1
|
Bhardwaj K, Roy A, Guha L, Kumar H. Evaluating the Role of Lin-11, Isl-1, and Mec-3 Kinases in Dopaminergic Neurodegeneration in a Subacute 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Model of Parkinson's Disease. ACS Pharmacol Transl Sci 2024; 7:3879-3888. [PMID: 39698285 PMCID: PMC11651167 DOI: 10.1021/acsptsci.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The malfunctioning of microtubules is highly correlated with neurodegenerative disorders such as Parkinson's disease (PD), although whether it is a cause or an effect of neurodegeneration is yet unknown. Lin-11, Isl-1, and Mec-3 kinases (LIMKs), being one of the important kinases, regulate the neuronal cytoskeleton by controlling the phosphorylation of the cofilin/actin-depolymerizing factor. Recently, we showed that upregulation of phosphorylated LIMK1 (p-LIMK1) affects the microtubule dynamics in a central nervous system traumatic injury. The goal of this study is to correlate the expression of LIMK1 with dopaminergic neuron death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of PD, one of the well-established subacute models of PD, where the neurotoxin acts via inhibition of mitochondrial complex I of the electron transport chain. Herein, we found that LIMK1 expression was increased and correlated to dopaminergic neuronal death. Finally, we demonstrated that the treatment with LIMK inhibitor BMS-5 significantly reversed the neurodegeneration, along with an upregulation of the dynamic tubulins, indicating the relevance of LIMKs and microtubule dynamics in neurodegeneration. Therefore, targeting the microtubules, an integral part of the neuronal cytoskeleton and neurite formation, can be a promising strategy to combat degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
| | | | - Lahanya Guha
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research, Ahmedabad (NIPER-A), Palaj, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology
and Toxicology, National Institute of Pharmaceutical
Education and Research, Ahmedabad (NIPER-A), Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
2
|
Li J, Mao N, Wang Y, Deng S, Chen K. Novel insights into the ROCK-JAK-STAT signaling pathway in upper respiratory tract infections and neurodegenerative diseases. Mol Ther 2024:S1525-0016(24)00738-X. [PMID: 39511889 DOI: 10.1016/j.ymthe.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Acute upper respiratory tract infections are a major public health issue, with uncontrolled inflammation triggered by upper respiratory viruses being a significant cause of patient deterioration or death. This study focuses on the Janus kinase-signal transducer and activator of transcription Rho-associated coiled-coil containing protein kinase (JAK-STAT-ROCK) signaling pathway, providing an in-depth analysis of the interplay between uncontrolled inflammation after upper respiratory tract infections and the development of neurodegenerative diseases. It offers a conceptual framework for understanding the lung-brain-related immune responses and potential interactions. The relationship between the ROCK-JAK-STAT signaling pathway and inflammatory immunity is a complex and multi-layered research area and exploring potential common targets could open new avenues for the prevention and treatment of related inflammation.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Naihui Mao
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
3
|
Wang H, Fang F, Jing X, Xu D, Ren Z, Dou S, Xie Y, Zhuang Y. Augmentation of functional recovery via ROCK/PI3K/AKT pathway by Fasudil Hydrochloride in a rat sciatic nerve transection model. J Orthop Translat 2024; 47:74-86. [PMID: 39007038 PMCID: PMC11245988 DOI: 10.1016/j.jot.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Backgrounds The functional recovery after peripheral nerve injury remains unsatisfactory. This study aims to perform a comprehensive evaluation of the efficacy of Fasudil Hydrochloride at treating the sciatic nerve transection injury in rats and the mechanism involved. Materials and methods In animal experiments, 75 Sprague Dawley rats that underwent transection and repair of the right sciatic nerve were divided into a control, Fasudil, and Fas + LY group, receiving daily intraperitoneal injection of saline, Fasudil Hydrochloride (10 mg/kg), and Fasudil Hydrochloride plus LY294002 (5 mg/kg), respectively. At day 3 after surgery, the expression of ROCK2, p-PI3K, and p-AKT in L4-5 DRG and the lumbosacral enlargement was determined using Western blotting. At day 7 and 14, axon density in the distal stump was evaluated with immunostaining using the anti-Neurofilament-200 antibody. At day 30, retrograde tracing by injecting Fluoro-gold in the distal stump was performed. Three months after surgery, remyelination was analyzed with immostaining using the anti-MPZ antibody and the transmission electron microscope; Moreover, Motion-Evoked Potential, and recovery of sensorimotor functions was evaluated with a neuromonitor, Footprint, Hot Plate and Von Frey Filaments, respectively. Moveover, the Gastrocnemius muscles were weighed, and then underwent H&E staining, and staining of the neuromuscular junction using α-Bungarotoxin to evaluate the extent of atrophy and degeneration of the endplates in the Gastrocnemius. In vitro, spinal motor neurons (SMNs) and dorsal root ganglia (DRG) were cultured to examine the impact of Fasudil Hydrochloride and LY294002 on the axon outgrowth. Results Three days after injury, the expression of ROCK2 increased significantly (P<0.01), and Fasudil application significantly increased the expression of p-PI3K and p-AKT in L4-6 DRG and the lumbosacral enlargement (P < 0.05). At day 7 and 14 after surgery, a higher axon density could be observed in the Fasudil group(P < 0.05). At day 30 after surgery, a larger number of motor and sensory neurons absorbing Fluoro-gold could be observed in the Fasudil group (P < 0.01) Three months after surgery, a greater thickness of myelin sheath could be observed in the Fasudil group (P < 0.05). The electrophysiological test showed that a larger amplitude of motion-evoked potential could be triggered in the Fasudil group (P < 0.01). Behavioral tests showed that a higher sciatic function index and a lower threshold for reacting to heat and mechanical stimuli could be measured in the Fasudil group. (P < 0.01). The wet weight ratio of the Gastrocnemius muscles and the area of the cross section of its myofibrils were greater in the Fasudil group (P < 0.01), which also demonstrated a higer ratio of axon-endplate connection and a larger size of endplates (P < 0.05). And there were no significant differences for the abovementioned parameters between the control and Fas + LY groups (P>0.05). In vitro studies showed that Fasudil could significantly promote axon growth in DRG and SMNs, and increase the expression of p-PI3K and p-AKT, which could be abolished by LY294002 (P < 0.05). Conclusions Fasudil can augment axon regeneration and remyelination, and functional recovery after sciatic nerve injury by activating the PI3K/AKT pathway. The translational potential of this article The translation potential of this article is that we report for the first time that Fasudil Hydrochloride has a remarkable efficacy at improving axon regeneration and remyelination following a transection injury of the right sciatic nerve in rats through the ROCK/PI3K/AKT pathway, which has a translational potential to be used clinically to treat peripheral nerve injury.
Collapse
Affiliation(s)
- Hai Wang
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fang Fang
- Department of pharmacology, Fujian medical university, Fuzhou, 350108, China
| | - Xing Jing
- Fujian Key Laboratory of brain aging and neurodegenerative diseases, institute of clinical applied anatomy, the school of basic medical sciences, Fujian medical university, Fuzhou, 350108, Fujian, China
| | - Dan Xu
- Fujian Key Laboratory of brain aging and neurodegenerative diseases, institute of clinical applied anatomy, the school of basic medical sciences, Fujian medical university, Fuzhou, 350108, Fujian, China
| | - Zhenyu Ren
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shuang Dou
- Fujian Key Laboratory of brain aging and neurodegenerative diseases, institute of clinical applied anatomy, the school of basic medical sciences, Fujian medical university, Fuzhou, 350108, Fujian, China
| | - Yun Xie
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yuehong Zhuang
- Fujian Key Laboratory of brain aging and neurodegenerative diseases, institute of clinical applied anatomy, the school of basic medical sciences, Fujian medical university, Fuzhou, 350108, Fujian, China
| |
Collapse
|
4
|
López-Hidalgo R, Ballestín R, Lorenzo L, Sánchez-Martí S, Blasco-Ibáñez JM, Crespo C, Nacher J, Varea E. Early chronic fasudil treatment rescues hippocampal alterations in the Ts65Dn model for down syndrome. Neurochem Int 2024; 174:105679. [PMID: 38309665 DOI: 10.1016/j.neuint.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.
