent’s tendency and position on the benzimidazole ring significantly contribute to the anti-inflammatory activity. Reported SAR analyses indicate that substitution at the N1, C2, C5 and C6 positions of the benzimidazole scaffold greatly influence the anti-inflammatory activity. For example, benzimidazole substituted with anacardic acid on C2 inhibits COX-2, and 5-carboxamide or sulfamoyl or sulfonyl benzimidazole antagonises the cannabinoid receptor, whereas the C2 diarylamine and C3 carboxamide substitution of the benzimidazole scaffold result in antagonism of the bradykinin receptor. In this review, we examine the insights regarding the SARs of anti-inflammatory benzimidazole compounds, which will be helpful for researchers in designing and developing potential anti-inflammatory drugs to target inflammation-promoting enzymes.
Collapse
Affiliation(s)
- Ravichandran Veerasamy
- Pharmaceutical Chemistry Unit, Faculty of Pharmacy, AIMST University, Semeling 08100, Kedah, Malaysia
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
- Correspondence:
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India;
| | | | - Harish Rajak
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495009, India;
| |
Collapse
|
7
|
Fulo HF, Shoeib A, Cabanlong CV, Williams AH, Zhan CG, Prather PL, Dudley GB. Synthesis, Molecular Pharmacology, and Structure-Activity Relationships of 3-(Indanoyl)indoles as Selective Cannabinoid Type 2 Receptor Antagonists. J Med Chem 2021; 64:6381-6396. [PMID: 33887913 PMCID: PMC8683641 DOI: 10.1021/acs.jmedchem.1c00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synthetic indole cannabinoids characterized by a 2',2'-dimethylindan-5'-oyl group at the indole C3 position constitute a new class of ligands possessing high affinity for human CB2 receptors at a nanomolar concentration and a good selectivity index. Starting from the neutral antagonist 4, the effects of indole core modification on the pharmacodynamic profile of the ligands were investigated. Several N1 side chains afforded potent and CB2-selective neutral antagonists, notably derivatives 26 (R1 = n-propyl, R2 = H) and 35 (R1 = 4-pentynyl, R2 = H). Addition of a methyl group at C2 improved the selectivity for the CB2 receptor. Moreover, C2 indole substitution may control the CB2 activity as shown by the functionality switch in 35 (antagonist) and 49 (R1 = 4-pentynyl, R2 = CH3, partial agonist).
Collapse
Affiliation(s)
- Harvey F Fulo
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alexander H Williams
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
8
|
Xantus G, Zavori L, Matheson C, Gyarmathy VA, Fazekas LM, Kanizsai P. Cannabidiol in low back pain: scientific rationale for clinical trials in low back pain. Expert Rev Clin Pharmacol 2021; 14:671-675. [PMID: 33861675 DOI: 10.1080/17512433.2021.1917379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The pooled worldwide prevalence of low-back pain-related presentations in primary care varies between 6.8% and 28.4% in the high-income countries rendering it a major healthcare/economy problem. To best manage this complex bio-psycho-social condition a 360-degree approach is needed, as the psycho-social components are often more important than the scant pathophysiology. Pattern analysis of cannabis users suggested that attempts to alleviate musculo-skeletal pain is often seen as a major drive to use cannabinoids. AREAS COVERED Unlike NSAIDs/opioids, cannabidiol might directly affect more than one modality of pain signaling/perception. The 2019 guideline of the National Institute for Clinical Excellence recommended further studies with cannabidiol in pain medicine because of its excellent safety profile and presumed therapeutic potential. Therefore, we have researched relevant databases for pharmaco-physiological papers published between 2000 and 2021 to collate evidence in a narrative fashion to determine the clinical rationale for this cannabinoid in low-back pain. EXPERT OPINION Observational research reported good results with CBD in pain and fear reduction, which are both key factors in low-back pain. Given the paucity of high-quality evidence, further research is needed to determine the efficacy/non-inferiority of CBD in primary/emergency care setting, using multimodal assessment of various patient-reported outcomes.
Collapse
Affiliation(s)
- Gabor Xantus
- University Emergency Department, University of Pecs, Clinical Centre, Hungary
| | - Laszlo Zavori
- School of Medicine, Cardiff University, Cardiff, United Kingdom of Great Britain and Northern Ireland
| | | | | | | | - Peter Kanizsai
- School of Medicine, Cardiff University, Cardiff, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
9
|
Molecular Docking and Molecular Dynamics Simulation Studies of Triterpenes from Vernonia patula with the Cannabinoid Type 1 Receptor. Int J Mol Sci 2021; 22:ijms22073595. [PMID: 33808384 PMCID: PMC8038099 DOI: 10.3390/ijms22073595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/04/2022] Open
Abstract
A molecular docking approach was employed to evaluate the binding affinity of six triterpenes, namely epifriedelanol, friedelin, α-amyrin, α-amyrin acetate, β-amyrin acetate, and bauerenyl acetate, towards the cannabinoid type 1 receptor (CB1). Molecular docking studies showed that friedelin, α-amyrin, and epifriedelanol had the strongest binding affinity towards CB1. Molecular dynamics simulation studies revealed that friedelin and α-amyrin engaged in stable non-bonding interactions by binding to a pocket close to the active site on the surface of the CB1 target protein. The studied triterpenes showed a good capacity to penetrate the blood–brain barrier. These results help to provide some evidence to justify, at least in part, the previously reported antinociceptive and sedative properties of Vernonia patula.
Collapse
|
10
|
Mielnik CA, Lam VM, Ross RA. CB 1 allosteric modulators and their therapeutic potential in CNS disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110163. [PMID: 33152384 DOI: 10.1016/j.pnpbp.2020.110163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023]
Abstract
CB1 is the most abundant GPCR found in the mammalian brain. It has garnered considerable attention as a potential therapeutic drug target. CB1 is involved in a wide range of physiological and psychiatric processes and has the potential to be targeted in a wide range of disease states. However, most of the selective and non-selective synthetic CB1 agonists and antagonists/inverse agonists developed to date are primarily used as research tools. No novel synthetic cannabinoids are currently in the clinic for use in psychiatric illness; synthetic analogues of the phytocannabinoid THC are on the market to treat nausea and vomiting caused by cancer chemotherapy, along with off-label use for pain. Novel strategies are being explored to target CB1, but with emphasis on the elimination or mitigation of the potential psychiatric adverse effects that are observed by central agonism/antagonism of CB1. New pharmacological options are being pursued that may avoid these adverse effects while preserving the potential therapeutic benefits of CB1 modulation. Allosteric modulation of CB1 is one such approach. In this review, we will summarize and critically analyze both the in vitro characterization and in vivo validation of CB1 allosteric modulators developed to date, with a focus on CNS therapeutic effects.
