1
|
Jain A, Sharma R, Gautam L, Shrivastava P, Singh KK, Vyas SP. Biomolecular interactions between Plasmodium and human host: A basis of targeted antimalarial therapy. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:401-419. [PMID: 38519002 DOI: 10.1016/j.pharma.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Malaria is one of the serious health concerns worldwide as it remains a clinical challenge due to the complex life cycle of the malaria parasite and the morphological changes it undergoes during infection. The malaria parasite multiplies rapidly and spreads in the population by changing its alternative hosts. These various morphological stages of the parasite in the human host cause clinical symptoms (anemia, fever, and coma). These symptoms arise due to the preprogrammed biology of the parasite in response to the human pathophysiological response. Thus, complete elimination becomes one of the major health challenges. Although malaria vaccine(s) are available in the market, they still contain to cause high morbidity and mortality. Therefore, an approach for eradication is needed through the exploration of novel molecular targets by tracking the epidemiological changes the parasite adopts. This review focuses on the various novel molecular targets.
Collapse
Affiliation(s)
- Anamika Jain
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, M.P., 474005, India.
| | - Laxmikant Gautam
- Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228, India
| | - Priya Shrivastava
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Suresh P Vyas
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India.
| |
Collapse
|
2
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
3
|
Antimalarial Activities of ( Z)-2-(Nitroheteroarylmethylene)-3(2 H)-Benzofuranone Derivatives: In Vitro and In Vivo Assessment and β-Hematin Formation Inhibition Activity. Antimicrob Agents Chemother 2021; 65:e0268320. [PMID: 34228544 DOI: 10.1128/aac.02683-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of (Z)-2-(nitroheteroarylmethylene)-3(2H)-benzofuranones possessing nitroheteroaryl groups of nitroimidazole, nitrofuran, and nitrothiophene moieties was screened for antiplasmodium activity against a drug-sensitive strain (3D7 strain) and a multidrug-resistant (chloroquine [CQ] and pyrimethamine) strain (K1 strain) of Plasmodium falciparum. 5-Nitroimidazole and 4-nitroimidazole analogs were highly selective and active against resistant parasites, while 5-nitrofuran and 5-nitrothiophene derivatives were more potent against the 3D7 strain than against the K1 strain. Among the synthetic analogues, (Z)-6-chloro-2-(1-methyl-5-nitroimidazol-2-ylmethylene)-3(2H)-benzofuranone (compound 5h) exhibited the highest activity (50% inhibitory concentration [IC50], 0.654 nM) against the K1 strain and (Z)-7-methoxy-2-(5-nitrothiophen-2-ylmethylene)-3(2H)-benzofuranone (10g) showed the highest activity (IC50, 0.28 μM) against the 3D7 strain in comparison with the activities of CQ (IC50s of 3.13 and 206.3 nM against 3D7 and K1 strains, respectively). The more active compounds, with IC50s lower than 5 μg/ml (∼20 μM), were further studied for their cytotoxicity responses using KB cells. From these studies, 5-nitroimidazole, 4-nitroimidazole, and 5-nitrofuran analogues were shown to be cytotoxic against KB cells, while 5-nitrothiophene analogues were shown to have the least cytotoxic effects. To gain some insight into their potential contributing mechanisms of action, three derivatives, 10e, 10g, and 10h (from the nitrothiophene subgroup, possessing 6-methoxy, 7-methoxy, and 6,7-dimethoxy substituents, respectively, on their benzofuranone moieties), showing the least toxicity and highest selectivity indices were assessed for their β-hematin formation inhibition activity. Compound 10g demonstrated the highest inhibition activity (IC50, 10.78 μM) in comparison with that of CQ (IC50, 2.63 μM) as the reference drug. Finally, these three analogues (10e, 10g, and 10h) were further evaluated for their in vivo activities against the Plasmodium berghei/albino mouse model (Peter's test). The tested analogues were shown to be active, reducing the percentages of erythrocytes that contained parasites by 53.4, 48.8, and 32.4%, respectively.
Collapse
|
4
|
Adebayo JO, Tijjani H, Adegunloye AP, Ishola AA, Balogun EA, Malomo SO. Enhancing the antimalarial activity of artesunate. Parasitol Res 2020; 119:2749-2764. [PMID: 32638101 PMCID: PMC7340003 DOI: 10.1007/s00436-020-06786-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/25/2020] [Indexed: 12/05/2022]
Abstract
The global challenge to the treatment of malaria is mainly the occurrence of resistance of malaria parasites to conventionally used antimalarials. Artesunate, a semisynthetic artemisinin compound, and other artemisinin derivatives are currently used in combination with selected active antimalarial drugs in order to prevent or delay the emergence of resistance to artemisinin derivatives. Several methods, such as preparation of hybrid compounds, combination therapy, chemical modification and the use of synthetic materials to enhance solubility and delivery of artesunate, have been employed over the years to improve the antimalarial activity of artesunate. Each of these methods has advantages it bestows on the efficacy of artesunate. This review discussed the various methods employed in enhancing the antimalarial activity of artesunate and delaying the emergence of resistance of parasite to it.
