1
|
El-Shimi BI, Mohareb RM, Ahmed HH, Abohashem RS, Mahmoud KF, Hanna DH. Mechanistic Insights into Bisphenol A-Mediated Male Infertility: Potential Role of Panax Ginseng Extract. Chem Biodivers 2024; 21:e202400480. [PMID: 38818674 DOI: 10.1002/cbdv.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Male infertility is identified by the inability of a man to successfully impregnate his fertile female partner, even following a year of regular unprotected sexual intercourse. About half of all infertility cases are attributed to what is known as "male factor" infertility. The escalating prevalence of male infertility in the contemporary era across the globe can be largely attributed to environmental pollution, which is the common etiological factor due to the ubiquitous presence of the environmental contaminants. Bisphenol A is recognized as an endocrine-disrupting chemical that has adverse effects on both male and female reproductive systems. On the other hand, numerous studies have demonstrated that Panax ginseng possessed the potential to improve male infertility parameters; promote spermatogenesis, recover the quality and motility of sperm and enhance testicular functions as it acted as a natural androgen supplement. The objective of this review is to offer a summary of the findings obtained from the current research data on the insult of bisphenol A (BPA) on male infertility and its supposed mode of action, as well as shed light on the potent ameliorative role of Panax ginseng extract, with a special focus on the mechanism behind its action. This review delivers a clear understanding of BPA mechanism of action on male infertility and the presumed risks deriving from its exposure. Also, this review provides evidence for the functional role of Panax ginseng extract in restoring male fertility.
Collapse
Affiliation(s)
- Basma I El-Shimi
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Centre, Dokki, Giza, Egypt
| | - Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Centre, Dokki, Giza, Egypt
| | - Khaled F Mahmoud
- Food Technology Department, National Research Centre, Dokki, Giza, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Vatanpour M, Ebrahimzadeh-Bideskan A, Rajabian A, Alipour F, Raoofi A, Ebrahimi V. Ameliorating effects of selenium nanoparticle coated by gallic acid on histological and biochemical parameters of testis in azoospermic rat model. Tissue Cell 2024; 91:102550. [PMID: 39236520 DOI: 10.1016/j.tice.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
This study was designed to examine the effects of selenium nanoparticles (SeNPs) coated with gallic acid (GA) on testis in azoospermic rats. Thirty-six adult Wistar rats were assigned to six groups: control (1 ml intraperitoneal (i.p.) phosphate-buffered saline (PBS) for 7 consecutive days), SHAM (single i.p. injection of 1 ml of 8 % dimethyl sulfoxide (DMSO)), BUS (single i.p. injection of busulfan (BUS) 30 mg/kg body weight), GA (single i.p. injection of BUS 30 mg/kg on day 1, 100 mg/kg body weight GA from days 2-7), SeNPs (single i.p. injection of BUS 30 mg/kg on day 1, 0.5 mg/kg body weight SeNPs from days 2-7), and SeNPs-GA (single i.p. injection of BUS 30 mg/kg on day 1, 0.5 mg/kg body weight SeNPs-GA from days 2-7). Subsequently, serum levels of testosterone and insulin-like growth factor-1 (IGF-1), antioxidant markers, sperm parameters, and histological parameters were evaluated. The results showed that BUS injection induced azoospermia in rats by causing oxidative stress and testicular tissue damage. In contrast, co-administration of SeNPs and GA showed significant improvements in testosterone and IGF-1 levels, antioxidant status, testicular tissue characteristics, and sperm parameters. Overall, the findings suggest that GA-coated SeNPs offer therapeutic potential in BUS-induced azoospermic models.
Collapse
Affiliation(s)
- Morvarid Vatanpour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Ebrahimi
- Department of Anatomical Sciences and Pathology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
3
|
Nybo ML, Kvam JM, Nielsen JE, Frederiksen H, Spiess K, Jensen KHR, Gadgaard S, Walser ALS, Thomsen JS, Cowin P, Juul A, Jensen MB, Rosenkilde M. Loss of Adgra3 causes obstructive azoospermia with high penetrance in male mice. FASEB J 2023; 37:e22781. [PMID: 36688818 PMCID: PMC10107928 DOI: 10.1096/fj.202200762rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
The adhesion receptor ADGRA3 (GPR125) is a known spermatogonial stem cell marker, but its impact on male reproduction and fertility has not been examined. Using a mouse model lacking Adgra3 (Adgra3-/- ), we show that 55% of the male mice are infertile from puberty despite having normal spermatogenesis and epididymal sperm count. Instead, male mice lacking Adgra3 exhibited decreased estrogen receptor alpha expression and transient dilation of the epididymis. Combined with an increased estradiol production, this indicates a post-pubertal hormonal imbalance and fluid retention. Dye injection revealed a blockage between the ejaculatory duct and the urethra, which is rare in mice suffering from infertility, thereby mimicking the etiologies of obstructive azoospermia found in human male infertility. To summarize, male reproductive tract development is dependent on ADGRA3 function that in concert with estrogen signaling may influence fluid handling during sperm maturation and storage.