Collapse
Affiliation(s)
- Rosa López-Hidalgo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Raúl Ballestín
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Lorena Lorenzo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Sandra Sánchez-Martí
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - José Miguel Blasco-Ibáñez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain; CIBERSAM, Spanish National Network for Research in Mental Health, Madrid, Spain; Institute of research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain.
| |
Collapse
|
5
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
6
|
Futterknecht S, Chatzimichail E, Gugleta K, Panos GD, Gatzioufas Z. The Role of Rho Kinase Inhibitors in Corneal Diseases. Drug Des Devel Ther 2024; 18:97-108. [PMID: 38264539 PMCID: PMC10804875 DOI: 10.2147/dddt.s435522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
The cornea, as the outermost layer of the eye, plays a crucial role in vision by focusing light onto the retina. Various diseases and injuries can compromise its clarity, leading to impaired vision. This review aims to provide a thorough overview of the pharmacological properties, therapeutic potential and associated risks of Rho-associated protein kinase (ROCK) inhibitors in the management of corneal diseases. The article focuses on four key ROCK inhibitors: Y-27632, fasudil, ripasudil, and netarsudil, providing a comparative examination. Studies supporting the use of ROCK inhibitors highlight their efficacy across diverse corneal conditions. In Fuchs' endothelial corneal dystrophy, studies on the application of Y-27632, ripasudil, and netarsudil demonstrated noteworthy enhancements in corneal clarity, endothelial cell density, and visual acuity. In pseudophakic bullous keratopathy, the injection of Y-27632 together with cultured corneal endothelial cells into the anterior chamber lead to enhanced corneal endothelial cell density and improved visual acuity. Animal models simulating chemical injury to the cornea showed a reduction of neovascularization and epithelial defects after application of fasudil and in a case of iridocorneal endothelial syndrome netarsudil improved corneal edema. Addressing safety considerations, netarsudil and ripasudil, both clinically approved, exhibit adverse events such as conjunctival hyperemia, conjunctival hemorrhage, cornea verticillata, conjunctivitis, and blepharitis. Monitoring patients during treatment becomes crucial to balancing the potential therapeutic benefits with these associated risks. In conclusion, ROCK inhibitors, particularly netarsudil and ripasudil, offer promise in managing corneal diseases. The comparative analysis of their pharmacological properties and studies supporting their efficacy underscore their potential therapeutic significance. However, ongoing research is paramount to comprehensively understand their safety profiles and long-term outcomes in diverse corneal conditions, guiding their optimal application in clinical practice.
Collapse
Affiliation(s)
- Stefan Futterknecht
- Department of Ophthalmology, University Hospital of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | | | - Konstantin Gugleta
- Department of Ophthalmology, University Hospital of Basel, Basel, Switzerland
- Department of Ophthalmology, School of Medicine, University of Basel, Basel, Switzerland
| | - Georgios D Panos
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, UK
- Division of Ophthalmology and Visual Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Zisis Gatzioufas
- Department of Ophthalmology, University Hospital of Basel, Basel, Switzerland
- Department of Ophthalmology, School of Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Liao J, Dong G, Zhu W, Wulaer B, Mizoguchi H, Sawahata M, Liu Y, Kaibuchi K, Ozaki N, Nabeshima T, Nagai T, Yamada K. Rho kinase inhibitors ameliorate cognitive impairment in a male mouse model of methamphetamine-induced schizophrenia. Pharmacol Res 2023; 194:106838. [PMID: 37390993 DOI: 10.1016/j.phrs.2023.106838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder characterized by positive symptoms, negative symptoms, and cognitive deficits. Current antipsychotic treatment in SCZ improves positive symptoms but has major side effects and little impact on negative symptoms and cognitive impairment. The pathoetiology of SCZ remains unclear, but is known to involve small GTPase signaling. Rho kinase, an effector of small GTPase Rho, is highly expressed in the brain and plays a major role in neurite elongation and neuronal architecture. This study used a touchscreen-based visual discrimination (VD) task to investigate the effects of Rho kinase inhibitors on cognitive impairment in a methamphetamine (METH)-treated male mouse model of SCZ. Systemic injection of the Rho kinase inhibitor fasudil dose-dependently ameliorated METH-induced VD impairment. Fasudil also significantly suppressed the increase in the number of c-Fos-positive cells in the infralimbic medial prefrontal cortex (infralimbic mPFC) and dorsomedial striatum (DMS) following METH treatment. Bilateral microinjections of Y-27632, another Rho kinase inhibitor, into the infralimbic mPFC or DMS significantly ameliorated METH-induced VD impairment. Two proteins downstream of Rho kinase, myosin phosphatase-targeting subunit 1 (MYPT1; Thr696) and myosin light chain kinase 2 (MLC2; Thr18/Ser19), exhibited increased phosphorylation in the infralimbic mPFC and DMS, respectively, after METH treatment, and fasudil inhibited these increases. Oral administration of haloperidol and fasudil ameliorated METH-induced VD impairment, while clozapine had little effect. Oral administration of haloperidol and clozapine suppressed METH-induced hyperactivity, but fasudil had no effect. These results suggest that METH activates Rho kinase in the infralimbic mPFC and DMS, which leads to cognitive impairment in male mice. Rho kinase inhibitors ameliorate METH-induced cognitive impairment, perhaps via the cortico-striatal circuit.
Collapse
Affiliation(s)
- Jingzhu Liao
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Geyao Dong
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Wenjun Zhu
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bolati Wulaer
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yue Liu
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1129, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan.
| |
Collapse
|
8
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
Mahdiani S, Omidkhoda N, Rezaee R, Heidari S, Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 2022; 155:113751. [PMID: 36162372 DOI: 10.1016/j.biopha.2022.113751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Insufficiency in coronary blood supply results in myocardial ischemia and consequently, various clinical syndromes and irreversible injuries. Myocardial damage occurs as a result of two processes during acute myocardial infarction (MI): ischemia and subsequent reperfusion. According to the available evidence, oxidative stress, excessive inflammation reaction, reactive oxygen species (ROS) generation, and apoptosis are crucial players in the pathogenesis of myocardial ischemia/reperfusion (IR) injury. There is emerging evidence that Janus tyrosine kinase 2 (JAK2) signal transducer and activator of the transcription 3 (STAT3) pathway offers cardioprotection against myocardial IR injury. This article reviews therapeutics that exert cardioprotective effects against myocardial IR injury through induction of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Yang Z, Wu J, Wu K, Luo J, Li C, Zhang J, Zhao M, Mei T, Liu X, Shang B, Zhang Y, Zhao L, Huang Z. Identification of Nitric Oxide-Donating Ripasudil Derivatives with Intraocular Pressure Lowering and Retinal Ganglion Cell Protection Activities. J Med Chem 2022; 65:11745-11758. [PMID: 36007247 DOI: 10.1021/acs.jmedchem.2c00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on the synergistic therapeutic effect of nitric oxide (NO) and Rho-associated protein kinase (ROCK) inhibitors on glaucoma, a new group of NO-donating ripasudil derivatives RNO-1-RNO-6 was designed, synthesized, and biologically evaluated. The results demonstrated that the most active compound RNO-6 maintained potent ROCK inhibitory and NO releasing abilities, reversibly depolymerized F-actin, and suppressed mitochondrial respiration in human trabecular meshwork (HTM) cells. Topical administration of RNO-6 (0.26%) in chronic ocular hypertension glaucoma mice exhibited significant IOP lowering and visual function and retinal ganglion cell (RGC) protection activities, superior to an equal molar dose of ripasudil. RNO-6 could be a promising agent for glaucoma or ocular hypertension, warranting further investigation.
Collapse
Affiliation(s)
- Zeqiu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China.,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Cunrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiaming Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China.,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
11
|
Zhu Z, Lu J, Wang S, Peng W, Yang Y, Chen C, Zhou X, Yang X, Xin W, Chen X, Pi J, Yin W, Yao L, Pi R. Acrolein, an endogenous aldehyde induces synaptic dysfunction in vitro and in vivo: Involvement of RhoA/ROCK2 pathway. Aging Cell 2022; 21:e13587. [PMID: 35315217 PMCID: PMC9009232 DOI: 10.1111/acel.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Acrolein, an unsaturated aldehyde, is increased in the brain of Alzheimer's disease (AD) patients and identified as a potential inducer of sporadic AD. Synaptic dysfunction, as a typical pathological change occurring in the early stage of AD, is most closely associated with the severity of dementia. However, there remains a lack of clarity on the mechanisms of acrolein inducing AD-like pathology and synaptic impairment. In this study, acrolein-treated primary cultured neurons and mice were applied to investigate the effects of acrolein on cognitive impairment and synaptic dysfunction and their signaling mechanisms. In vitro, ROCK inhibitors, Fasudil, and Y27632, could attenuate the axon ruptures and synaptic impairment caused by acrolein. Meanwhile, RNA-seq distinct differentially expressed genes in acrolein models and initially linked activated RhoA/Rho-kinase2 (ROCK2) to acrolein-induced synaptic dysfunction, which could regulate neuronal cytoskeleton and neurite. The Morris water maze test and in vivo field excitatory postsynaptic potential (fEPSP) were performed to evaluate spatial memory and long-term potential (LTP), respectively. Acrolein induced cognitive impairment and attenuated LTP. Furthermore, the protein level of Synapsin 1 and postsynaptic density 95 (PSD95) and dendritic spines density were also decreased in acrolein-exposed mice. These changes were improved by ROCK2 inhibitor Fasudil or in ROCK2+/- mice. Together, our findings suggest that RhoA/ROCK2 signaling pathway plays a critical role in acrolein-induced synaptic damage and cognitive dysfunction, suggesting inhibition of ROCK2 should benefit to the early AD.