Collapse
Affiliation(s)
- J O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| | - H Tijjani
- Department of Biochemistry, Bauchi State University, Gadau, Bauchi State, Nigeria
| | - A P Adegunloye
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - A A Ishola
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - E A Balogun
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - S O Malomo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
5
|
Bouwman SA, Zoleko-Manego R, Renner KC, Schmitt EK, Mombo-Ngoma G, Grobusch MP. The early preclinical and clinical development of cipargamin (KAE609), a novel antimalarial compound. Travel Med Infect Dis 2020; 36:101765. [PMID: 32561392 DOI: 10.1016/j.tmaid.2020.101765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cipargamin (KAE609) is a novel spiroindolone class drug for the treatment of malaria, currently undergoing phase 2 clinical development. This review provides an overview and interpretation of the pre-clinical and clinical data of this possible next-generation antimalarial drug published to date. METHODS We systematically searched the literature for studies on the preclinical and clinical development of cipargamin. PubMed and Google Scholar databases were searched using the terms 'cipargamin', 'KAE609' or 'NITD609' in the English language; one additional article was identified during revision. Nineteen of these in total 43 papers identified reported original studies; 13 of those articles were on pre-clinical studies and 6 reported clinical trials. RESULTS A total of 20 studies addressing its preclinical and clinical development have been published on this compound at the time of writing. Cipargamin acts on the PfATP4, which is a P-type Na + ATPase disrupting the Na + homeostasis in the parasite. Cipargamin is a very fast-acting antimalarial, it is active against all intra-erythrocytic stages of the malaria parasite and exerts gametocytocidal activity, with transmission-blocking potential. It is currently undergoing phase 2 clinical trial to assess safety and efficacy, with a special focus on hepatic safety. CONCLUSION In the search for novel antimalarial drugs, cipargamin exhibits promising properties, exerting activity against multiple intra-erythrocytic stages of plasmodia, including gametocytes. It exhibits a favourable pharmacokinetic profile, possibly allowing for single-dose treatment with a suitable combination partner. According to the clinical results of the first studies in Asian malaria patients, a possible safety concern is hepatotoxicity.
Collapse
Affiliation(s)
- Suzan Am Bouwman
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, the Netherlands; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Rella Zoleko-Manego
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Esther K Schmitt
- Novartis Pharma AG, Global Health Development Unit, Basel, Switzerland
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, the Netherlands; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Abstract
The scientific community worldwide has realized that malaria elimination will not be possible without development of safe and effective transmission-blocking interventions. Primaquine, the only WHO recommended transmission-blocking drug, is not extensively utilized because of the toxicity issues in G6PD deficient individuals. Therefore, there is an urgent need to develop novel therapeutic interventions that can target malaria parasites and effectively block transmission. But at first, it is imperative to unravel the existing portfolio of transmission-blocking drugs. This review highlights transmission-blocking potential of current antimalarial drugs and drugs that are in various stages of clinical development. The collective analysis of the relationships between the structure and the activity of transmission-blocking drugs is expected to help in the design of new transmission-blocking antimalarials.
Collapse
|
7
|
Grygorenko OO, Volochnyuk DM, Ryabukhin SV, Judd DB. The Symbiotic Relationship Between Drug Discovery and Organic Chemistry. Chemistry 2019; 26:1196-1237. [PMID: 31429510 DOI: 10.1002/chem.201903232] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Indexed: 12/20/2022]
Abstract
All pharmaceutical products contain organic molecules; the source may be a natural product or a fully synthetic molecule, or a combination of both. Thus, it follows that organic chemistry underpins both existing and upcoming pharmaceutical products. The reverse relationship has also affected organic synthesis, changing its landscape towards increasingly complex targets. This Review article sets out to give a concise appraisal of this symbiotic relationship between organic chemistry and drug discovery, along with a discussion of the design concepts and highlighting key milestones along the journey. In particular, criteria for a high-quality compound library design enabling efficient virtual navigation of chemical space, as well as rise and fall of concepts for its synthetic exploration (such as combinatorial chemistry; diversity-, biology-, lead-, or fragment-oriented syntheses; and DNA-encoded libraries) are critically surveyed.
Collapse
Affiliation(s)
- Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kiev, 02660, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine
| | - Duncan B Judd
- Awridian Ltd., Stevenage Bioscience Catalyst, Gunnelswood Road, Stevenage, Herts, SG1 2FX, UK
| |
Collapse
|
8
|
Kazakova OB, Khusnutdinova EF, Petrova AV, Yamansarov EY, Lobov AN, Fedorova AA, Suponitsky KY. Diastereoselective Synthesis of Triterpenoid 1,2,4-Trioxolanes by Griesbaum Co-ozonolysis. JOURNAL OF NATURAL PRODUCTS 2019; 82:2550-2558. [PMID: 31490689 DOI: 10.1021/acs.jnatprod.9b00393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diastereoselective synthesis of triterpenoid 1,2,4-trioxolanes by Griesbaum co-ozonolysis was shown for the first time. Ozonolysis of 2-methoxyoximes (syn-anti-isomers mixture) of allobetulin or methyl oleanoate with CF3-ketones resulted in asymmetrical spiro-1,2,4-trioxolanes as mixtures of diastereomers in yields up to 80-85%. The configuration of the spiro-C-2 center of individual ozonides was determined by 2D NMR spectra and X-ray crystallographic analysis. The products of ozonolysis of triterpenoid 3-methoxyoximes were mixtures of regioisomeric N-methoxylactams. Thus, the fundamental differences in the oxidation of homologous triterpenoid 2- or 3-methoxyoximes with ozone have been established. These results may afford a new stage in the development of the Griesbaum method as applied to natural compounds and biologically active peroxides.