Collapse
Affiliation(s)
- Catharine A Mielnik
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Vincent M Lam
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Jiang BE, Jiang X, Zhang Q, Liang Q, Qiu ZL, Sun XB, Yang JJ, Chen S, Yi C, Chai X, Liu M, Yu LF, Lu W, Zhang HK. From a Designer Drug to the Discovery of Selective Cannabinoid Type 2 Receptor Agonists with Favorable Pharmacokinetic Profiles for the Treatment of Systemic Sclerosis. J Med Chem 2020; 64:385-403. [PMID: 33382613 DOI: 10.1021/acs.jmedchem.0c01023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic cannabinoids, as exemplified by SDB-001 (1), bind to both CB1 and CB2 receptors and exert cannabimimetic effects similar to (-)-trans-Δ9-tetrahydrocannabinol, the main psychoactive component present in the cannabis plant. As CB1 receptor ligands were found to have severe adverse psychiatric effects, increased attention was turned to exploiting the potential therapeutic value of the CB2 receptor. In our efforts to discover novel and selective CB2 receptor agonists, 1 was selected as a starting point for hit molecule identification and a class of 1H-pyrazole-3-carboxamide derivatives were thus designed, synthesized, and biologically evaluated. Systematic structure-activity relationship investigations resulted in the identification of the most promising compound 66 as a selective CB2 receptor agonist with favorable pharmacokinetic profiles. Especially, 66 treatment significantly attenuated dermal inflammation and fibrosis in a bleomycin-induced mouse model of systemic sclerosis, supporting that CB2 receptor agonists might serve as potential therapeutics for treating systemic sclerosis.
Collapse
Affiliation(s)
- Bei-Er Jiang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.,Navy Medical Research Institute, Second Military Medical University, Shanghai 200433, P. R. China
| | - Xingwu Jiang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.,Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Qiansen Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Qiuwen Liang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Zi-Liang Qiu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Xiang-Bai Sun
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jun-Jie Yang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Si Chen
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Chunyang Yi
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Xiaolei Chai
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Weiqiang Lu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
12
|
Siraj MA, Howlader MSI, Rahaman MS, Shilpi JA, Seidel V. Antinociceptive and sedative activity of Vernonia patula and predictive interactions of its phenolic compounds with the cannabinoid type 1 receptor. Phytother Res 2020; 35:1069-1079. [PMID: 33124164 DOI: 10.1002/ptr.6876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/03/2023]
Abstract
When tested in the acetic acid-induced writhing and formalin-induced paw-licking tests, the ethanol extract of Vernonia patula (VP) aerial parts showed significant antinociceptive activity. In neuropharmacological tests, it also significantly delayed the onset of sleep, increased the duration of sleeping time, and significantly reduced the locomotor activity and exploratory behaviour of mice. Five phenolic compounds, namely gallic acid, vanillic acid, caffeic acid, quercetin and kaempferol, were detected in VP following HPLC-DAD analysis. The presence of these phenolic compounds in VP provides some support for the observed antinociceptive and sedative effects. A computational study was performed to predict the binding affinity of gallic acid, vanillic acid, caffeic acid, quercetin and kaempferol towards the cannabinoid type 1 (CB1) receptor. Caffeic and vanillic acid showed the highest probable ligand efficiency indices towards the CB1 target. Vanillic acid displayed the best blood-brain barrier penetration prediction score. These findings provide some evidence for the traditional use of VP to treat pain.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, USA
| | | | - Md Sohanur Rahaman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
13
|
Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV. Selective modulation of the cannabinoid type 1 (CB 1) receptor as an emerging platform for the treatment of neuropathic pain. MEDCHEMCOMM 2019; 10:647-659. [PMID: 31191856 PMCID: PMC6533890 DOI: 10.1039/c8md00595h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is caused by a lesion or dysfunction in the nervous system, and it may arise from illness, be drug-induced or caused by toxin exposure. Since the discovery of two G-protein-coupled cannabinoid receptors (CB1 and CB2) nearly three decades ago, there has been a rapid expansion in our understanding of cannabinoid pharmacology. This is currently one of the most active fields of neuropharmacology, and interest has emerged in developing cannabinoids and other small molecule modulators of CB1 and CB2 as therapeutics for neuropathic pain. This short review article provides an overview of the chemotypes currently under investigation for the development of novel neuropathic pain treatments targeting CB1 receptors.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Vineet Kumar
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| |
Collapse
|
14
|
Rasoulinezhad S, Yekta NH, Fallah E. Promising pain-relieving activity of an ancient Persian remedy (mixture of white Lily in sesame oil) in patients with chronic low back pain. J Family Med Prim Care 2019; 8:634-639. [PMID: 30984686 PMCID: PMC6436283 DOI: 10.4103/jfmpc.jfmpc_423_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Chronic low back pain (CLBP) is one the frequent musculoskeletal issues among adults mostly without a specific etiology. In this study, we investigated a traditional Persian remedy for back pain which is based on topical application of a mixture of sesame oil (SO) and white lily (LSM). Materials and Methods: The chemical profile, phenol content, and antioxidant activity of the herbal samples were determined using GC-MS, total phenol content (TPC) assay, and DPPH assay, respectively. Clinical efficacy of the herbal samples by a double-blind placebo was examined. Results: TPC of SO and LSM was 45 ± 5.7 and 68.3 ± 11.2 mg GAE/g oil mixture, respectively. The SO could inhibit 59.7% of free radicals, whereas LSM showed a radical inhibition rate of 74.7% in DPPH assay. LSM could reduce the pain feeling and obtained the lowest pain scores (Oswestry disability index and numeric rating scale) in weeks 4 and 8 of therapy in comparison to other treatment groups (diclofenac gel and SO) and placebo control (Vaseline). Conclusions: The results implicate the LSM as a novel therapeutic alternative for the therapy of the CLBP.
Collapse
Affiliation(s)
- Saeed Rasoulinezhad
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Nafiseh Hosseini Yekta
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Fallah
- Department of Orthopedic and Trauma Surgery, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zhao C, Rakesh KP, Ravidar L, Fang WY, Qin HL. Pharmaceutical and medicinal significance of sulfur (S VI)-Containing motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162:679-734. [PMID: 30496988 PMCID: PMC7111228 DOI: 10.1016/j.ejmech.2018.11.017] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
Sulfur (SVI) based moieties, especially, the sulfonyl or sulfonamide based analogues have showed a variety of pharmacological properties, and its derivatives propose a high degree of structural diversity that has established useful for the finding of new therapeutic agents. The developments of new less toxic, low cost and highly active sulfonamides containing analogues are hot research topics in medicinal chemistry. Currently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with therapeutic power. This comprehensive review highlights the recent developments of sulfonyl or sulfonamides based compounds in huge range of therapeutic applications such as antimicrobial, anti-inflammatory, antiviral, anticonvulsant, antitubercular, antidiabetic, antileishmanial, carbonic anhydrase, antimalarial, anticancer and other medicinal agents. We believe that, this review article is useful to inspire new ideas for structural design and developments of less toxic and powerful Sulfur (SVI) based drugs against the numerous death-causing diseases.