Collapse
Affiliation(s)
- Zeyu Zhu
- School of Medicine Sun Yat‐Sen University Guangzhou China
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Junfeng Lu
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
- Department of Internal Medicine The Affiliated Tumor Hospital of Zhengzhou University Zhengzhou China
| | - Shuyi Wang
- School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Weijia Peng
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Yang Yang
- School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Chen Chen
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Xin Zhou
- Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen Center for Disease Control and Prevention
| | - Wenjun Xin
- Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Xinyi Chen
- School of Pharmaceutical Sciences South China Research Center for Acupuncture and Moxibustion Guangzhou University of Chinese Medicine Guangzhou China
| | - Jiakai Pi
- Guangzhou Foreign Language School Guangzhou China
| | - Wei Yin
- Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion Shandong University of Traditional Chinese Medicine Jinan China
| | - Rongbiao Pi
- School of Medicine Sun Yat‐Sen University Guangzhou China
- International Joint Laboratory<SYSU‐PolyU HK> of Novel Anti‐Dementia Drugs of Guangzhou Guangzhou China
- Guangdong Province Key Laboratory of Brain Function and Disease Sun Yat‐sen University Guangzhou China
| |
Collapse
|
12
|
PT109, a novel multi-kinase inhibitor suppresses glioblastoma multiforme through cell reprogramming: Involvement of PTBP1/PKM1/2 pathway. Eur J Pharmacol 2022; 920:174837. [PMID: 35218719 DOI: 10.1016/j.ejphar.2022.174837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent type and lethal form of primary malignant brain tumor, accounting for about 40-50% of intracranial tumors and without effective treatments now. Cell reprogramming is one of the emerging treatment approaches for GBM, which can reprogram glioblastomas into non-tumor cells to achieve therapeutic effects. However, anti-GBM drugs through reprogramming can only provide limited symptom relief, and cannot completely cure GBM. Here we showed that PT109, a novel multi-kinase inhibitor, suppressed GBM's proliferation, colony formation, migration and reprogramed GBM into oligodendrocytes. Analysis of quantitative proteomics data after PT109 administration of human GBM cells showed significant influence of energy metabolism, cell cycle, and immune system processes of GBM-associated protein. Metabolomics analysis showed that PT109 improved the aerobic respiration process in glioma cells. Meanwhile, we found that PT109 could significantly increase the ratio of Pyruvate kinase M1/2 (PKM1/2) by reducing the level of polypyrimidine tract-binding protein 1 (PTBP1). Altogether, this work developed a novel anti-GBM small molecule PT109, which reprogramed GBM into oligodendrocytes and changed the metabolic pattern of GBM through the PTBP1/PKM1/2 pathway, providing a new strategy for the development of anti-glioma drugs.
Collapse
|
13
|
Martín-Cámara O, Arribas M, Wells G, Morales-Tenorio M, Martín-Requero Á, Porras G, Martínez A, Giorgi G, López-Alvarado P, Lastres-Becker I, Menéndez JC. Multitarget Hybrid Fasudil Derivatives as a New Approach to the Potential Treatment of Amyotrophic Lateral Sclerosis. J Med Chem 2022; 65:1867-1882. [PMID: 34985276 PMCID: PMC9132363 DOI: 10.1021/acs.jmedchem.1c01255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Hybrid compounds containing structural fragments of the Rho kinase inhibitor fasudil and the NRF2 inducers caffeic and ferulic acids were designed with the aid of docking and molecular mechanics studies. Following the synthesis of the compounds using a peptide-coupling methodology, they were characterized for their ROCK2 inhibition, radical scavenging, effects on cell viability (MTT assay), and NRF2 induction (luciferase assay). One of the compounds (1d) was selected in view of its good multitarget profile and good tolerability. It was able to induce the NRF2 signature, promoting the expression of the antioxidant response enzymes HO-1 and NQO1, via a KEAP1-dependent mechanism. Analysis of mRNA and protein levels of the NRF2 pathway showed that 1d induced the NRF2 signature in control and SOD1-ALS lymphoblasts but not in sALS, where it was already increased in the basal state. These results show the therapeutic potential of this compound, especially for ALS patients with a SOD1 mutation.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Marina Arribas
- Instituto
de Investigaciones Biomédicas “Alberto Sols”
UAM-CSIC, Department of Biochemistry, School of Medicine, and Institute
Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Geoffrey Wells
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Marcos Morales-Tenorio
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ángeles Martín-Requero
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Gracia Porras
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Giorgio Giorgi
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Pilar López-Alvarado
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto
de Investigaciones Biomédicas “Alberto Sols”
UAM-CSIC, Department of Biochemistry, School of Medicine, and Institute
Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
14
|
Chen C, Lu J, Peng W, Mak MS, Yang Y, Zhu Z, Wang S, Hou J, Zhou X, Xin W, Hu Y, Tsim KWK, Han Y, Liu Q, Pi R. Acrolein, an endogenous aldehyde induces Alzheimer's disease-like pathologies in mice: A new sporadic AD animal model. Pharmacol Res 2022; 175:106003. [PMID: 34838693 DOI: 10.1016/j.phrs.2021.106003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that mainly affects elderly people. However, the translational research of AD is frustrating, suggesting that the development of new AD animal models is crucial. By gavage administration of acrolein, we constructed a simple sporadic AD animal model which showed classic pathologies of AD in 1 month. The AD-like phenotypes and pathological changes were as followed. 1) olfactory dysfunctions, cognitive impairments and psychological symptoms in C57BL/6 mice; 2) increased levels of Aβ1-42 and Tau phosphorylation (S396/T231) in cortex and hippocampus; 3) astrocytes and microglia proliferation; 4) reduced levels of postsynaptic density 95(PSD95) and Synapsin1, as well as the density of dendritic spines in the CA1 and DG neurons of the hippocampus; 5) high-frequency stimulation failed to induce the long-term potentiation (LTP) in the hippocampus after exposure to acrolein for 4 weeks; 6) decreased blood oxygen level-dependent (BOLD) signal in the olfactory bulb and induced high T2 signals in the hippocampus, which matched to the clinical observation in the brain of AD patients, and 7) activated RhoA/ROCK2/ p-cofilin-associated pathway in hippocampus of acrolein-treated mice, which may be the causes of synaptic damage and neuroinflammation in acrolein mice model. Taken together, the acrolein-induced sporadic AD mouse model closely reflects the pathological features of AD, which will be useful for the research on the mechanism of AD onset and the development of anti-AD drugs.