Collapse
Affiliation(s)
- Oxana B Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences , Ufa , 450054 , Russian Federation
| | - Elmira F Khusnutdinova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences , Ufa , 450054 , Russian Federation
| | - Anastasiya V Petrova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences , Ufa , 450054 , Russian Federation
| | - Emil Yu Yamansarov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences , Ufa , 450054 , Russian Federation
| | - Alexander N Lobov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences , Ufa , 450054 , Russian Federation
| | - Alexandra A Fedorova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences , Ufa , 450054 , Russian Federation
| | - Kyrill Yu Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Moscow 119991 , Russian Federation
| |
Collapse
|
9
|
Hounkpatin AB, Kreidenweiss A, Held J. Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: a review on the mode of action and emerging trial data. Infect Drug Resist 2019; 12:553-570. [PMID: 30881061 PMCID: PMC6411314 DOI: 10.2147/idr.s151031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tafenoquine is an 8-aminoquinoline with activity against all human life cycle stages of Plasmodium vivax, including dormant liver stages – so called hypnozoites. Its long half-life of ~15 days is allowing for a single exposure regimen. It has been under development since 1980 and received approval by the US Food and Drug Administration in summer 2018 as an anti-relapse drug for P. vivax malaria in patients aged 16 years and older and for prophylaxis of malaria caused by any Plasmodium species in adults. Prior to tafenoquine administration, glucose-6-phosphate dehydrogenase (G6PD) deficiency needs to be excluded by testing. Individuals with a deficient G6PD activity are at risk of tafenoquine-induced hemolysis – as is the case for primaquine, the mainstay drug for P. vivax radical cure. A wealth of clinical studies have been conducted and are still ongoing to assess the safety, tolerability, and efficacy of tafenoquine. This review focuses on data emerging from the latest clinical trials on P. vivax radical cure with tafenoquine, the key studies for regulatory approval of tafenoquine, and elucidates the latest hypothesis on the mode of action.
Collapse
Affiliation(s)
- Aurore B Hounkpatin
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Tübingen, Germany, .,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany, .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon,
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Tübingen, Germany, .,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany,
| | - Jana Held
- Institute of Tropical Medicine, Eberhard Karls University Tübingen, Tübingen, Germany, .,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany, .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon,
| |
Collapse
|
10
|
Mengue JB, Held J, Kreidenweiss A. AQ-13 - an investigational antimalarial drug. Expert Opin Investig Drugs 2019; 28:217-222. [DOI: 10.1080/13543784.2019.1560419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Juliana Boex Mengue
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen,
Germany
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen,
Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen,
Germany
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital,
Lambaréné, Gabon
| |
Collapse
|
11
|
Fischer G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Koller R, Mombo-Ngoma G, Grobusch MP. The early preclinical and clinical development of ganaplacide (KAF156), a novel antimalarial compound. Expert Opin Investig Drugs 2018; 27:803-810. [PMID: 30223692 DOI: 10.1080/13543784.2018.1524871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Ganaplacide (previously known as KAF156) is a novel antimalarial compound part of the imidazolopiperazine family. AREAS COVERED At the time of writing, a total of eight studies addressing its preclinical and clinical development have been published on this compound, which is currently in phase 2 of clinical development, alongside lumefantrine in a novel soluble formulation as combination partner. This review provides an overview and interpretation of the published pre-clinical and clinical data of this possible next-generation antimalarial drug. EXPERT OPINION In the search for a 'magic bullet' in malaria therapy and prophylaxis facilitating single encounter radical cure and prophylaxis, ganaplacide demonstrates some promising properties toward this ultimate goal. The available data suggest that ganaplacide exerts multi-stage antimalarial activity, and that its pharmacokinetic profile potentially allows for a simplified dosing regimen compared to that of existing antimalarial drug combinations. The first in-patient results demonstrate promising single-dose antimalarial activity, and no serious in-human safety and tolerability concerns have been reported to date.
Collapse
Affiliation(s)
- Robin Koller
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases , Amsterdam University Medical Centers, University of Amsterdam , Amsterdam , The Netherlands.,b Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon
| | - Ghyslain Mombo-Ngoma
- b Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,c Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany.,d Department of Tropical Medicine , Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf , Hamburg , Germany.,e Department of Parasitology , Université des Sciences de la Santé , Libreville , Gabon
| | - Martin P Grobusch
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases , Amsterdam University Medical Centers, University of Amsterdam , Amsterdam , The Netherlands.,b Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,c Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany.,f Institute of Infectious Diseases and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,g Masanga Medical Research Unit , Masanga , Sierra Leone
| |
Collapse
|
13
|
Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur J Med Chem 2018; 155:459-482. [PMID: 29908440 DOI: 10.1016/j.ejmech.2018.05.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Abstract
The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design.
Collapse
|
14
|
Duffey M, Sanchez CP, Lanzer M. Profiling of the anti-malarial drug candidate SC83288 against artemisinins in Plasmodium falciparum. Malar J 2018; 17:121. [PMID: 29558913 PMCID: PMC5861637 DOI: 10.1186/s12936-018-2279-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/15/2018] [Indexed: 12/29/2022] Open
Abstract
Background The increased resistance of the human malaria parasite Plasmodium falciparum to currently employed drugs creates an urgent call for novel anti-malarial drugs. Particularly, efforts should be devoted to developing fast-acting anti-malarial compounds in case clinical resistance increases to the first-line artemisinin-based combination therapy. SC83288, an amicarbalide derivative, is a clinical development candidate for the treatment of severe malaria. SC83288 is fast-acting and able to clear P. falciparum parasites at low nanomolar concentrations in vitro, as well as in a humanized SCID mouse model system in vivo. In this study, the antiplasmodial activity of SC83288 against artemisinins was profiled in order to assess its potential to replace, or be combined with, artemisinin derivatives. Results Based on growth inhibition and ring survival assays, no cross-resistance was observed between artemisinins and SC83288, using parasite lines that were resistant to either one of these drugs. In addition, no synergistic or antagonistic interaction was observed between the two drugs. This study further confirmed that SC83288 is a fast acting drug in several independent assays. Combinations of SC83288 and artesunate maintained the rapid parasite killing activities of both components. Conclusion The results obtained in this study are consistent with artemisinins and SC83288 having distinct modes of action and different mechanisms of resistance. This study further supports efforts to continue the clinical development of SC83288 against severe malaria as an alternative to artemisinins in areas critically affected by artemisinin-resistance. Considering its fast antiplasmodial activity, SC83288 could be combined with a slow-acting anti-malarial drug.