Collapse
Affiliation(s)
- Chuang Zhao
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China.
| | - L Ravidar
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - Wan-Yin Fang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China.
| |
Collapse
|
16
|
Bruni N, Della Pepa C, Oliaro-Bosso S, Pessione E, Gastaldi D, Dosio F. Cannabinoid Delivery Systems for Pain and Inflammation Treatment. Molecules 2018; 23:molecules23102478. [PMID: 30262735 PMCID: PMC6222489 DOI: 10.3390/molecules23102478] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
There is a growing body of evidence to suggest that cannabinoids are beneficial for a range of clinical conditions, including pain, inflammation, epilepsy, sleep disorders, the symptoms of multiple sclerosis, anorexia, schizophrenia and other conditions. The transformation of cannabinoids from herbal preparations into highly regulated prescription drugs is therefore progressing rapidly. The development of such drugs requires well-controlled clinical trials to be carried out in order to objectively establish therapeutic efficacy, dose ranges and safety. The low oral bioavailability of cannabinoids has led to feasible methods of administration, such as the transdermal route, intranasal administration and transmucosal adsorption, being proposed. The highly lipophilic nature of cannabinoids means that they are seen as suitable candidates for advanced nanosized drug delivery systems, which can be applied via a range of routes. Nanotechnology-based drug delivery strategies have flourished in several therapeutic fields in recent years and numerous drugs have reached the market. This review explores the most recent developments, from preclinical to advanced clinical trials, in the cannabinoid delivery field, and focuses particularly on pain and inflammation treatment. Likely future directions are also considered and reported.
Collapse
Affiliation(s)
| | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | | | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10125 Turin, Italy.
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
17
|
Exploring the Ligand Efficacy of Cannabinoid Receptor 1 (CB1) using Molecular Dynamics Simulations. Sci Rep 2018; 8:13787. [PMID: 30213978 PMCID: PMC6137198 DOI: 10.1038/s41598-018-31749-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/23/2018] [Indexed: 11/08/2022] Open
Abstract
Cannabinoid receptor 1 (CB1) is a promising therapeutic target for a variety of disorders. Distinct efficacy profiles showed different therapeutic effects on CB1 dependent on three classes of ligands: agonists, antagonists, and inverse agonists. To discriminate the distinct efficacy profiles of the ligands, we carried out molecular dynamics (MD) simulations to identify the dynamic behaviors of inactive and active conformations of CB1 structures with the ligands. In addition, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was applied to analyze the binding free energy decompositions of the CB1-ligand complexes. With these two methods, we found the possibility that the three classes of ligands can be discriminated. Our findings shed light on the understanding of different efficacy profiles of ligands by analyzing the structural behaviors of intact CB1 structures and the binding energies of ligands, thereby yielding insights that are useful for the design of new potent CB1 drugs.
Collapse
|
18
|
Fitzcharles M, Eisenberg E. Medical cannabis: A forward vision for the clinician. Eur J Pain 2018; 22:485-491. [DOI: 10.1002/ejp.1185] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M.A. Fitzcharles
- Alan Edwards Pain Management Unit; McGill University Health Centre; Montreal QC Canada
- Division of Rheumatology; McGill University Health Centre; Montreal QC Canada
| | - E. Eisenberg
- Pain Research Unit; Institute of Pain Medicine; Rambam Health Care Campus; Haifa Israel
- Technion-Institute of Technology; Haifa Israel
| |
Collapse
|
19
|
Lötsch J, Weyer-Menkhoff I, Tegeder I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur J Pain 2017; 22:471-484. [PMID: 29160600 DOI: 10.1002/ejp.1148] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review. Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice. Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone. During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting. While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy. SIGNIFICANCE Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Xu J, Tang Y, Xie M, Bie B, Wu J, Yang H, Foss JF, Yang B, Rosenquist RW, Naguib M. Activation of cannabinoid receptor 2 attenuates mechanical allodynia and neuroinflammatory responses in a chronic post-ischemic pain model of complex regional pain syndrome type I in rats. Eur J Neurosci 2016; 44:3046-3055. [PMID: 27717112 DOI: 10.1111/ejn.13414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Jijun Xu
- Department of Pain Management; Cleveland Clinic; Cleveland OH USA
- Department of Immunology; Cleveland Clinic; Cleveland OH USA
| | - Yuying Tang
- Department of Anesthesiology; West China Second Hospital; Sichuan University; Chengdu Sichuan China
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Mian Xie
- Department of Pain Management; Cleveland Clinic; Cleveland OH USA
| | - Bihua Bie
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Jiang Wu
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Hui Yang
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Joseph F. Foss
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Bin Yang
- Department of Pathology; Cleveland Clinic; Cleveland OH USA
| | | | - Mohamed Naguib
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
- Anesthesiology Institute; Cleveland Clinic; 9500 Euclid Ave. - NE6-306 Cleveland OH 44195 USA
| |
Collapse
|
21
|
Huang Z, Wang H, Wang J, Zhao M, Sun N, Sun F, Shen J, Zhang H, Xia K, Chen D, Gao M, Hammer RP, Liu Q, Xi Z, Fan X, Wu J. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells. Sci Rep 2016; 6:29757. [PMID: 27432473 PMCID: PMC4949433 DOI: 10.1038/srep29757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/15/2016] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Acinar Cells/drug effects
- Acinar Cells/metabolism
- Acinar Cells/physiology
- Animals
- Arginine/pharmacology
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cholinergic Agonists/pharmacology
- Indoles/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Pancreas/cytology
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Zebing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Hunan Province, Changsha 410008, China
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
| | - Haiyan Wang
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jingke Wang
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Mengqin Zhao
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Nana Sun
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fangfang Sun
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jianxin Shen
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Haiying Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Kunkun Xia
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
| | - Dejie Chen
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
| | - Ming Gao
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
| | - Ronald P. Hammer
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- Departments of Pharmacology and Psychiatry University of Arizona College of Medicine Tucson, AZ, 85721, USA
| | - Qingrong Liu