Collapse
Affiliation(s)
- Chen Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junfeng Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Weijia Peng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Marvin Sh Mak
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yang Yang
- Department of Pharmacology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; Neurobiology Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zeyu Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuyi Wang
- Department of Pharmacology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; Neurobiology Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiawei Hou
- Neurobiology Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xin Zhou
- Zhongshan school of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wenjun Xin
- Zhongshan school of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510014, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qinyu Liu
- The seventh affiliated hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Rongbiao Pi
- Department of Pharmacology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangzhou, Guangzhou 510006, China; Neurobiology Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
15
|
Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021; 225:113742. [PMID: 34388381 DOI: 10.1016/j.ejmech.2021.113742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction. ROCK1 is also responsible for the reduction of the readily releasable pool of synaptic vesicles. These and other evidences suggest that ROCK1 is the main isoform acting on the presynaptic neuron. On the other hand, ROCK2 seems to have broad effects on LIMK/cofilin-dependent plasticity processes such as cofilin-dependent PSD changes. The RhoA/ROCK pathway is an important factor in several different brain-related pathologies via both downstream and upstream pathways. In the aggregate, these evidences show that the RhoA/ROCK pathway has a central role in the etiopathogenesis of a large group of CNS diseases, which underscores the importance of the pharmacological modulation of RhoA/ROCK as an important pathway to drug discovery in the neurodegenerative disease area. This article aims at providing the first review of the role of compounds acting on the RhoA/ROCK pathway in the control of synaptic disfunction.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
17
|
Chen L, Zhou Y, Wang J, Li K, Zhang Z, Peng M. The adenosine A 2A receptor alleviates postoperative delirium-like behaviors by restoring blood cerebrospinal barrier permeability in rats. J Neurochem 2021; 158:980-996. [PMID: 34033116 DOI: 10.1111/jnc.15436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Postoperative delirium (POD) is a common post-operative complication in elderly patients that is associated with increased morbidity and mortality. However, the neuropathogenesis of this complication remains unknown. The blood-cerebrospinal fluid barrier (BCB) and brain-blood barrier (BBB) are composed of tight junctions between cells that form physical barriers, and BBB damage plays an important role in the neuropathogenesis of POD. Nevertheless, the role of BCB in POD remains to be elucidated. Herein, we investigated the effect of adenosine A2A receptor (A2A R), a key regulator of the permeability of barriers, on surgery-induced increased permeability of BCB and POD-like behaviors. Open field, buried food, and Y maze tests were used to evaluate behavioral changes in rats after surgery. Levels of tight junction proteins, adherens junction proteins, A2A R, GTP-RhoA, and ROCK2 in the choroid plexus were assessed by western blotting. The concentrations of NaFI and FITC-dextran in the cerebrospinal fluid (CSF) were detected by fluorescence spectrophotometry. Transmission electron microscopy was applied to observe the ultrastructure of the choroid plexus. Surgery/anesthesia decreased the levels of tight junction (e.g., ZO-1, occludin, and claudin1) proteins, increased concentrations of NaFI and FITC-dextran in CSF, damaged the ultrastructure of choroid plexus, and induced POD-like behaviors in rats. An A2A R antagonist alleviated POD-like behaviors in rats. Furthermore, the A2A R antagonist increased the levels of tight junction proteins and restored the permeability of BCB in rats with POD. Fasudil, a selective Rho-associated protein kinase 2 (ROCK2) inhibitor, ameliorated POD-like behaviors induced by A2A R activation. Moreover, fasudil also abolished the increased levels of GTP-RhoA/ROCK2, decreased levels of tight junction proteins, and increased permeability of BCB caused by A2A R activation. Our findings demonstrate that A2A R might participate in regulating BCB permeability in rats with POD via the RhoA/ROCK2 signaling pathway, which suggests the potential of A2A R as a therapeutic target for POD.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiayu Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Socodato R, Portugal CC, Canedo T, Rodrigues A, Almeida TO, Henriques JF, Vaz SH, Magalhães J, Silva CM, Baptista FI, Alves RL, Coelho-Santos V, Silva AP, Paes-de-Carvalho R, Magalhães A, Brakebusch C, Sebastião AM, Summavielle T, Ambrósio AF, Relvas JB. Microglia Dysfunction Caused by the Loss of Rhoa Disrupts Neuronal Physiology and Leads to Neurodegeneration. Cell Rep 2021; 31:107796. [PMID: 32579923 DOI: 10.1016/j.celrep.2020.107796] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/29/2019] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
Nervous tissue homeostasis requires the regulation of microglia activity. Using conditional gene targeting in mice, we demonstrate that genetic ablation of the small GTPase Rhoa in adult microglia is sufficient to trigger spontaneous microglia activation, producing a neurological phenotype (including synapse and neuron loss, impairment of long-term potentiation [LTP], formation of β-amyloid plaques, and memory deficits). Mechanistically, loss of Rhoa in microglia triggers Src activation and Src-mediated tumor necrosis factor (TNF) production, leading to excitotoxic glutamate secretion. Inhibiting Src in microglia Rhoa-deficient mice attenuates microglia dysregulation and the ensuing neurological phenotype. We also find that the Rhoa/Src signaling pathway is disrupted in microglia of the APP/PS1 mouse model of Alzheimer disease and that low doses of Aβ oligomers trigger microglia neurotoxic polarization through the disruption of Rhoa-to-Src signaling. Overall, our results indicate that disturbing Rho GTPase signaling in microglia can directly cause neurodegeneration.
Collapse
Affiliation(s)
- Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Teresa Canedo
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Artur Rodrigues
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana F Henriques
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Magalhães
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Cátia M Silva
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Renata L Alves
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Vanessa Coelho-Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Roberto Paes-de-Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Cord Brakebusch
- Molecular Pathology Section, BRIC, Københavns Biocenter, Copenhagen, Denmark
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal; Escola Superior de Saúde, Politécnico do Porto, Porto, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal; The Discoveries Centre for Regeneration and Precision Medicine, Porto Campus, Porto, Portugal.
| |
Collapse
|
19
|
Al-Hilal TA, Hossain MA, Alobaida A, Alam F, Keshavarz A, Nozik-Grayck E, Stenmark KR, German NA, Ahsan F. Design, synthesis and biological evaluations of a long-acting, hypoxia-activated prodrug of fasudil, a ROCK inhibitor, to reduce its systemic side-effects. J Control Release 2021; 334:237-247. [PMID: 33915222 DOI: 10.1016/j.jconrel.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
ROCK, one of the downstream regulators of Rho, controls actomyosin cytoskeleton organization, stress fiber formation, smooth muscle contraction, and cell migration. ROCK plays an important role in the pathologies of cerebral and coronary vasospasm, hypertension, cancer, and arteriosclerosis. Pharmacological-induced systemic inhibition of ROCK affects both the pathological and physiological functions of Rho-kinase, resulting in hypotension, increased heart rate, decreased lymphocyte count, and eventually cardiovascular collapse. To overcome the adverse effects of systemic ROCK inhibition, we developed a bioreductive prodrug of a ROCK inhibitor, fasudil, that functions selectively under hypoxic conditions. By masking fasudil's active site with a bioreductive 4-nitrobenzyl group, we synthesized a prodrug of fasudil that is inactive in normoxia. Reduction of the protecting group initiated by hypoxia reveals an electron-donating substituent that leads to fragmentation of the parent molecule. Under normoxia the fasudil prodrug displayed significantly reduced activity against ROCK compared to its parent compound, but under severe hypoxia the prodrug was highly effective in suppressing ROCK activity. Under hypoxia the prodrug elicited an antiproliferative effect on disease-afflicted pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. The prodrug displayed a long plasma half-life, remained inactive in the blood, and produced no drop in systemic blood pressure when compared with fasudil-treated controls. Due to its selective nature, our hypoxia-activated fasudil prodrug could be used to treat diseases where tissue-hypoxia or hypoxic cells are the pathological basis of the disease.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutics, School of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Farzana Alam
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ali Keshavarz
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical and Biomedical Sciences, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA.
| |
Collapse
|
20
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
21
|
Huang W, Lan Q, Jiang L, Yan W, Tang F, Shen C, Huang H, Zhong H, Lv J, Zeng S, Li M, Mo Z, Hu B, Liang N, Chen Q, Zhang M, Xu F, Cui L. Fasudil attenuates glial cell-mediated neuroinflammation via ERK1/2 and AKT signaling pathways after optic nerve crush. Mol Biol Rep 2020; 47:8963-8973. [PMID: 33161529 DOI: 10.1007/s11033-020-05953-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
To investigate the functional role of fasudil in optic nerve crush (ONC), and further explore its possible molecular mechanism. After ONC injury, the rats were injected intraperitoneally either with fasudil or normal saline once a day until euthanized. RGCs survival was assessed by retrograde labeling with FluoroGold. Retinal glial cells activation and population changes (GFAP, iba-1) were measured by immunofluorescence. The expressions of cleaved caspase 3 and 9, p-ERK1/2 and p-AKT were detected by western blot. The levels of the pro-inflammatory cytokines were determined using real-time polymerase chain reaction. Fasudil treatment inhibited RGCs apoptosis and reduced RGCs loss demonstrated by the decreased apoptosis-associated proteins expression and the increased fluorogold labeling of RGCs after ONC, respectively. In addition, the ONC + fasudil group compared had a significantly lower expression of GFAP and iba1 compared with the ONC group. The levels of pro-inflammatory cytokines were significantly reduced in the ONC + fasudil group than in the ONC group. Furthermore, the phosphorylation levels of ERK1/2 and AKT (p-ERK1/2 and p-AKT) were obviously elevated by the fasudil treatment. Our study demonstrated that fasudil attenuated glial cell-mediated neuroinflammation by up-regulating the ERK1/2 and AKT signaling pathways in rats ONC models. We conclude that fasudil may be a novel treatment for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Nanning, 530021, China
| | - Qianqian Lan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Ling Cui
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
22
|
Lopez-Lopez A, Labandeira CM, Labandeira-Garcia JL, Muñoz A. Rho kinase inhibitor fasudil reduces l-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Br J Pharmacol 2020; 177:5622-5641. [PMID: 32986850 DOI: 10.1111/bph.15275] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Rho kinase (ROCK) activation is involved in neuroinflammatory processes leading to progression of neurodegenerative diseases such as Parkinson's disease. Furthermore, ROCK plays a major role in angiogenesis. Neuroinflammation and angiogenesis are mechanisms involved in developing l-DOPA-induced dyskinesias (LID). However, it is not known whether ROCK plays a role in LID and whether ROCK inhibitors may be useful against LID. EXPERIMENTAL APPROACH In rats, we performed short- and long-term dopaminergic lesions using 6-hydroxydopamine and developed a LID model. Effects of dopaminergic lesions and LID on the RhoA/ROCK levels were studied by western blot, real-time PCR analyses and ROCK activity assays in the substantia nigra and striatum. The effects of the ROCK inhibitor fasudil on LID were particularly investigated. KEY RESULTS Short-term 6-hydroxydopamine lesions increased nigrostriatal RhoA/ROCK expression, apparently related to the active neuroinflammatory process. However, long-term dopaminergic denervation (completed and stabilized lesions) led to a decrease in RhoA/ROCK levels. Rats with LID showed a significant increase of RhoA and ROCK expression. The development of LID was reduced by the ROCK inhibitor fasudil (10 and 40 mg·kg-1 ), without interfering with the therapeutic effect of l-DOPA. Interestingly, treatment of 40 mg·kg-1 of fasudil also induced a significant reduction of dyskinesia in rats with previously established LID. CONCLUSION AND IMPLICATIONS The present results suggest that ROCK is involved in the pathophysiology of LID and that ROCK inhibitors such as fasudil may be a novel target for preventing or treating LID. Furthermore, previous studies have revealed neuroprotective effects of ROCK inhibitors.