Collapse
Affiliation(s)
- Maëlle Duffey
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120, Heidelberg, Germany
| | - Cecilia P Sanchez
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120, Heidelberg, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany. .,German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Poonam, Gupta Y, Gupta N, Singh S, Wu L, Chhikara BS, Rawat M, Rathi B. Multistage inhibitors of the malaria parasite: Emerging hope for chemoprotection and malaria eradication. Med Res Rev 2018; 38:1511-1535. [DOI: 10.1002/med.21486] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Poonam
- Department of Chemistry; Miranda House, University of Delhi; India
| | - Yash Gupta
- National Institute of Malaria Research (ICMR); New Delhi India
| | - Nikesh Gupta
- Special Centre for Nanosciences; Jawaharlal Nehru University; New Delhi India
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry; Hansraj College University Enclave, University of Delhi; Delhi India
| | - Lidong Wu
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA USA
- Key Laboratory of Control of Quality and Safety for Aquatic Products; Ministry of Agriculture, Chinese Academy of Fishery Sciences; Beijing China
| | | | - Manmeet Rawat
- Department of Internal Medicine; University of New Mexico School of Medicine; Albuquerque NM USA
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry; Hansraj College University Enclave, University of Delhi; Delhi India
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
16
|
Moreno-Sabater A, Pérignon JL, Mazier D, Lavazec C, Soulard V. Humanized mouse models infected with human Plasmodium species for antimalarial drug discovery. Expert Opin Drug Discov 2017; 13:131-140. [DOI: 10.1080/17460441.2018.1410136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alicia Moreno-Sabater
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
- Assistance Publique - Hopitaux de Paris - Hôpitaux Universitaires Paris-Est - Site Saint-Antoine, Paris, Île-de-France France
| | | | - Dominique Mazier
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
| | - Catherine Lavazec
- Institut Cochin – INSERM U1016, Paris, Île-de-France France
- CNRS - UMR8104, Paris, France
- Universite Paris Descartes, Paris, Île-de-France France
| | - Valerie Soulard
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
| |
Collapse
|
17
|
Held J, Supan C, Salazar CLO, Tinto H, Bonkian LN, Nahum A, Sié A, Abdulla S, Cantalloube C, Djeriou E, Bouyou-Akotet M, Ogutu B, Mordmüller B, Kreidenweiss A, Siribie M, Sirima SB, Kremsner PG. Safety and efficacy of the choline analogue SAR97276 for malaria treatment: results of two phase 2, open-label, multicenter trials in African patients. Malar J 2017; 16:188. [PMID: 28472957 PMCID: PMC5418711 DOI: 10.1186/s12936-017-1832-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains one of the most important infectious diseases. Treatment options for severe malaria are limited and the choline analogue SAR97276A is a novel chemical entity that was developed primarily as treatment for severe malaria. Before starting clinical investigations in severely ill malaria patients, safety and efficacy of SAR97276A was studied in patients with uncomplicated malaria. Here, we summarize two open-label, multi-center phase 2 trials assessing safety and efficacy of parenterally administered SAR97276A in African adults and children with falciparum malaria. RESULTS Study 1 was conducted in Burkina Faso, Gabon, Benin and Tanzania between August 2008 and July 2009 in malaria patients in an age de-escalating design (adults, children). A total of 113 malaria patients received SAR97276A. Adults were randomized to receive a single dose SAR97296A given either intramuscularly (IM) (0.18 mg/kg) or intravenously (IV) (0.14 mg/kg). If a single dose was not efficacious a second adult group was planned to test a three dose regimen administered IM once daily for 3 days. Single dose SAR97276A showed insufficient efficacy in adults (IM: 20 of 34 cured, 59%; and IV: 23/30 cured, 77%). The 3-day IM regimen showed acceptable efficacy in adults (27/30, 90%) but not in children (13/19, 68%). SAR97276A was well tolerated but no further groups were recruited due lack of efficacy. Study 2 was conducted between October 2011 and January 2012 in Burkina Faso, Gabon and Kenya. SAR97276A administered at a higher dose given IM was compared to artemether-lumefantrine. The study population was restricted to underage malaria patients to be subsequently enrolled in two age cohorts (teenagers, children). Rescue therapy was required in all teenaged malaria patients (8/8) receiving SAR97276A once daily (0.5 mg/kg) for 3 days and in 5 out of 8 teenaged patients treated twice daily (0.25 mg/kg) for 3 days. All patients (4/4) in the control group were cured. The study was stopped, before enrollment of children, due to lack of efficacy but the overall safety profile was good. CONCLUSIONS Monotherapy with SAR97276A up to twice daily for 3 days is not an efficacious treatment for falciparum malaria. SAR97276A will not be further developed for the treatment of malaria. Trial registration at clinicaltrials.gov: NCT00739206, retrospectively registered August 20, 2008 for Study 1 and NCT01445938 registered September 26, 2011 for Study 2.