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Zhengxiong Xi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Xuegong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Hunan Province, Changsha 410008, China
| | - Jie Wu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Hunan Province, Changsha 410008, China
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
22
|
Reddy DS, Golub VM. The Pharmacological Basis of Cannabis Therapy for Epilepsy. J Pharmacol Exp Ther 2016; 357:45-55. [PMID: 26787773 DOI: 10.1124/jpet.115.230151] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/15/2016] [Indexed: 12/30/2022] Open
Abstract
Recently, cannabis has been suggested as a potential alternative therapy for refractory epilepsy, which affects 30% of epilepsy, both adults and children, who do not respond to current medications. There is a large unmet medical need for new antiepileptics that would not interfere with normal function in patients with refractory epilepsy and conditions associated with refractory seizures. The two chief cannabinoids are Δ-9-tetrahyrdrocannabinol, the major psychoactive component of marijuana, and cannabidiol (CBD), the major nonpsychoactive component of marijuana. Claims of clinical efficacy in epilepsy of CBD-predominant cannabis or medical marijuana come mostly from limited studies, surveys, or case reports. However, the mechanisms underlying the antiepileptic efficacy of cannabis remain unclear. This article highlights the pharmacological basis of cannabis therapy, with an emphasis on the endocannabinoid mechanisms underlying the emerging neurotherapeutics of CBD in epilepsy. CBD is anticonvulsant, but it has a low affinity for the cannabinoid receptors CB1 and CB2; therefore the exact mechanism by which it affects seizures remains poorly understood. A rigorous clinical evaluation of pharmaceutical CBD products is needed to establish the safety and efficacy of their use in the treatment of epilepsy. Identification of mechanisms underlying the anticonvulsant efficacy of CBD is also critical for identifying other potential treatment options.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
23
|
Han S, Zhang FF, Qian HY, Chen LL, Pu JB, Xie X, Chen JZ. Development of Quinoline-2,4(1H,3H)-diones as Potent and Selective Ligands of the Cannabinoid Type 2 Receptor. J Med Chem 2015; 58:5751-69. [PMID: 26151231 DOI: 10.1021/acs.jmedchem.5b00227] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cannabinoid type 2 receptors (CB2Rs) play crucial roles in inflammatory diseases. There has been considerable interest in developing potent and selective ligands for CB2R. In this study, quinoline-2,4(1H,3H)-dione analogs have been designed, synthesized, and evaluated for their potencies and binding properties toward the cannabinoid type 1 receptor (CB1R) and CB2R. C5- or C8-substituted quinoline-2,4(1H,3H)-diones demonstrate CB2R agonist activity, while the C6- or C7-substituted analogs are antagonists of CB2R. In addition, oral administration of 21 dose-dependently alleviates the clinical symptoms of experimental autoimmune encephalomyelitis in a mouse model of multiple sclerosis and protects the central nervous system from immune damage. Furthermore, the interaction modes predicted by docking simulations and the 3D-QSAR model generated with CoMFA may offer guidance for further design and modification of CB2R modulators.
Collapse
Affiliation(s)
- Shuang Han
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei-Fei Zhang
- ‡CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hai-Yan Qian
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li-Li Chen
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian-Bin Pu
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Xie
- ‡CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian-Zhong Chen
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
24
|
Li Q, Hu Q, Wang X, Zong Y, Zhao L, Xing J, Zhou J, Zhang H. Discovery of Novel 2-(piperidin-4-yl)-1H-benzo[d]imidazole Derivatives as Potential Anti-Inflammatory Agents. Chem Biol Drug Des 2015; 86:509-16. [DOI: 10.1111/cbdd.12513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/04/2014] [Accepted: 01/08/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Li
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
| | - Xinning Wang
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Yang Zong
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Leilei Zhao
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Junhao Xing
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Jinpei Zhou
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Huibin Zhang
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
| |
Collapse
|
25
|
Iakovenko RO, Kazakova AN, Muzalevskiy VM, Ivanov AY, Boyarskaya IA, Chicca A, Petrucci V, Gertsch J, Krasavin M, Starova GL, Zolotarev AA, Avdontceva MS, Nenajdenko VG, Vasilyev AV. Reactions of CF3-enones with arenes under superelectrophilic activation: a pathway to trans-1,3-diaryl-1-CF3-indanes, new cannabinoid receptor ligands. Org Biomol Chem 2015; 13:8827-42. [DOI: 10.1039/c5ob01072a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CF3-enones react with arenes in TfOH to givetrans-1,3-diaryl-1-CF3indanes.
Collapse
|
26
|
Rosenthaler S, Pöhn B, Kolmanz C, Nguyen Huu C, Krewenka C, Huber A, Kranner B, Rausch WD, Moldzio R. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicol Teratol 2014; 46:49-56. [DOI: 10.1016/j.ntt.2014.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/16/2022]
|
27
|
Balenga NA, Martínez-Pinilla E, Kargl J, Schröder R, Peinhaupt M, Platzer W, Bálint Z, Zamarbide M, Dopeso-Reyes IG, Ricobaraza A, Pérez-Ortiz JM, Kostenis E, Waldhoer M, Heinemann A, Franco R. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br J Pharmacol 2014; 171:5387-406. [PMID: 25048571 DOI: 10.1111/bph.12850] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Heteromerization of GPCRs is key to the integration of extracellular signals and the subsequent cell response via several mechanisms including heteromer-selective ligand binding, trafficking and/or downstream signalling. As the lysophosphatidylinositol GPCR 55 (GPR55) has been shown to affect the function of the cannabinoid receptor subtype 2 (CB2 receptor) in human neutrophils, we investigated the possible heteromerization of CB2 receptors with GPR55. EXPERIMENTAL APPROACH The direct interaction of human GPR55 and CB2 receptors heterologously expressed in HEK293 cells was assessed by co-immunoprecipitation and bioluminescence resonance energy transfer assays. The effect of cross-talk on signalling was investigated at downstream levels by label-free real-time methods (Epic dynamic mass redistribution and CellKey impedance assays), ERK1/2-MAPK activation and gene reporter assays. KEY RESULTS GPR55 and CB2 receptors co-localized on the surface of HEK293 cells, co-precipitated in membrane extracts and formed heteromers in living HEK293 cells. Whereas heteromerization led to a reduction in GPR55-mediated activation of transcription factors (nuclear factor of activated T-cells, NF-κB and cAMP response element), ERK1/2-MAPK activation was potentiated in the presence of CB2 receptors. CB2 receptor-mediated signalling was also affected by co-expression with GPR55. Label-free assays confirmed cross-talk between the two receptors. CONCLUSIONS AND IMPLICATIONS Heteromers, unique signalling units, form in HEK293 cells expressing GPR55 and CB2 receptors. The signalling by agonists of either receptor was governed (i) by the presence or absence of the partner receptors (with the consequent formation of heteromers) and (ii) by the activation state of the partner receptor.