Collapse
Affiliation(s)
- Andrea Lopez-Lopez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Carmen M Labandeira
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Ana Muñoz
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
23
|
Chen Q, Tu Y, Mak S, Chen J, Lu J, Chen C, Yang X, Wang S, Wen S, Ma S, Li M, Han Y, Wah-Keung Tsim K, Pi R. Discovery of a novel small molecule PT109 with multi-targeted effects against Alzheimer's disease in vitro and in vivo. Eur J Pharmacol 2020; 883:173361. [PMID: 32673674 DOI: 10.1016/j.ejphar.2020.173361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD), which is characterized by impairment of cognitive functions, is a chronic neurodegenerative disease that mainly affects the elderly. Currently available anti-AD drugs can only offer limited symptom-relieving effects. "One-compound-Multitargeted Strategy" have been recognized as the promising way to win the war against AD. Herein we report a potential anti-AD agent PT109 with multi-functions. First, an 81-kinase screening was carried out and results showed that PT109 potently inhibited c-Jun N-terminal kinases and Serum and glucocorticoid-inducible kinase 1, which are the important signaling molecules involved in neurogenesis, neuroprotection and neuroinflammation and mildly inhibit glycogen synthase kinase-3β as well as protein kinase C gamma, both are involved in AD pathological processes. In addition, invitro studies of immunofluorescent staining and Western blot showed that PT109 might promote the neurogenesis of C17.2 cells and induce synaptogenesis in primary cultured rat hippocampal neurons. We detected and confirmed the neuroprotective effect of PT109 in cultured HT22 cells by MTT assay, dehydrogenase assay, glutathione assay and reactive oxygen species assay. Furthermore, the results of Western blot, ELISA assay and immunofluorescent staining indicated that PT109 attenuated lipopolysaccharide-induced inflammation in BV2 cells and primary astrocytes. The results of Morris water maze and Step-through test indicated that PT109 improved the spatial learning ability in APP/PS1 mice. More importantly, the invivo pharmacokinetic parameters indicated that PT109 had better medicinal properties. Taken together, our findings suggest that PT109 may be a promising candidate for treating AD through multiple targets although further studies are ought to be conducted.
Collapse
Affiliation(s)
- Qiuhe Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Yalin Tu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Shinghung Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hong Kong
| | - Jingkao Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Junfeng Lu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Chen Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Xiaohong Yang
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Shengnan Wang
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
| | - Shijun Wen
- Cancer Center of South China, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingtao Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hong Kong
| | - Karl Wah-Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong
| | - Rongbiao Pi
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, 510006, China; Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Álvarez-Santos MD, Álvarez-González M, Estrada-Soto S, Bazán-Perkins B. Regulation of Myosin Light-Chain Phosphatase Activity to Generate Airway Smooth Muscle Hypercontractility. Front Physiol 2020; 11:701. [PMID: 32676037 PMCID: PMC7333668 DOI: 10.3389/fphys.2020.00701] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle is a central structure involved in the regulation of airway tone. In addition, it plays an important role in the development of some pathologies generated by alterations in contraction, such as hypercontractility and the airway hyperresponsiveness observed in asthma. The molecular processes associated with smooth muscle contraction are centered around myosin light chain (MLC) phosphorylation, which is controlled by a balance in the activity of myosin light-chain kinase (MLCK) and myosin light-chain phosphatase (MLCP). MLCK activation depends on increasing concentrations of intracellular Ca2+, while MLCP activation is independent of Ca2+. MLCP contains a phosphatase subunit (PP1c) that is regulated through myosin phosphatase target subunit 1 (MYPT1) and other subunits, such as glycogen-associated regulatory subunit and myosin-binding subunit 85 kDa. Interestingly, MLCP inhibition may contribute to exacerbation of smooth muscle contraction by increasing MLC phosphorylation to induce hypercontractility. Many pathways inhibiting MLCP activity in airway smooth muscle have been proposed and are focused on inhibition of PP1c, inhibitory phosphorylation of MYPT1 and dissociation of the PP1c-MYPT1 complex.
Collapse
Affiliation(s)
- Mayra D Álvarez-Santos
- Biology Area, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisol Álvarez-González
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Blanca Bazán-Perkins
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
25
|
Song L, Zhu C, Zheng W, Lu D, Jiao H, Zhao R, Bao Z. Computational systematic selectivity of the Fasalog inhibitors between ROCK-I and ROCK-II kinase isoforms in Alzheimer's disease. Comput Biol Chem 2020; 87:107314. [PMID: 32619776 DOI: 10.1016/j.compbiolchem.2020.107314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Human Rho-associated coiled-coil forming kinase (ROCK) is a class of essential neurokinases that consists of two structurally conserved isoforms ROCK-I and ROCK-II; they have been revealed to play distinct roles in the pathogenesis of Alzheimer's disease (AD) and other neurological disorders. Selective targeting of the two kinase isoforms with small-molecule inhibitors is a great challenge due to the surprisingly high homology in kinase domain (92 %) and the full identity in kinase active site (100 %). Here, we describe a computational protocol to systematically profile the selectivity of Fasudil and its 25 analogs (termed as Fasalogs) between the two kinase isoforms. It is suggested that the substitution of Fasudil's 1,4-diazepane moiety with rigid ring such as Ripasudil and Dimehtylfasudil would render the resulting inhibitors of ROCK-II over ROCK-I (II-o-I) selectivity, while the substitution with long, flexible group such as H-89 and BDBM92607 tends to have I-o-II selectivity. Structural analysis reveals that the inhibitor affinity is not only determined by the identical active site, but also contributed from the non-identical first and second shells of the site as well as other non-conserved kinase regions, which can indirectly influence the active site and inhibitor binding through allosteric effect. A further kinase assay basically confirms the computational findings, which also exhibits a good consistence with theoretical selectivity over 10 tested samples (Rp = 0.89). In particular, the Fasalog compounds Dimehtylfasudil and H-89 are identified as II-o-I and I-o-II selective inhibitors. They can be considered as promising lead molecular entities to develop new specific ROCK isoform-selective Fasalog inhibitors.
Collapse
Affiliation(s)
- Laijun Song
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China
| | - Chunyu Zhu
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China
| | - Wenxin Zheng
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China
| | - Dan Lu
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China
| | - Hong Jiao
- Department of Neurology, Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Rongbing Zhao
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China.
| | - Zhonglei Bao
- Department of Neurology, Daqing Oil Field General Hospital, Daqing, 163001, China.
| |
Collapse
|
26
|
Mulherkar S, Tolias KF. RhoA-ROCK Signaling as a Therapeutic Target in Traumatic Brain Injury. Cells 2020; 9:E245. [PMID: 31963704 PMCID: PMC7016605 DOI: 10.3390/cells9010245] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. TBIs, which range in severity from mild to severe, occur when a traumatic event, such as a fall, a traffic accident, or a blow, causes the brain to move rapidly within the skull, resulting in damage. Long-term consequences of TBI can include motor and cognitive deficits and emotional disturbances that result in a reduced quality of life and work productivity. Recovery from TBI can be challenging due to a lack of effective treatment options for repairing TBI-induced neural damage and alleviating functional impairments. Central nervous system (CNS) injury and disease are known to induce the activation of the small GTPase RhoA and its downstream effector Rho kinase (ROCK). Activation of this signaling pathway promotes cell death and the retraction and loss of neural processes and synapses, which mediate information flow and storage in the brain. Thus, inhibiting RhoA-ROCK signaling has emerged as a promising approach for treating CNS disorders. In this review, we discuss targeting the RhoA-ROCK pathway as a therapeutic strategy for treating TBI and summarize the recent advances in the development of RhoA-ROCK inhibitors.
Collapse
Affiliation(s)
- Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA;
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Tang Y, Han L, Bai X, Liang X, Zhao J, Huang F, Wang J. Intranasal Delivery of Bone Marrow Stromal Cells Preconditioned with Fasudil to Treat a Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat 2020; 16:249-262. [PMID: 32158210 PMCID: PMC6986408 DOI: 10.2147/ndt.s238646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Stem cell transplantation is a promising strategy with great potential to treat Parkinson's disease (PD). Nevertheless, improving the cell delivery route and optimising implanted cells are necessary to increase the therapeutic effect. Herein, we investigated whether intranasal delivery of bone marrow stromal cells (BMSCs) has beneficial effects in a PD mouse model and whether the therapeutic potential of BMSCs could be enhanced by preconditioning with fasudil. METHODS A PD mouse model was developed by intraperitoneally administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice were treated intranasally with phosphate buffered saline (PBS), BMSCs, or BMSCs preconditioned with fasudil. One month later, the effects of BMSC treatment were analysed. RESULTS Our study showed that fasudil could accelerate the proliferation of BMSCs and promote brain-derived neurotrophic factor (BDNF) secretion in vitro. Intranasally administered BMSCs were capable of surviving and migrating in the brain. Intranasal delivery of BMSCs preconditioned with fasudil significantly improved motor function and reduced dopaminergic neuron loss in substantia nigra; treatment with BMSCs and PBS resulted in similar outcomes. Preconditioning with fasudil inhibited the activation and aggregation of microglia, suppressed immune response, and reinforced BDNF secretion in MPTP-PD mice significantly more than treatment with BMSCs alone. CONCLUSION The present study demonstrates that intranasally administering BMSCs preconditioned with fasudil is a promising cell-based therapy for PD.