Collapse
Affiliation(s)
- Jana Held
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon. .,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany.
| | - Christian Supan
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Carmen L Ospina Salazar
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | | | - Alain Nahum
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Ali Sié
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Salim Abdulla
- Ifakara Health Research Center, Bagamoyo, United Republic of Tanzania
| | | | | | - Marielle Bouyou-Akotet
- Département de Parasitologie, Mycologie, Médecine Tropicale, Université des Sciences de la Santé, Libreville, Gabon
| | | | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | | | - Sodiomon B Sirima
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon. .,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
[Role of primaquine in malaria control and elimination in French-speaking Africa]. BULLETIN DE LA SOCIETE DE PATHOLOGIE EXOTIQUE (1990) 2017; 110:198-206. [PMID: 28417346 DOI: 10.1007/s13149-017-0556-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
Primaquine, an 8-aminoquinoline, is a relatively unknown and underutilized drug in French-speaking African countries. It acts against the liver stage parasites of all human malaria species, asexual blood stages of Plasmodium vivax and, to a lesser degree, Plasmodium falciparum; P. falciparum mature gametocytes, and P. vivax and Plasmodium ovale hypnozoites. Gastrointestinal disturbances are its most common side effects. The clinical utility of primaquine is limited due to its hematological side effects in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency and other contraindications (pregnant woman, breastfeeding woman, infants less than 6 months old). In the light of the recent recommendations of the World Health Organization (WHO), we propose to examine how primaquine can be used in French-speaking Africa to improve malaria control and move towards malaria elimination. Two indications supported by the WHO are of relevance in Africa. First, artemisinin-based combination therapies and primaquine given as a single low dose (0.25 mg base/kg) are effective to kill asexual and sexual parasites of P. falciparum, are well-tolerated, and have very little risk even in mild to moderate G6PD-deficient patients. This strategy may be helpful to contain transmission in an area in Africa where P. falciparum malaria incidence has decreased considerably. There is an ethical concern in administering primaquine as a gametocytocide as it does not confer any direct benefit to the treated patient. However, the single low-dose primaquine is most likely associated with very low risk for adverse hematological effects, and WHO recommends its use even without prior G6PD testing. In our opinion, clinical studies including G6PD test should be conducted to assess the safety of low-dose primaquine in African patients. Second, primaquine is effective and necessary for radical treatment of P. vivax and P. ovale, but the standard 14-day treatment (0.25-0.5 mg base/kg/day) is not recommended in patients with G6PD deficiency. Prior G6PD testing is required before prescribing primaquine for radical treatment. The use of primaquine for radical treatment in patients without contraindications does not raise any major ethical problem since the probability of relapse in patients who do not receive anti-hypnozoite treatment can be relatively high and each relapse can cause or aggravate anemia, especially in children. In our opinion, patients with mild or moderate G6PD deficiency should not be treated with primaquine at present. Further clinical studies are necessary to define the role of this drug for radical treatment in G6PD-deficient African patients. Without primaquine, the eventual elimination of P. vivax and P. ovale malaria appears to be very difficult. Updated epidemiological data on G6PD, Duffy antigen, and the current distribution of and burden due to P. vivax and P. ovale are required for a rational use of primaquine in the African continent. Moreover, clinical studies on primaquine are required in Africa.
Collapse
|
19
|
Sun W, Huang X, Li H, Tawa G, Fisher E, Tanaka TQ, Shinn P, Huang W, Williamson KC, Zheng W. Novel lead structures with both Plasmodium falciparum gametocytocidal and asexual blood stage activity identified from high throughput compound screening. Malar J 2017; 16:147. [PMID: 28407766 PMCID: PMC5390467 DOI: 10.1186/s12936-017-1805-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Blocking malaria transmission is an important step in eradicating malaria. In the field, transmission requires the production of sexual stage Plasmodium parasites, called gametocytes, which are not effectively killed by the commonly used anti-malarials allowing individuals to remain infectious after clearance of asexual parasites. METHODS To identify new gametocytocidal compounds, a library of 45,056 compounds with diverse structures was screened using a high throughput gametocyte viability assay. The characteristics of active hits were further evaluated against asexual stage parasites in a growth inhibition assay. Their cytotoxicity were tested against mammalian cells in a cytotoxicity assay. The chemical scaffold similarity of active hits were studied using scaffold cluster analysis. RESULTS A set of 23 compounds were identified and further confirmed for their activity against gametocytes. All the 23 confirmed compounds possess dual-activities against both gametocytes responsible for human to mosquito transmission and asexual parasites that cause the clinical symptoms. Three of these compounds were fourfold more active against gametocytes than asexual parasites. Further cheminformatic analysis revealed three sets of novel scaffolds, including highly selective 4-1H-pyrazol-5-yl piperidine analogs. CONCLUSIONS This study revealed important new structural scaffolds that can be used as starting points for dual activity anti-malarial drug development.
Collapse
Affiliation(s)
- Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892 USA
| | - Xiuli Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892 USA
| | - Hao Li
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892 USA
| | - Gregory Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892 USA
| | - Ethan Fisher
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892 USA
| | - Takeshi Q. Tanaka
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892 USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892 USA
| | - Kim C. Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
20
|
Pérès B, Nasr R, Zarioh M, Lecerf-Schmidt F, Di Pietro A, Baubichon-Cortay H, Boumendjel A. Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity. Eur J Med Chem 2017; 130:346-353. [PMID: 28273561 DOI: 10.1016/j.ejmech.2017.02.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
With the aim to develop anticancer agents acting selectively against resistant tumor cells, we investigated ferrocene embedded into chalcone, aurone and flavone skeletons. These compounds were conceived and then investigated based on the concept of collateral sensitivity, where the target is the Achilles Heel of cancer cells overexpressing the multidrug ABC transporter MRP1. The 14 synthesized compounds were evaluated for their ability to induce efflux of glutathione (GSH) from tumor cells overexpressing MRP1. When tested at 5 and 20 μM, at least one compound from each series was found to be a highly inducer of GSH efflux. The different compounds inducing a high efflux of GSH were evaluated on both sensitive and resistant cell lines, and two of them, belonging to the flavones class were found to be more cytotoxic on resistant cancer cells, with the best selectivity ratio >9.1. Our results bring chemical and biological bases for further optimization.