Collapse
Affiliation(s)
- N A Balenga
- Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pinna G, Loriga G, Lazzari P, Ruiu S, Falzoi M, Frau S, Pau A, Murineddu G, Asproni B, Pinna GA. Tricyclic pyrazoles. Part 6. Benzofuro[3,2-c]pyrazole: A versatile architecture for CB2 selective ligands. Eur J Med Chem 2014; 82:281-92. [DOI: 10.1016/j.ejmech.2014.05.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/26/2022]
|
29
|
Gaba M, Singh S, Mohan C. Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur J Med Chem 2014; 76:494-505. [PMID: 24602792 DOI: 10.1016/j.ejmech.2014.01.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 02/02/2023]
Abstract
Within the vast range of heterocycles, benzimidazole and its derivatives are found to be trendy structures employed for discovery of drugs in the field of pharmaceutical and medicinal chemistry. The unique structural features of benzimidazole and a wide range of biological activities of its derivatives made it privileged structure in drug discovery. Recently, benzimidazole scaffold has emerged as a pharmacophore of choice for designing analgesic and anti-inflammatory agents active on different clinically approved targets. To pave the way for future research, there is a need to collect the latest information in this promising area. In the present review we have collated published reports on this versatile core to provide an insight so that its full therapeutic potential can be utilized for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Monika Gaba
- Department of Pharmaceutical Sciences, ASBASJSM College of Pharmacy, Bela, Ropar, Punjab, India.
| | - Sarbjot Singh
- Drug Discovery Research, Panacea Biotec Pvt. Ltd., Mohali, Punjab, India
| | - Chander Mohan
- Rayat-Bahra Institute of Pharmacy, Hoshiarpur, Punjab, India
| |
Collapse
|
30
|
Teodoro R, Moldovan RP, Lueg C, Günther R, Donat CK, Ludwig FA, Fischer S, Deuther-Conrad W, Wünsch B, Brust P. Radiofluorination and biological evaluation of N-aryl-oxadiazolyl-propionamides as potential radioligands for PET imaging of cannabinoid CB2 receptors. Org Med Chem Lett 2013; 3:11. [PMID: 24063584 PMCID: PMC3856494 DOI: 10.1186/2191-2858-3-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background The level of expression of cannabinoid receptor type 2 (CB2R) in healthy and diseased brain has not been fully elucidated. Therefore, there is a growing interest to assess the regional expression of CB2R in the brain. Positron emission tomography (PET) is an imaging technique, which allows quantitative monitoring of very low amounts of radiolabelled compounds in living organisms at high temporal and spatial resolution and, thus, has been widely used as a diagnostic tool in nuclear medicine. Here, we report on the radiofluorination of N-aryl-oxadiazolyl-propionamides at two different positions in the lead structure and on the biological evaluation of the potential of the two tracers [18F]1 and [18F]2 as CB2 receptor PET imaging agents. Results High binding affinity and specificity towards CB2 receptors of the lead structure remained unaffected by the structural changes such as the insertion of the aliphatic and aromatic fluorine in the selected labelling sites of 1 and 2. Aliphatic and aromatic radiofluorinations were optimized, and [18F]1 and [18F]2 were achieved in radiochemical yields of ≥30% with radiochemical purities of ≥98% and specific activities of 250 to 450 GBq/μmol. Organ distribution studies in female CD1 mice revealed that both radiotracers cross the blood–brain barrier (BBB) but undergo strong peripheral metabolism. At 30 min after injection, unmetabolized [18F]1 and [18F]2 accounted for 60% and 2% as well as 68% and 88% of the total activity in the plasma and brain, respectively. The main radiometabolite of [18F]2 could be identified as the free acid [18F]10, which has no affinity towards the CB1 and CB2 receptors but can cross the BBB. Conclusions N-aryl-oxadiazolyl-propionamides can successfully be radiolabelled with 18F at different positions. Fluorine substitution at these positions did not affect affinity and specificity towards CB2R. Despite a promising in vitro behavior, a rather rapid peripheral metabolism of [18F]1 and [18F]2 in mice and the generation of brain permeable radiometabolites hamper the application of these radiotracers in vivo. However, it is expected that future synthetic modification aiming at a replacement of metabolically susceptible structural elements of [18F]1 and [18F]2 will help to elucidate the potential of this class of compounds for CB2R PET studies.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 58-62, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields CB, Cai J. Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol 2013; 48:690-701. [PMID: 23613214 DOI: 10.1007/s12035-013-8460-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/09/2013] [Indexed: 12/16/2022]
Abstract
Reactive gliosis, also known as glial scar formation, is an inflammatory response characterized by the proliferation of microglia and astrocytes as well as astrocytic hypertrophy following injury in the central nervous system (CNS). The glial scar forms a physical and molecular barrier to isolate the injured area from adjacent normal nervous tissue for re-establishing the integrity of the CNS. It prevents the further spread of cellular damage but represents an obstacle to regrowing axons. In this review, we integrated the current findings to elucidate the tightly reciprocal modulation between activated microglia and astrocytes in reactive gliosis and proposed that modification of cellular response to the injury or cellular reprogramming in the glial scar could lead advances in axon regeneration and functional recovery after the CNS injury.
Collapse
Affiliation(s)
- Zhongwen Gao
- Department of Spine Surgery, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Sánchez Robles EM, Bagües Arias A, Martín Fontelles MI. Cannabinoids and muscular pain. Effectiveness of the local administration in rat. Eur J Pain 2013; 16:1116-27. [PMID: 22354705 DOI: 10.1002/j.1532-2149.2012.00115.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pain associated with musculoskeletal disorders can be difficult to control and the incorporation of new approaches for its treatment is an interesting challenge. Activation of cannabinoid (CB) receptors decreases nociceptive transmission in acute, inflammatory and neuropathic pain states; however, although the use of cannabis derivatives has been recently accepted as a useful alternative for the treatment of spasticity and pain in patients with multiple sclerosis, the effects of CB receptor agonists in muscular pain have hardly been studied. METHODS Here, we characterized the antinociceptive effect of non selective and selective CB agonists by systemic and local administration, in two muscular models of pain, masseter and gastrocnemius, induced by hypertonic saline (HS) injection. Drugs used were: the non-selective agonist WIN 55,212-2 and two selective agonists, ACEA (CB 1) and JWH 015 (CB 2); AM 251 (CB 1) and AM 630 (CB 2) were used as selective antagonists. RESULTS In the masseter pain model, both systemic (intraperitoneal) and local (intramuscular) administration of CB 1 and CB 2 agonists reduced the nociceptive behaviour induced by HS, whereas in the gastrocnemius model the local administration was more effective than systemic. CONCLUSIONS Our results provide evidence that both, CB 1 and CB 2 receptors can contribute to muscular antinociception and, interestingly, suggest that the local administration of CB agonists could be a new and useful pharmacological strategy in the treatment of muscular pain, avoiding adverse effects induced by systemic administration.