Collapse
Affiliation(s)
- Yilin Tang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Linlin Han
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Xiaochen Bai
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China.,The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xiaoniu Liang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Jue Zhao
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Fang Huang
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
28
|
Shapiro LP, Kietzman HW, Guo J, Rainnie DG, Gourley SL. Rho-kinase inhibition has antidepressant-like efficacy and expedites dendritic spine pruning in adolescent mice. Neurobiol Dis 2019; 124:520-530. [PMID: 30593834 PMCID: PMC6365018 DOI: 10.1016/j.nbd.2018.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/15/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Adolescence represents a critical period of neurodevelopment, defined by structural and synaptic pruning within the prefrontal cortex. While characteristic of typical development, this structural instability may open a window of vulnerability to developing neuropsychiatric disorders, including depression. Thus, therapeutic interventions that support or expedite neural remodeling in adolescence may be advantageous. Here, we inhibited the neuronally-expressed cytoskeletal regulatory factor Rho-kinase (ROCK), focusing primarily on the clinically-viable ROCK inhibitor fasudil. ROCK inhibition had rapid antidepressant-like effects in adolescent mice, and its efficacy was comparable to ketamine and fluoxetine. It also modified levels of the antidepressant-related signaling factors, tropomyosin/tyrosine receptor kinase B and Akt, as well as the postsynaptic marker PSD-95, in the ventromedial prefrontal cortex (vmPFC). Meanwhile, adolescent-typical dendritic spine pruning on excitatory pyramidal neurons in the vmPFC was expedited. Further, vmPFC-specific shRNA-mediated reduction of ROCK2, the dominant ROCK isoform in the brain, had antidepressant-like consequences. We cautiously suggest that ROCK inhibitors may have therapeutic potential for adolescent-onset depression.
Collapse
Affiliation(s)
- Lauren P Shapiro
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Henry W Kietzman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States
| | - Jidong Guo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States
| | - Donald G Rainnie
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States
| | - Shannon L Gourley
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
29
|
Wang L, Xu J, Guo D, Zhou X, Jiang W, Wang J, Tang J, Zou Y, Bi M, Li Q. Fasudil alleviates brain damage in rats after carbon monoxide poisoning through regulating neurite outgrowth inhibitor/oligodendrocytemyelin glycoprotein signalling pathway. Basic Clin Pharmacol Toxicol 2019; 125:152-165. [PMID: 30916885 DOI: 10.1111/bcpt.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Carbon monoxide (CO) poisoning can lead to many serious neurological symptoms. Currently, there are no effective therapies for CO poisoning. In this study, rats exposed to CO received hyperbaric oxygen therapy, and those in the Fasudil group were given additional Fasudil injection once daily. We found that the escape latency in CO poisoning group (CO group) was significantly prolonged, the T1 /Ttotal was obviously decreased, and the mean escape time and the active escape latency were notably extended compared with those in normal control group (NC group, P < 0.05). After administration of Fasudil, the escape latency was significantly shortened, T1 /Ttotal was gradually increased as compared with CO group (>1 week, P < 0.05). Ultrastructural damage of neurons and blood-brain barrier of rats was serious in CO group, while the structural and functional integrity of neuron and mitochondria maintained relatively well in Fasudil group. Moreover, we also noted that the expressions of neurite outgrowth inhibitor (Nogo), oligodendrocyte-myelin glycoprotein (OMgp) and Rock in brain tissue were significantly increased in CO group, and the elevated levels of the three proteins were still observed at 2 months after CO poisoning. Fasudil markedly reduced their expressions compared with those of CO group (P < 0.05). In summary, the activation of Nogo-OMgp/Rho signalling pathway is associated with brain injury in rats with CO poisoning. Fasudil can efficiently down-regulate the expressions of Nogo, OMgp and Rock proteins, paving a way for the treatment of acute brain damage after CO poisoning.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan Shandong, China.,Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jianghua Xu
- Department of neurology, Yantai YEDA Hospital, Yantai Shandong, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan Shandong, China
| | - Xudong Zhou
- The First Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan Shandong, China
| | - Wenwen Jiang
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jinglin Wang
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jiyou Tang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan Shandong, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Mingjun Bi
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| |
Collapse
|
30
|
The protective effect of non-invasive low intensity pulsed electric field and fucoidan in preventing oxidative stress-induced motor neuron death via ROCK/Akt pathway. PLoS One 2019; 14:e0214100. [PMID: 30889218 PMCID: PMC6424404 DOI: 10.1371/journal.pone.0214100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
With the expansion of the aged population, it is predicted that neurodegenerative diseases (NDDs) will become a major threat to public health worldwide. However, existing therapies can control the symptoms of the diseases at best, rather than offering a fundamental cure. As for the complex pathogenesis, clinical and preclinical researches have indicated that oxidative stress, a central role in neuronal degeneration, is a possible therapeutic target in the development of novel remedies. In this study, the motor neuron-like cell line NSC-34 was employed as an experimental model in probing the effects induced by the combination of non-invasive low intensity pulsed electric field (LIPEF) and fucoidan on the H2O2-induced neuron damage. It was found that single treatment of the LIPEF could protect the NSC-34 cells from oxidative stress, and the protective effect was enhanced by combining the LIPEF and fucoidan. Notably, it was observed that single treatment of the LIPEF obviously suppressed the H2O2-enhanced expression of ROCK protein and increased the phosphorylation of Akt in the H2O2-treated NSC-34 cells. Moreover, the LIPEF can be easily modified to concentrate on a specific area. Accordingly, this technique can be used as an advanced remedy for ROCK inhibition without the drawback of drug metabolism. Therefore, we suggest the LIPEF would be a promising strategy as a treatment for motor neurodegeneration and warrant further probe into its potential in treating other neuronal degenerations.
Collapse
|
31
|
Pan JZ, Eckenhoff RG. Between a ROCK and an IR Place. Anesth Analg 2018; 126:750-751. [PMID: 29461324 DOI: 10.1213/ane.0000000000002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan Z Pan
- From the Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
de Oliveira RG, Guerra FS, Mermelstein CDS, Fernandes PD, Bastos ITDS, Costa FN, Barroso RCR, Ferreira FF, Fraga CAM. Synthesis and pharmacological evaluation of novel isoquinoline N-sulphonylhydrazones designed as ROCK inhibitors. J Enzyme Inhib Med Chem 2018; 33:1181-1193. [PMID: 30044647 PMCID: PMC6060383 DOI: 10.1080/14756366.2018.1490732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
In this study, we synthesized a new congener series of N-sulphonylhydrazones designed as candidate ROCK inhibitors using the molecular hybridization of the clinically approved drug fasudil (1) and the IKK-β inhibitor LASSBio-1524 (2). Among the synthesized compounds, the N-methylated derivative 11 (LASSBio-2065) showed the best inhibitory profile for both ROCK isoforms, with IC50 values of 3.1 and 3.8 µM for ROCK1 and ROCK2, respectively. Moreover, these compounds were also active in the scratch assay performed in human breast cancer MDA-MB 231 cells and did not display toxicity in MTT and LDH assays. Molecular modelling studies provided insights into the possible binding modes of these N-sulphonylhydrazones, which present a new molecular architecture capable of being optimized and developed as therapeutically useful ROCK inhibitors.