Collapse
Affiliation(s)
- Basile Pérès
- Département de Pharmacochimie Moléculaire, Université Grenoble-Alpes, CNRS UMR 5063, F-38041 Grenoble, France.
| | - Rachad Nasr
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-University of Lyon IBCP, 7 passage du Vercors, F-69367 Lyon, France.
| | - Malik Zarioh
- Département de Pharmacochimie Moléculaire, Université Grenoble-Alpes, CNRS UMR 5063, F-38041 Grenoble, France.
| | - Florine Lecerf-Schmidt
- Département de Pharmacochimie Moléculaire, Université Grenoble-Alpes, CNRS UMR 5063, F-38041 Grenoble, France.
| | - Attilio Di Pietro
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-University of Lyon IBCP, 7 passage du Vercors, F-69367 Lyon, France.
| | - Hélène Baubichon-Cortay
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-University of Lyon IBCP, 7 passage du Vercors, F-69367 Lyon, France.
| | - Ahcène Boumendjel
- Département de Pharmacochimie Moléculaire, Université Grenoble-Alpes, CNRS UMR 5063, F-38041 Grenoble, France.
| |
Collapse
|
21
|
Pegoraro S, Duffey M, Otto TD, Wang Y, Rösemann R, Baumgartner R, Fehler SK, Lucantoni L, Avery VM, Moreno-Sabater A, Mazier D, Vial HJ, Strobl S, Sanchez CP, Lanzer M. SC83288 is a clinical development candidate for the treatment of severe malaria. Nat Commun 2017; 8:14193. [PMID: 28139658 PMCID: PMC5290327 DOI: 10.1038/ncomms14193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/07/2016] [Indexed: 01/11/2023] Open
Abstract
Severe malaria is a life-threatening complication of an infection with the protozoan parasite Plasmodium falciparum, which requires immediate treatment. Safety and efficacy concerns with currently used drugs accentuate the need for new chemotherapeutic options against severe malaria. Here we describe a medicinal chemistry program starting from amicarbalide that led to two compounds with optimized pharmacological and antiparasitic properties. SC81458 and the clinical development candidate, SC83288, are fast-acting compounds that can cure a P. falciparum infection in a humanized NOD/SCID mouse model system. Detailed preclinical pharmacokinetic and toxicological studies reveal no observable drawbacks. Ultra-deep sequencing of resistant parasites identifies the sarco/endoplasmic reticulum Ca2+ transporting PfATP6 as a putative determinant of resistance to SC81458 and SC83288. Features, such as fast parasite killing, good safety margin, a potentially novel mode of action and a distinct chemotype support the clinical development of SC83288, as an intravenous application for the treatment of severe malaria.
Collapse
Affiliation(s)
| | - Maëlle Duffey
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Thomas D Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yulin Wang
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Roman Rösemann
- 4SC Discovery GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany
| | | | - Stefanie K Fehler
- 4SC AG, Am Klopferspitz 19a, 82152 Martinsried, Germany
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Leonardo Lucantoni
- Eskitis Institute for Drug Discovery, Griffith University, Don Young, Nathan Queensland 4111, Australia
| | - Vicky M Avery
- Eskitis Institute for Drug Discovery, Griffith University, Don Young, Nathan Queensland 4111, Australia
| | - Alicia Moreno-Sabater
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l'hôpital, F-75013 Paris, France
- AP-HP, Hôpital St Antoine, Service de Parasitologie-Mycologie, F-75012 Paris, France
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l'hôpital, F-75013 Paris, France
- AP-HP, Groupe hospitalier La Pitié-Salpêtrière, Service de Parasitologie-Mycologie, F-75013 Paris, France
| | - Henri J Vial
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, Université Montpellier II, cc107, Place Eugène Bataillon, 34095 Montpellier, France
| | - Stefan Strobl
- 4SC Discovery GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany
| | - Cecilia P Sanchez
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Jeeyapant A, Kingston HW, Plewes K, Maude RJ, Hanson J, Herdman MT, Leopold SJ, Ngernseng T, Charunwatthana P, Phu NH, Ghose A, Hasan MMU, Fanello CI, Faiz MA, Hien TT, Day NPJ, White NJ, Dondorp AM. Defining Surrogate Endpoints for Clinical Trials in Severe Falciparum Malaria. PLoS One 2017; 12:e0169307. [PMID: 28052109 PMCID: PMC5215574 DOI: 10.1371/journal.pone.0169307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clinical trials in severe falciparum malaria require a large sample size to detect clinically meaningful differences in mortality. This means few interventions can be evaluated at any time. Using a validated surrogate endpoint for mortality would provide a useful alternative allowing a smaller sample size. Here we evaluate changes in coma score and plasma lactate as surrogate endpoints for mortality in severe falciparum malaria. METHODS Three datasets of clinical studies in severe malaria were re-evaluated: studies from Chittagong, Bangladesh (adults), the African 'AQUAMAT' trial comparing artesunate and quinine (children), and the Vietnamese 'AQ' study (adults) comparing artemether with quinine. The absolute change, relative change, slope of the normalization over time, and time to normalization were derived from sequential measurements of plasma lactate and coma score, and validated for their use as surrogate endpoint, including the proportion of treatment effect on mortality explained (PTE) by these surrogate measures. RESULTS Improvements in lactate concentration or coma scores over the first 24 hours of admission, were strongly prognostic for survival in all datasets. In hyperlactataemic patients in the AQ study (n = 173), lower mortality with artemether compared to quinine closely correlated with faster reduction in plasma lactate concentration, with a high PTE of the relative change in plasma lactate at 8 and 12 hours of 0.81 and 0.75, respectively. In paediatric patients enrolled in the 'AQUAMAT' study with cerebral malaria (n = 785), mortality was lower with artesunate compared to quinine, but this was not associated with faster coma recovery. CONCLUSIONS The relative changes in plasma lactate concentration assessed at 8 or 12 hours after admission are valid surrogate endpoints for severe malaria studies on antimalarial drugs or adjuvant treatments aiming at improving the microcirculation. Measures of coma recovery are not valid surrogate endpoints for mortality.