Collapse
Affiliation(s)
- E Ma Sánchez Robles
- Departamento de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.
| | | | | |
Collapse
|
33
|
Aghazadeh Tabrizi M, Baraldi PG, Saponaro G, Moorman AR, Romagnoli R, Preti D, Baraldi S, Corciulo C, Vincenzi F, Borea PA, Varani K. Design, Synthesis, and Pharmacological Properties of New Heteroarylpyridine/Heteroarylpyrimidine Derivatives as CB2 Cannabinoid Receptor Partial Agonists. J Med Chem 2013; 56:1098-112. [DOI: 10.1021/jm301527r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121, Ferrara, Italy
| | - Giulia Saponaro
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121, Ferrara, Italy
| | - Allan R. Moorman
- King Pharmaceuticals Research and Development, Inc., 4000 Centre Green Way,
Suite 300, Cary, North Carolina 27707, United States
| | - Romeo Romagnoli
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121, Ferrara, Italy
| | - Delia Preti
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121, Ferrara, Italy
| | - Carmen Corciulo
- Dipartimento di Medicina Clinica e Sperimentale,
Sezione di Farmacologia, Università di Ferrara, 44121, Ferrara, Italy
| | - Fabrizio Vincenzi
- Dipartimento di Medicina Clinica e Sperimentale,
Sezione di Farmacologia, Università di Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Dipartimento di Medicina Clinica e Sperimentale,
Sezione di Farmacologia, Università di Ferrara, 44121, Ferrara, Italy
| | - Katia Varani
- Dipartimento di Medicina Clinica e Sperimentale,
Sezione di Farmacologia, Università di Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
34
|
Kusakabe KI, Tada Y, Iso Y, Sakagami M, Morioka Y, Chomei N, Shinonome S, Kawamoto K, Takenaka H, Yasui K, Hamana H, Hanasaki K. Design, synthesis, and binding mode prediction of 2-pyridone-based selective CB2 receptor agonists. Bioorg Med Chem 2013; 21:2045-55. [PMID: 23395112 DOI: 10.1016/j.bmc.2013.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 11/27/2022]
Abstract
Selective CB2 agonists have the potential for treating pain without central CB1-mediated adverse effects. Screening efforts identified 1,2-dihydro-3-isoquinolone 1; however, this compound has the drawbacks of being difficult to synthesize with two asymmetric carbons on an isoquinolone scaffold and of having a highly lipophilic physicochemical property. To address these two major problems, we designed the 2-pyridone-based lead 15a, which showed moderate affinity for CB2. Optimization of 15a led to identification of 39f with high affinity for CB2 and selectivity over CB1. Prediction of the binding mode of 39f in complex with an active-state CB2 homology model provided structural insights into its high affinity for CB2.
Collapse
Affiliation(s)
- Ken-ichi Kusakabe
- Medicinal Research Laboratories, Shionogi Pharmaceutical Research Center, 11-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wilkinson SM, Price J, Kassiou M. Improved accessibility to the desoxy analogues of Δ9-tetrahydrocannabinol and cannabidiol. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.10.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Plowright AT, Nilsson K, Antonsson M, Amin K, Broddefalk J, Jensen J, Lehmann A, Jin S, St-Onge S, Tomaszewski MJ, Tremblay M, Walpole C, Wei Z, Yang H, Ulander J. Discovery of Agonists of Cannabinoid Receptor 1 with Restricted Central Nervous System Penetration Aimed for Treatment of Gastroesophageal Reflux Disease. J Med Chem 2012; 56:220-40. [DOI: 10.1021/jm301511h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alleyn T. Plowright
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Karolina Nilsson
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Madeleine Antonsson
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Kosrat Amin
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Johan Broddefalk
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Jörgen Jensen
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Anders Lehmann
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| | - Shujuan Jin
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Stephane St-Onge
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Mirosław J. Tomaszewski
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Maxime Tremblay
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Christopher Walpole
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Zhongyong Wei
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Hua Yang
- AstraZeneca Research and Development, 7171 Frederick-Banting, Saint-Laurent,
Quebec, H4S 1Z9, Canada
| | - Johan Ulander
- AstraZeneca Research and Development, Pepparedsleden 1, Mölndal, 43183,
Sweden
| |
Collapse
|
37
|
A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J Neurol 2012. [DOI: 10.1007/s00415-012-6739-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Russo R, D'Agostino G, Mattace Raso G, Avagliano C, Cristiano C, Meli R, Calignano A. Central administration of oxytocin reduces hyperalgesia in mice: implication for cannabinoid and opioid systems. Peptides 2012; 38:81-8. [PMID: 22917880 DOI: 10.1016/j.peptides.2012.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 11/21/2022]
Abstract
The neuropeptide oxytocin (OXT) contributes to the regulation of diverse cognitive and physiological functions including nociception. Indeed, OXT has been reported to be analgesic when administered directly into the brain, the spinal cord, or systemically. Although many authors have reported the analgesic effects of OXT, its mechanism has not been well elucidated. Recently, it has been also hypothesize that OXT, increasing intracellular concentration of calcium, could regulate the production of mediators, like endocannabinoids (eCB). It has been well documented that eCB are able to suppress pain pathways. The present study investigates the effect of OXT in paw carrageenan-induced pain. Intracerebroventricular (icv) administration of OXT, but neither intraperitoneal nor intraplantar route, induces an antihyperalgesic effect increasing paw withdrawal latency to mechanical or thermal stimuli. Our results clearly demonstrate that 3 and 6h following carrageenan challenge, central administration of OXT (30 ng/mouse) shows a significant antihyperalgesic activity. Moreover, for the first time, we demonstrate that CB1 receptor plays a key role in the antihyperalgesic effect of OXT. In fact our results show CB1 antagonist, but not the specific CB2 antagonist reduce OXT-induced antihyperalgesic effect. In addition, our data show that central OXT administration is able to reduce carrageenan-induced hyperalgesia but does not modify carrageenan-induced paw edema. Finally, using opioid antagonists we confirm an important role of opioid receptors. In conclusion, our experiments suggest that central administration of OXT reduces hyperalgesia induced by intraplantar injection of carrageenan, and this effect may work via cannabinoid and opioid systems.