Collapse
Affiliation(s)
- Ramon Guerra de Oliveira
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Sélos Guerra
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Farmacologia da Dor e da Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia dos Santos Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Dias Fernandes
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Farmacologia da Dor e da Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fanny Nascimento Costa
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Paulo, Brazil
| | | | - Fabio Furlan Ferreira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Paulo, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Markovic T, Murray PRD, Rocke BN, Shavnya A, Blakemore DC, Willis MC. Heterocyclic Allylsulfones as Latent Heteroaryl Nucleophiles in Palladium-Catalyzed Cross-Coupling Reactions. J Am Chem Soc 2018; 140:15916-15923. [DOI: 10.1021/jacs.8b09595] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tim Markovic
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Philip R. D. Murray
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Benjamin N. Rocke
- Medicine Design, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andre Shavnya
- Medicine Design, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David C. Blakemore
- Medicine Design, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael C. Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
34
|
Kumar M, Bansal N. Fasudil hydrochloride ameliorates memory deficits in rat model of streptozotocin-induced Alzheimer’s disease: Involvement of PI3-kinase, eNOS and NFκB. Behav Brain Res 2018; 351:4-16. [DOI: 10.1016/j.bbr.2018.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
|
35
|
Huang YY, Wu JM, Su T, Zhang SY, Lin XJ. Fasudil, a Rho-Kinase Inhibitor, Exerts Cardioprotective Function in Animal Models of Myocardial Ischemia/Reperfusion Injury: A Meta-Analysis and Review of Preclinical Evidence and Possible Mechanisms. Front Pharmacol 2018; 9:1083. [PMID: 30327600 PMCID: PMC6174418 DOI: 10.3389/fphar.2018.01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023] Open
Abstract
Fasudil, a Rho-kinase inhibitor, has shown outstanding therapeutic effects against cerebral vasospasm after subarachnoid hemorrhage (SAH) in humans. Studies show various biological effects of fasudil in the cardiovascular system. We conducted a preclinical systematic review to determine the efficacy and possible mechanisms of fasudil on animal models of myocardial ischemia/reperfusion (I/R) injury. Nineteen studies involving 400 animals were identified after searching 8 databases for articles published till June 2018. The methodological quality was assessed by the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) 10-item checklist. The data were analyzed using Rev-Man 5.3 software, and the score of study quality ranged from 3 to 6 points. Compared to the control group, fasudil treated animals showed reduced myocardial infarct size (P < 0.05), lower levels of cardiac enzymes (P < 0.05) and cardiac troponin T (P < 0.05), improved systolic and diastolic functions (P < 0.05), and increased degree of decline in the ST-segment (P < 0.05). The possible mechanisms of fasudil action against myocardial I/R injury are improvement in coronary vasodilation, inhibition of apoptosis and oxidative stress, relieving inflammation, and reduction in endoplasmic reticulum stress and metabolism. In conclusion, fasudil exerts a cardio-protective function through multiple signaling pathways in animal models of myocardial I/R injury.
Collapse
Affiliation(s)
- Yue-Yue Huang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian-Ming Wu
- Department of Dermatovenereology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tong Su
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song-Yue Zhang
- Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ji Lin
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab 2018; 38:1255-1275. [PMID: 29737222 PMCID: PMC6092767 DOI: 10.1177/0271678x18774666] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
Vascular disruption is the underlying cause of cerebral hemorrhage, including intracerebral, subarachnoid and intraventricular hemorrhage. The disease etiology also involves cerebral hemorrhage-induced blood-brain barrier (BBB) disruption, which contributes an important component to brain injury after the initial cerebral hemorrhage. BBB loss drives vasogenic edema, allows leukocyte extravasation and may lead to the entry of potentially neurotoxic and vasoactive compounds into brain. This review summarizes current information on changes in brain endothelial junction proteins in response to cerebral hemorrhage (and clot-related factors), the mechanisms underlying junction modification and potential therapeutic targets to limit BBB disruption and, potentially, hemorrhage occurrence. It also addresses advances in the tools that are now available for assessing changes in junctions after cerebral hemorrhage and the potential importance of such junction changes. Recent studies suggest post-translational modification, conformational change and intracellular trafficking of junctional proteins may alter barrier properties. Understanding how cerebral hemorrhage alters BBB properties beyond changes in tight junction protein loss may provide important therapeutic insights to prevent BBB dysfunction and restore normal function.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Ann Arbor, MI, USA
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | | | - David A Antonetti
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
- Department of Ophthalmology & Visual Science Medical School, University of Michigan Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
37
|
Nizamudeen ZA, Chakrabarti L, Sottile V. Exposure to the ROCK inhibitor fasudil promotes gliogenesis of neural stem cells in vitro. Stem Cell Res 2018; 28:75-86. [DOI: 10.1016/j.scr.2018.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022] Open
|
38
|
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food Chem Toxicol 2018; 113:328-336. [PMID: 29428217 DOI: 10.1016/j.fct.2018.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD+/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Collapse
|
39
|
Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci 2018; 27:301-15. [PMID: 26574890 DOI: 10.1515/revneuro-2015-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/26/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer's disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.
Collapse
|
40
|
Chen J, Yin W, Tu Y, Wang S, Yang X, Chen Q, Zhang X, Han Y, Pi R. L-F001, a novel multifunctional ROCK inhibitor, suppresses neuroinflammation in vitro and in vivo: Involvement of NF-κB inhibition and Nrf2 pathway activation. Eur J Pharmacol 2017; 806:1-9. [DOI: 10.1016/j.ejphar.2017.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/05/2017] [Accepted: 03/15/2017] [Indexed: 10/20/2022]
|
41
|
Quantitative Phosphoproteomics Reveals a Role for Collapsin Response Mediator Protein 2 in PDGF-Induced Cell Migration. Sci Rep 2017. [PMID: 28638064 PMCID: PMC5479788 DOI: 10.1038/s41598-017-04015-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Platelet Derived Growth Factor (PDGF) family of ligands have well established functions in the induction of cell proliferation and migration during development, tissue homeostasis and interactions between tumours and stroma. However, the mechanisms by which these actions are executed are incompletely understood. Here we report a differential phosphoproteomics study, using a SILAC approach, of PDGF-stimulated mouse embryonic fibroblasts (MEFs). 116 phospho-sites were identified as up-regulated and 45 down-regulated in response to PDGF stimulation. These encompass proteins involved in cell adhesion, cytoskeleton regulation and vesicle-mediated transport, significantly expanding the range of proteins implicated in PDGF signalling pathways. Included in the down-regulated class was the microtubule bundling protein Collapsin Response Mediator Protein 2 (CRMP2). In response to stimulation with PDGF, CRMP2 was dephosphorylated on Thr514, an event known to increase CRMP2 activity. This was reversed in the presence of micromolar concentrations of the protein phosphatase inhibitor okadaic acid, implicating PDGF-induced activation of protein phosphatase 1 (PP1) in CRMP2 regulation. Depletion of CRMP2 resulted in impairment of PDGF-mediated cell migration in an in vitro wound healing assay. These results show that CRMP2 is required for PDGF-directed cell migration in vitro.
Collapse
|
42
|
Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway. J Neuroimmunol 2017; 305:108-114. [PMID: 28284330 DOI: 10.1016/j.jneuroim.2017.02.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/18/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
The microglia-mediated neuroinflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Advanced glycation end products (AGEs)/receptor for advanced glycation end products (RAGE) or Rho/Rho kinase (ROCK) are both involved in the development of non-specific inflammation. However, there are few reports about their effects on neuroinflammation. Here, we explored the mechanism of AGEs/RAGE/Rho/ROCK pathway underlying the non-specific inflammation and microglial polarization in BV2 cells. AGEs could activate ROCK pathway in a concentration-dependent manner. ROCK inhibitor fasudil and RAGE-specific blocker FPS-ZM1 significantly inhibited AGEs-mediated activation of BV2 cells and induction of reactive oxygen species (ROS). FPS-ZM1 and fasudil exerted their anti-inflammatory effects by downregulating inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NLRP3 and nuclear translocation of nuclear factor kappa B (NF-κB) p65. In addition, AGEs induced both M1 (CD16/32, M1 marker) and M2 (CD206, M2 marker) phenotype in BV2 cells. Fasudil and FPS-ZM1 led to a decreased M1 and increased M2 phenotype. Together, these results indicate that the AGEs/RAGE/Rho/ROCK pathway in BV2 cells could intensify the non-specific inflammation of AD, which will provide novel strategies for the development of anti-AD drugs.
Collapse
|
43
|
Rozo C, Chinenov Y, Maharaj RK, Gupta S, Leuenberger L, Kirou KA, Bykerk VP, Goodman SM, Salmon JE, Pernis AB. Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE. Ann Rheum Dis 2016; 76:740-747. [PMID: 28283529 DOI: 10.1136/annrheumdis-2016-209850] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/04/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Deregulated production of interleukin (IL)-17 and IL-21 contributes to the pathogenesis of autoimmune disorders such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, and an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. METHODS ROCK activity in peripheral blood mononuclear cells (PBMCs) from 29 patients with SLE, 31 patients with RA and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor) or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity and IL-17 and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. RESULTS ROCK activity levels were significantly higher in patients with SLE and RA than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y27632, KD025 or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. CONCLUSIONS ROCK activity is elevated in PBMCs from patients with SLE and RA. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches.