Collapse
Affiliation(s)
- Atthanee Jeeyapant
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Hugh W. Kingston
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine Plewes
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J. Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Josh Hanson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Global Health Division, Menzies School of Health Research, Darwin, Australia
| | - M. Trent Herdman
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- University College, Oxford, United Kingdom
| | - Stije J. Leopold
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thatsanun Ngernseng
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prakaykaew Charunwatthana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol Unversity,Bangkok,Thailand
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit. Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Aniruddha Ghose
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | | | - Caterina I. Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Md Abul Faiz
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Malaria Research Group, Dev Care Foundation, Dhaka, Bangladesh
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit. Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Cheah PY, Parker M, Dondorp AM. Development of drugs for severe malaria in children. Int Health 2016; 8:313-6. [PMID: 27620923 PMCID: PMC5039823 DOI: 10.1093/inthealth/ihw038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
Over 90% of deaths attributable to malaria are in African children under 5 years old. Yet, new treatments are often tested primarily in adult patients and extrapolations have proven to be sometimes invalid, especially in dosing regimens. For studies in severe malaria an additional complication is that the decline in severe malaria in adult patients precludes sufficiently powered trials in adults, before the intervention can be tested in the ultimate target group, paediatric severe malaria. In this paper we propose an alternative pathway to the development of drugs for use in paediatric severe malaria. We argue that following the classical phase I and II studies, small safety and efficacy studies using well-chosen surrogate endpoints in adult severe malaria be conducted, instead of larger mortality endpoint trials. If the drug appears safe and promising small pilot studies in paediatric severe malaria using the same endpoints can follow. Finally, with carefully observed safeguards in place to ensure high ethical standards, promising candidate interventions can be taken forward into mortality endpoint, well-powered, large paediatric studies in African children with severe malaria. Given the available research capacity, limited numbers of prudently selected interventions can be studied in phase III trials, and adaptive designs should be considered.
Collapse
Affiliation(s)
- Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Bangkok, 10400, Thailand Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK The Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Michael Parker
- The Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Bangkok, 10400, Thailand Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
25
|
The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites. Antimicrob Agents Chemother 2016; 60:5146-58. [PMID: 27297478 DOI: 10.1128/aac.02975-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/27/2016] [Indexed: 01/16/2023] Open
Abstract
Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents.
Collapse
|
26
|
Huskey SEW, Forseth RR, Li H, Jian Z, Catoire A, Zhang J, Ray T, He H, Flarakos J, Mangold JB. Utilization of Stable Isotope Labeling to Facilitate the Identification of Polar Metabolites of KAF156, an Antimalarial Agent. Drug Metab Dispos 2016; 44:1697-708. [DOI: 10.1124/dmd.116.072108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
|
27
|
Mischlinger J, Agnandji ST, Ramharter M. Single dose treatment of malaria - current status and perspectives. Expert Rev Anti Infect Ther 2016; 14:669-78. [PMID: 27254098 DOI: 10.1080/14787210.2016.1192462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Despite increased international efforts for control and ultimate elimination, malaria remains a major health problem. Currently, artemisinin-based combination therapies are the treatment of choice for uncomplicated malaria exhibiting high efficacy in clinical trial settings in sub-Saharan Africa. However, their administration over a three-day period is associated with important problems of treatment adherence resulting in markedly reduced effectiveness of currently recommended antimalarials under real world settings. AREAS COVERED Antimalarial drug candidates and antimalarial drug combinations currently under advanced clinical development for the indication as single dose antimalarial therapy. Expert commentary: Several new drug candidates and combinations are currently undergoing pivotal proof-of-concept studies or clinical development programmes. The development of a single dose combination therapy would constitute a breakthrough in the control of malaria. Such an innovative treatment approach would simultaneously close the effectiveness gap of current three-day therapies and revolutionize population based interventions in the context of malaria elimination campaigns.
Collapse
Affiliation(s)
- Johannes Mischlinger
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany
| | - Selidji T Agnandji
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany
| | - Michael Ramharter
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany.,c Department of Medicine I, Division of Infectious Diseases and Tropical Medicine , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
28
|
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016; 95:27-42. [PMID: 26923386 DOI: 10.1016/j.freeradbiomed.2016.02.028] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.
Collapse
Affiliation(s)
- Narciso Couto
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Jennifer Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jill Barber
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
29
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
30
|
Davis TME, Moore BR, Salman S, Page-Sharp M, Batty KT, Manning L. Use of quantitative pharmacology tools to improve malaria treatments. Expert Rev Clin Pharmacol 2015; 9:303-16. [DOI: 10.1586/17512433.2016.1129273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Held J, Supan C, Salazar CLO, Tinto H, Bonkian LN, Nahum A, Moulero B, Sié A, Coulibaly B, Sirima SB, Siribie M, Otsyula N, Otieno L, Abdallah AM, Kimutai R, Bouyou-Akotet M, Kombila M, Koiwai K, Cantalloube C, Din-Bell C, Djeriou E, Waitumbi J, Mordmüller B, Ter-Minassian D, Lell B, Kremsner PG. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: a phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. THE LANCET. INFECTIOUS DISEASES 2015; 15:1409-19. [DOI: 10.1016/s1473-3099(15)00079-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/02/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
32
|
Souza NBD, Aguiar ACC, Oliveira ACD, Top S, Pigeon P, Jaouen G, Goulart MOF, Krettli AU. Antiplasmodial activity of iron(II) and ruthenium(II) organometallic complexes against Plasmodium falciparum blood parasites. Mem Inst Oswaldo Cruz 2015; 110:981-8. [PMID: 26602875 PMCID: PMC4708017 DOI: 10.1590/0074-02760150163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022] Open
Abstract
This work reports the in vitro activity against Plasmodium
falciparumblood forms (W2 clone, chloroquine-resistant) of
tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl
(ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human
hepatoma cells. Surprisingly with these series, results indicate that the biological
activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like
compounds. The synthesis of a new metal-based compound is also described. It was
shown, for the first time, that ruthenocifens are good antiplasmodial prototypes.