Collapse
MESH Headings
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Carrageenan/adverse effects
- Cyclooxygenase 2/metabolism
- Dose-Response Relationship, Drug
- Edema/chemically induced
- Edema/drug therapy
- Hyperalgesia/chemically induced
- Hyperalgesia/drug therapy
- Injections, Intraventricular
- Male
- Mice
- Motor Activity/drug effects
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Nitric Oxide Synthase Type I/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Oxytocin/administration & dosage
- Oxytocin/pharmacology
- Pain/chemically induced
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Opioid/metabolism
- Receptors, Oxytocin/metabolism
- Spinal Cord/drug effects
- Spinal Cord/enzymology
Collapse
Affiliation(s)
- R Russo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Huggins JP, Smart TS, Langman S, Taylor L, Young T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain 2012; 153:1837-1846. [DOI: 10.1016/j.pain.2012.04.020] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/29/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
40
|
Kwilasz AJ, Negus SS. Dissociable effects of the cannabinoid receptor agonists Δ9-tetrahydrocannabinol and CP55940 on pain-stimulated versus pain-depressed behavior in rats. J Pharmacol Exp Ther 2012; 343:389-400. [PMID: 22892341 DOI: 10.1124/jpet.112.197780] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cannabinoid receptor agonists produce reliable antinociception in most preclinical pain assays but have inconsistent analgesic efficacy in humans. This disparity suggests that conventional preclinical assays of nociception are not sufficient for the prediction of cannabinoid effects related to clinical analgesia. To extend the range of preclinical cannabinoid assessment, this study compared the effects of the marijuana constituent and low-efficacy cannabinoid agonist Δ9-tetrahydrocannabinol (THC) and the high-efficacy synthetic cannabinoid agonist 3-(2-hydroxy-4-(1,1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol (CP55940) in assays of pain-stimulated and pain-depressed behavior. Intraperitoneal injection of dilute lactic acid (1.8% in 1 ml/kg) stimulated a stretching response or depressed intracranial self-stimulation (ICSS) in separate groups of male Sprague-Dawley rats. THC (0.1-10 mg/kg) and CP55940 (0.0032-0.32 mg/kg) dose-dependently blocked acid- stimulated stretching but only exacerbated acid-induced depression of ICSS at doses that also decreased control ICSS in the absence of a noxious stimulus. Repeated THC produced tolerance to sedative rate-decreasing effects of THC on control ICSS in the absence of the noxious stimulus but failed to unmask antinociception in the presence of the noxious stimulus. THC and CP55940 also failed to block pain-related depression of feeding in rats, although THC did attenuate satiation-related depression of feeding. In contrast to the effects of the cannabinoid agonists, the clinically effective analgesic and nonsteroidal anti-inflammatory drug ketoprofen (1 mg/kg) blocked acid-stimulated stretching and acid-induced depression of both ICSS and feeding. The poor efficacy of THC and CP55940 to block acute pain-related depression of behavior in rats agrees with the poor efficacy of cannabinoids to treat acute pain in humans.
Collapse
Affiliation(s)
- Andrew J Kwilasz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
| | | |
Collapse
|
41
|
CB₂: therapeutic target-in-waiting. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:16-20. [PMID: 22197668 PMCID: PMC3345167 DOI: 10.1016/j.pnpbp.2011.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023]
Abstract
CB₂ cannabinoid receptor agonists hold promise as a new class of therapeutics for indications as diverse as pain, neuroinflammation, immune suppression and osteoporosis. These potential indications are supported by strong preliminary data from multiple investigators using diverse preclinical models. However, clinical trials for CB₂ agonists, when they have been reported have generally been disappointing. This review considers possible explanations for the mismatch between promising preclinical data and disappointing clinical data. We propose that a more careful consideration of CB₂ receptor pharmacology may help move CB₂ agonists from "promising" to "effective" therapeutics.
Collapse
|
42
|
Wood JT, Smith DM, Janero DR, Zvonok AM, Makriyannis A. Therapeutic modulation of cannabinoid lipid signaling: metabolic profiling of a novel antinociceptive cannabinoid-2 receptor agonist. Life Sci 2012; 92:482-91. [PMID: 22749867 DOI: 10.1016/j.lfs.2012.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 12/19/2022]
Abstract
AIMS AM-1241, a novel, racemic cannabinoid-2 receptor (CB2) ligand, is the primary experimental agonist used to characterize the role of CB2-mediated lipid signaling in health and disease, including substance abuse disorders. In vivo pharmacological effects have been used as indirect proxies for AM-1241 biotransformation processes that could modulate CB2 activity. We report the initial pre-clinical characterization of AM-1241 biotransformation and in vivo distribution. MAIN METHODS AM-1241 metabolism was characterized in a variety of predictive in vitro systems (Caco-2 cells; mouse, rat and human microsomes) and in the mouse in vivo. Liquid chromatography and mass spectrometry techniques were used to quantify AM-1241 tissue distribution and metabolic conversion. KEY FINDINGS AM-1241 bound extensively to plasma protein/albumin. A pharmacological AM-1241 dose (25mg/kg, i.v.) was administered to mice for direct determination of its plasma half-life (37 min), following which AM-1241 was quantified in brain, spleen, liver, and kidney. After p.o. administration, AM-1241 was detected in plasma, spleen, and kidney; its oral bioavailability was ~21%. From Caco-2 permeability studies and microsomal-based hepatic clearance estimates, in vivo AM-1241 absorption was moderate. Hepatic microsomal metabolism of AM-1241 in vitro generated hydroxylation and demethylation metabolites. Species-dependent differences were discovered in AM-1241's predicted hepatic clearance. Our data demonstrate that AM-1241 has the following characteristics: a) short plasma half-life; b) limited oral bioavailability; c) extensive plasma/albumin binding; d) metabolic substrate for hepatic hydroxylation and demethylation; e) moderate hepatic clearance. SIGNIFICANCE These results should help inform the design, optimization, and pre-clinical profiling of CB2 ligands as pharmacological tools and medicines.