Collapse
Affiliation(s)
- Cristina Rozo
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Yurii Chinenov
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Reena Khianey Maharaj
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Laura Leuenberger
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Kyriakos A Kirou
- Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
| | - Vivian P Bykerk
- Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Susan M Goodman
- Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Jane E Salmon
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA.,Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
44
|
Zhang X, An H, Li J, Zhang Y, Liu Y, Jia Z, Zhang W, Chu L, Zhang H. Selective activation of vascular K v 7.4/K v 7.5 K + channels by fasudil contributes to its vasorelaxant effect. Br J Pharmacol 2016; 173:3480-3491. [PMID: 27677924 DOI: 10.1111/bph.13639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Kv 7 (Kv 7.1-7.5) channels play an important role in the regulation of neuronal excitability and the cardiac action potential. Growing evidence suggests Kv 7.4/Kv 7.5 channels play a crucial role in regulating vascular smooth muscle contractility. Most of the reported Kv 7 openers have shown poor selectivity across these five subtypes. In this study, fasudil - a drug used for cerebral vasospasm - has been found to be a selective opener of Kv 7.4/Kv 7.5 channels. EXPERIMENTAL APPROACH A perforated whole-cell patch technique was used to record the currents and membrane potential. Homology modelling and a docking technique were used to investigate the interaction between fasudil and the Kv 7.4 channel. An isometric tension recording technique was used to assess the vascular tension. KEY RESULTS Fasudil selectively and potently enhanced Kv 7.4 and Kv 7.4/Kv 7.5 currents expressed in HEK293 cells, and shifted the voltage-dependent activation curve in a more negative direction. Fasudil did not affect either Kv 7.2 and Kv 7.2/Kv 7.3 currents expressed in HEK293 cells, the native neuronal M-type K+ currents, or the resting membrane potential in small rat dorsal root ganglia neurons. The Val248 in S5 and Ile308 in S6 segment of Kv 7.4 were critical for this activating effect of fasudil. Fasudil relaxed precontracted rat small arteries in a concentration-dependent fashion; this effect was antagonized by the Kv 7 channel blocker XE991. CONCLUSIONS AND IMPLICATIONS These results suggest that fasudil is a selective Kv 7.4/Kv 7.5 channel opener and provide a new dimension for developing selective Kv 7 modulators and a new prospective for the use, action and mechanism of fasudil.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China.,Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Junwei Li
- Key Laboratory of Molecular Biophysics, Hebei Province; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yang Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li Chu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
45
|
Effect of N-arachidonoyl-l-serine on human cerebromicrovascular endothelium. Biochem Biophys Rep 2016; 8:254-260. [PMID: 28955964 PMCID: PMC5613961 DOI: 10.1016/j.bbrep.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 09/14/2016] [Indexed: 01/22/2023] Open
Abstract
N-arachidonoyl-l-serine (ARA-S) is an endogenous lipid, chemically related to the endocannabinoid, N-arachidonoyl ethanolamine (i.e., anandamide) and with similar physiologic and pathophysiologic functions. Reports indicate that ARA-S possesses vasoactive and neuroprotective properties resembling those of cannabinoids. However, in contrast to cannabinoids, ARA-S binds weakly to its known classical receptors, CB1 and CB2, and is therefore considered to be a 'cannabinoid-like' substance. The originally described ARA-S induced-endothelial-dependent vasorelaxation was not abrogated by CB1, CB2 receptor antagonists or TRPV1 competitive inhibitor. The present report demonstrates that ARA-S enhances the fluorescence staining of both cannabinoid receptors (CB1 and CB2) in human brain endothelial cells (HBEC). This reaction is specific since it was reduced by respective selective receptor antagonist (SR141716A and SR141728A). ARA-S alone or in the presence of ET-1 was shown to alter the cytoskeleton (actin). Both ARA-S stimulated phosphorylation of various kinases (MAPK, Akt, JNK and c-JUN) and alteration of cytoskeleton are mediated via CB1, CB2 and TRPV1 receptors. The findings also showed the involvement of Rho/Rock and PI3/Akt/NO pathways in the ARA-S-induced phosphorylation of kinases and actin reorganization in HBEC. All of the above mentioned ARA-S-induced effects were reduced by the treatment with LY294002 (inhibitor of PI3/Akt kinase), except MAPK kinase. In addition, MAPK, JNK, c-JUN phosphorylation were inhibited by H1152 (inhibitor of Rho/ROCK kinase), except Akt kinase. Furthermore, PI3/Akt pathway was inhibited by pretreatment with l-NAME (inhibitor of NOS). The findings suggest that ARA-S is a modulator of Rho kinase and may play a critical role in the regulation of its activity and subsequent effects on the cytoskeleton and its role in supporting essential cell functions like vasodilation, proliferation and movement.
Collapse
Key Words
- 2-AG, 2-Arachidonoylglycerol
- ARA-S, N-arachidonoyl-l-serine
- CB1 receptor, cannabinoid receptor 1
- CB2 receptor, cannabinoid receptor 2
- Cannabinoid-like agent
- Cytoskeleton
- ET-1, Endothelin 1
- Endothelin-1
- Erk1/2, extracellular signal-regulated kinases 1and 2
- GPR55, G protein-coupled receptor 55
- HBEC, Human brain endothelial cells
- Human brain endothelial cells
- JNK, c-JUN N-terminal kinase
- L-NAME, L-NG-Nitroarginine methyl ester
- MAPK, Mitogen-activated protein kinases
- N-arachidonoyl-L-serine
- NO, nitric oxide
- PI3, Phosphatidylinositol-4,5-bisphosphate 3-kinase
- ROCK, Rho-associated protein kinase
- Signal transduction pathway
- TPRV1, transient receptor potential vanilloid receptor 1
- e-NOS, endothelial nitric oxide synthetase
Collapse
|
46
|
Liu FT, Yang YJ, Wu JJ, Li S, Tang YL, Zhao J, Liu ZY, Xiao BG, Zuo J, Liu W, Wang J. Fasudil, a Rho kinase inhibitor, promotes the autophagic degradation of A53T α-synuclein by activating the JNK 1/Bcl-2/beclin 1 pathway. Brain Res 2016; 1632:9-18. [DOI: 10.1016/j.brainres.2015.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/22/2015] [Accepted: 12/03/2015] [Indexed: 12/21/2022]
|
47
|
O'Meara RW, Cummings SE, Michalski JP, Kothary R. A new in vitro mouse oligodendrocyte precursor cell migration assay reveals a role for integrin-linked kinase in cell motility. BMC Neurosci 2016; 17:7. [PMID: 26831726 PMCID: PMC4736119 DOI: 10.1186/s12868-016-0242-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background The decline of remyelination in chronic multiple sclerosis (MS) is in part attributed to inadequate oligodendrocyte precursor cell (OPC) migration, a process governed by the extracellular matrix (ECM). Elucidating the mechanisms underlying OPC migration is therefore an important step towards developing new therapeutic strategies to promote myelin repair. Many seminal OPC culture methods were established using rat-sourced cells, and these often need modification for use with mouse OPCs due to their sensitive nature. It is of interest to develop mouse OPC assays to leverage the abundant transgenic lines. To this end, we developed a new OPC migration method specifically suited for use with mouse-derived cells. Results To validate its utility, we combined the new OPC migration assay with a conditional knockout approach to investigate the role of integrin-linked kinase (ILK) in OPC migration. ILK is a focal adhesion protein that stabilizes cellular adhesions to the extracellular matrix (ECM) by mediating a linkage between matrix-bound integrin receptors and the cytoskeleton. We identified ILK as a regulator of OPC migration on three permissive substrates. ILK loss produced an early, albeit transient, deficit in OPC migration on laminin matrix, while migration on fibronectin and polylysine was heavily reliant on ILK expression. Conclusions Inclusively, our work provides a new tool for studying mouse OPC migration and highlights the role of ILK in its regulation on ECM proteins relevant to MS.
Collapse
Affiliation(s)
- Ryan W O'Meara
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Sarah E Cummings
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - John-Paul Michalski
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,University of Ottawa Centre for Neuromuscular Disease, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
48
|
Affiliation(s)
- Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Chien-Huan Weng
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Biochemistry Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Cristina Rozo
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
| | - Woelsung Yi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
49
|
Combination treatment with fasudil and clioquinol produces synergistic anti-tumor effects in U87 glioblastoma cells by activating apoptosis and autophagy. J Neurooncol 2016; 127:261-70. [PMID: 26725099 DOI: 10.1007/s11060-015-2044-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/26/2015] [Indexed: 02/06/2023]
Abstract
Survival of patients with glioblastoma (GBM) remains poor, and novel treatment methods are urgently needed. In this study, we tested the effects of a combination of fasudil, a ROCK inhibitor, and clioquinol, an 8-hydroxyquinoline derivative with antimicrobial properties, on human GBM U87 cells. Combination treatment synergistically inhibited the viability of glioma cells but not mouse normal neuron HT22 cells and significantly induced mitochondria-mediated apoptosis. Moreover, the combination was also found to trigger macro-autophagy (henceforth referred to as autophagy) by increasing the expression levels of several proteins involved in the induction of autophagy. Further studies showed that 3-methyladenine (3-MA) or chloroquine (CQ), two autophagy inhibitors, abrogated the cytotoxic effects of the combination treatment as well as the autophagy. Overall, we demonstrated that fasudil and clioquinol show synergistic anti-cancer effects, providing evidence for the further development of combination therapy for GBM.
Collapse
|
50
|
Tu YL, Chen QH, Wang SN, Uri A, Yang XH, Chu JQ, Chen JK, Luo BL, Chen XH, Wen SJ, Pi RB. Discovery of lipoic acid-4-phenyl-1H-pyrazole hybrids as novel bifunctional ROCK inhibitors with antioxidant activity. RSC Adv 2016. [DOI: 10.1039/c6ra12081d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A potently selective ROCK2 inhibitor with antioxidative properties.
Collapse
|