Further studies will be conducted aiming at a better understanding of their mechanism
of action and at obtaining new compounds with better therapeutic profile.
Collapse
Affiliation(s)
| | | | | | - Siden Top
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | - Pascal Pigeon
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | - Gérard Jaouen
- Université Pierre-et-Marie-Curie, Sorbonne Universités, Paris, France
| | | | | |
Collapse
|
33
|
Thipubon P, Tipsuwan W, Uthaipibull C, Santitherakul S, Srichairatanakool S. Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Tempera C, Franco R, Caro C, André V, Eaton P, Burke P, Hänscheid T. Characterization and optimization of the haemozoin-like crystal (HLC) assay to determine Hz inhibiting effects of anti-malarial compounds. Malar J 2015; 14:403. [PMID: 26458401 PMCID: PMC4603294 DOI: 10.1186/s12936-015-0913-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023] Open
Abstract
Background The haem-haemozoin biocrystallization pathway is an attractive target where several efficacious and safe anti-malarial drugs act. Consequently, in vitro haemozoin (Hz) inhibition assays have been developed to identify novel compounds. However, results may differ between assays and often require complex methods or sophisticated infrastructure. The recently reported growth of haemozoin-like crystals (HLC) appears to be a simple alternative although the endproduct is structurally different to Hz. This study set out to characterize this assay in depth, optimize it, and assess its performance. Methods The HLC assay was used as previously described but a range of different growth conditions were examined. Obtained HLCs were investigated and compared to synthetic (sHz) and natural haemozoin (nHz) using scanning electron microscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared spectroscopy (FTIR) and Raman spectroscopy (RS). Interactions of HLC with quinolines was analysed using RS. Inhibitory effects of currently used anti-malarial drugs under four final growth conditions were established. Results HLC growth requires Mycoplasma Broth Base, Tween 80, pancreatin, and lysed blood or haemin. HLCs are similar to nHz and sHz in terms of solubility, macroscopic and microscopic appearance although PXRD, FTIR and RS confirm that the haem aggregates of HLCs are structurally different. RS reveals that CQ seems to interact with HLCs in similar ways as with Hz. Inhibition of quinoline drugs ranged from 62.5 µM (chloroquine, amodiaquine, piperaquine) to 500 µM in mefloquine. Conclusions The HLC assay provides data on inhibiting properties of compounds. Even if the end-product is not structurally identical to Hz, the inhibitory effects appear consistent with those obtained with sHz assays, as illustrated by the results obtained for quinolines. The assay is simple, inexpensive, robust, reproducible and can be performed under basic laboratory conditions with a simple visual positive/negative read-out. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0913-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Tempera
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Ricardo Franco
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Carlos Caro
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | - Peter Eaton
- , Departamento de Química e Bioquímica, Faculdade de Ciências, REQUIMTE/UCIBIO, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Peter Burke
- STERIS Corporation, 5960 Heisley Road, Mentor, OH, 44060, USA.
| | - Thomas Hänscheid
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal. .,Faculdade de Medicina, Instituto de Microbiologia, Lisbon, Portugal.
| |
Collapse
|
35
|
Ang MLT, Murima P, Pethe K. Next-generation antimicrobials: from chemical biology to first-in-class drugs. Arch Pharm Res 2015; 38:1702-17. [PMID: 26259630 PMCID: PMC4567591 DOI: 10.1007/s12272-015-0645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023]
Abstract
The global emergence of multi-drug resistant bacteria invokes an urgent and imperative necessity for the identification of novel antimicrobials. The general lack of success in progressing novel chemical entities from target-based drug screens have prompted calls for radical and innovative approaches for drug discovery. Recent developments in chemical biology and target deconvolution strategies have revived interests in the utilization of whole-cell phenotypic screens and resulted in several success stories for the discovery and development novel drug candidates and target pathways. In this review, we present and discuss recent chemical biology approaches focusing on the discovery of novel targets and new lead molecules for the treatment of human bacterial and protozoan infections.
Collapse
Affiliation(s)
- Michelle Lay Teng Ang
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, 30 Biopolis Street, #B2-15a, Singapore, 138671, Singapore.
| | - Paul Murima
- Global Health Institute, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kevin Pethe
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, 30 Biopolis Street, #B2-15a, Singapore, 138671, Singapore.
| |
Collapse
|
36
|
Djimde AA, Makanga M, Kuhen K, Hamed K. The emerging threat of artemisinin resistance in malaria: focus on artemether-lumefantrine. Expert Rev Anti Infect Ther 2015; 13:1031-45. [PMID: 26081265 DOI: 10.1586/14787210.2015.1052793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of artemisinin resistance in the Greater Mekong Subregion poses a significant threat to malaria elimination. Artemisinin-based combination therapies including artemether-lumefantrine (AL) are recommended by WHO as first-line treatment for uncomplicated Plasmodium falciparum malaria. This article provides a comprehensive review of the existing and latest data as a basis for interpretation of observed variability in parasite sensitivity to AL over the last 5 years. Clinical efficacy and preclinical data from a range of endemic countries are summarized, including potential molecular markers of resistance. Overall, AL remains effective in the treatment of uncomplicated P. falciparum malaria in most regions. Establishing validated molecular markers for resistance and strict efficacy monitoring will reinforce timely updates of treatment policies.
Collapse
Affiliation(s)
- Abdoulaye A Djimde
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | | | | |
Collapse
|