Collapse
Affiliation(s)
- Jodianne T Wood
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
43
|
A synthetic approach for (S)-(3-benzyl-3-methyl-2,3-dihydro-benzofuran-6-yl)-piperidin-1-yl-methanone, a selective CB2 receptor agonist. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Low brain penetrant CB1 receptor agonists for the treatment of neuropathic pain. Bioorg Med Chem Lett 2012; 22:2932-7. [DOI: 10.1016/j.bmcl.2012.02.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/18/2022]
|
45
|
Cumella J, Hernández-Folgado L, Girón R, Sánchez E, Morales P, Hurst DP, Gómez-Cañas M, Gómez-Ruiz M, Pinto DCGA, Goya P, Reggio PH, Martin MI, Fernández-Ruiz J, Silva AMS, Jagerovic N. Chromenopyrazoles: non-psychoactive and selective CB₁ cannabinoid agonists with peripheral antinociceptive properties. ChemMedChem 2012; 7:452-63. [PMID: 22302767 DOI: 10.1002/cmdc.201100568] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/18/2012] [Indexed: 01/01/2023]
Abstract
The unwanted psychoactive effects of cannabinoid receptor agonists have limited their development as medicines. These CB₁-mediated side effects are due to the fact that CB₁ receptors are largely expressed in the central nervous system (CNS). As it is known that CB₁ receptors are also located peripherally, there is growing interest in targeting cannabinoid receptors located outside the brain. A library of chromenopyrazoles designed analogously to the classical cannabinoid cannabinol were synthesized, characterized, and tested for cannabinoid activity. Radioligand binding assays were used to determine their affinities at CB₁ and CB₂ receptors. Structural features required for CB₁/CB₂ affinity and selectivity were explored by molecular modeling. Some compounds in the chromenopyrazole series were observed to be selective CB₁ ligands. These modeling studies suggest that full CB₁ selectivity over CB₂ can be explained by the presence of a pyrazole ring in the structure. The functional activities of selected chromenopyrazoles were evaluated in isolated tissues. In vivo behavioral tests were then carried out on the most effective CB₁ cannabinoid agonist, 13 a. Chromenopyrazole 13 a did not induce modifications in any of the tested parameters on the mouse cannabinoid tetrad, thus discounting CNS-mediated effects. This lack of agonistic activity in the CNS suggests that this compound does not readily cross the blood-brain barrier. Moreover, 13 a can induce antinociception in a rat peripheral model of orofacial pain. Taking into account the negative results obtained with the hot-plate test, the antinociception induced by 13 a in the orofacial test could be mediated through peripheral mechanisms.
Collapse
Affiliation(s)
- Jose Cumella
- Instituto de Química Médica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheng YX, Pourashraf M, Luo X, Srivastava S, Walpole C, Salois D, St-Onge S, Payza K, Lessard E, Yu XH, Tomaszewski MJ. γ-Carbolines: a novel class of cannabinoid agonists with high aqueous solubility and restricted CNS penetration. Bioorg Med Chem Lett 2012; 22:1619-24. [PMID: 22284817 DOI: 10.1016/j.bmcl.2011.12.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 01/16/2023]
Abstract
An oral, peripherally restricted CB1/CB2 agonist could provide an interesting approach to treat chronic pain by harnessing the analgesic properties of cannabinoids but without the well-known central side effects. γ-Carbolines are a novel class of potent mixed CB1/CB2 agonists characterized by attractive physicochemical properties including high aqueous solubility. Optimization of the series has led to the discovery of 29, which has oral activity in a rat inflammatory pain model and limited brain exposure at analgesic doses, consistent with a lower risk of CNS-mediated tolerability issues.
Collapse
Affiliation(s)
- Yun-Xing Cheng
- Department of Medicinal Chemistry, AstraZeneca R&D Montreal, Saint-Laurent, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blaazer AR, Lange JH, van der Neut MA, Mulder A, den Boon FS, Werkman TR, Kruse CG, Wadman WJ. Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: Design, synthesis, structure–activity relationships, physicochemical properties and biological activity. Eur J Med Chem 2011; 46:5086-98. [DOI: 10.1016/j.ejmech.2011.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 02/06/2023]
|
48
|
Abstract
The myriad pain pathophysiology has intrigued and challenged humanity for centuries. In this regard, the traditional pain therapies such as opioids and nonsteroidal anti-inflammatory drugs have been highly successful in treating acute and chronic pain. However, their drawback includes adverse events such as psychotropic effects, addiction potential, and gastrointestinal toxicities, to mention a few. These factors combined with the likelihood of an increase in chronic pain conditions due to an aging population calls for the development of novel mechanism-based or "site-specific" agents to target novel pain pathways. In this regard, rapid progress has been made in understanding the molecular mechanisms of novel pain targets such as cannabinoid receptors, fatty acid hydrolase, voltage-gated and ligand-gated ion channels such as P2 receptors, transient receptor potential channels and glial cell modulators. Accordingly, preclinical studies indicate that the site-specific/selective agents exhibit sufficient efficacy and reduced side effects such as lack of psychotropic effects indicating their clinical potential. This review provides a brief summary of some "at-site" pain targets and their role in the pain pathophysiology, and describes the efforts in developing some small molecules as novel pain therapeutics.
Collapse
Affiliation(s)
- Praveen Pn Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
49
|
Zindell R, Walker ER, Scott J, Amouzegh P, Wu L, Ermann M, Thomson D, Fisher MB, Fullenwider CL, Grbic H, Kaplita P, Linehan B, Patel M, Patel M, Löbbe S, Block S, Albrecht C, Gemkow MJ, Shih DT, Riether D. Aryl 1,4-diazepane compounds as potent and selective CB2 agonists: Optimization of drug-like properties and target independent parameters. Bioorg Med Chem Lett 2011; 21:4276-80. [DOI: 10.1016/j.bmcl.2011.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 11/26/2022]
|
50
|
Cannabinoid receptor 2 undergoes Rab5-mediated internalization and recycles via a Rab11-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1554-60. [PMID: 21640764 DOI: 10.1016/j.bbamcr.2011.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/20/2022]
Abstract
Cannabinoid receptor 2 (CB2) is a GPCR highly expressed on the surface of cells of the immune system, supporting its role in immunomodulation. This study has investigated the trafficking properties of this receptor when stably expressed by HEK-293 cells. As previously reported, cell surface CB2 rapidly internalized upon exposure to agonist. Direct evidence of CB2 recycling was observed upon competitive removal of the stimulating agonist by inverse agonist. CB2 also underwent slow constitutive internalization when agonist was absent and was up-regulated in the presence of inverse agonist. Co-expression of CB2 and dominant negative Rab5 resulted in a significantly reduced capacity for receptors to internalize with no effect on recycling of the internalized receptors. Conversely, co-expression with dominant negative Rab11 did not alter the ability of CB2 to internalize but did impair their ability to return to the cell surface. Co-expression of wild-type, dominant negative or constitutively active Rab4 with CB2 did not alter basal surface expression, extent of internalization, or extent of recycling. These results suggest that Rab5 is involved in CB2 endocytosis and that internalized receptors are recycled via a Rab11 associated pathway rather than the rapid Rab4 associated pathway. This report provides the first comprehensive description of CB2 internalization and recycling to date.
Collapse
|