Collapse
Affiliation(s)
- Maja L. Nybo
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jone M. Kvam
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - John E. Nielsen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Copenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Copenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Katja Spiess
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kristian H. R. Jensen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sarina Gadgaard
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Bainan BiotechCopenhagenDenmark
| | - Anna L. S. Walser
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | - Pamela Cowin
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
- Department of DermatologyNew York University School of MedicineNew YorkNew YorkUSA
| | - Anders Juul
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Copenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Martin Blomberg Jensen
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and ReproductionCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Division of Bone and Mineral Research, HSDM/HMSHarvard UniversityBostonMassachusettsUSA
| | - Mette M. Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Hussain T, Kandeel M, Metwally E, Murtaza G, Kalhoro DH, Yin Y, Tan B, Chughtai MI, Yaseen A, Afzal A, Kalhoro MS. Unraveling the harmful effect of oxidative stress on male fertility: A mechanistic insight. Front Endocrinol (Lausanne) 2023; 14:1070692. [PMID: 36860366 PMCID: PMC9968806 DOI: 10.3389/fendo.2023.1070692] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/02/2023] [Indexed: 02/16/2023] Open
Abstract
Male infertility is a widely debated issue that affects males globally. There are several mechanisms involved. Oxidative stress is accepted to be the main contributing factor, with sperm quality and quantity affected by the overproduction of free radicals. Excess reactive oxygen species (ROS) cannot be controlled by the antioxidant system and, thus, potentially impact male fertility and hamper sperm quality parameters. Mitochondria are the driving force of sperm motility; irregularities in their function may lead to apoptosis, alterations to signaling pathway function, and, ultimately, compromised fertility. Moreover, it has been observed that the prevalence of inflammation may arrest sperm function and the production of cytokines triggered by the overproduction of ROS. Further, oxidative stress interacts with seminal plasma proteomes that influence male fertility. Enhanced ROS production disturbs the cellular constituents, particularly DNA, and sperms are unable to impregnate the ovum. Here, we review the latest information to better understand the relationship between oxidative stress and male infertility, the role of mitochondria, the cellular response, inflammation and fertility, and the interaction of seminal plasma proteomes with oxidative stress, as well as highlight the influence of oxidative stress on hormones; collectively, all of these factors are assumed to be important for the regulation of male infertility. This article may help improve our understanding of male infertility and the strategies to prevent it.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- *Correspondence: Tarique Hussain, ; Bie Tan,
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Tarique Hussain, ; Bie Tan,
| | - Muhammad Ismail Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Anjaleena Yaseen
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ali Afzal
- Department of Zoology, Minhaj University, Lahore, Pakistan
| | - Muhammad Saleem Kalhoro
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, Thailand
| |
Collapse
|
5
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. Ciprofloxacin and enrofloxacin can cause reproductive toxicity via endocrine signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114049. [PMID: 36063617 DOI: 10.1016/j.ecoenv.2022.114049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (CIP) and enrofloxacin (ENR) are veterinary antibiotics commonly utilized to treat and prevent animal diseases. Environmental and dietary antibiotic residues can directly and indirectly affect the reproductive development of animals and humans. This article investigated the reproductive toxicity of CIP in male zebrafish, showing that it could decrease the spermatogonial weight and damage the spermatogonial tissue. The sex hormone assays showed that CIP decreased fshb and lhb gene expression and plasma testosterone (T). In addition, transcriptome analysis indicated that the effect of CIP on zebrafish might be related to the endocrine signaling pathways. ENR, which was selected for further study, inhibited mouse Leydig (TM3) and Sertoli (TM4) cell proliferation and caused cell cycle arrest. The sperm concentration, serum luteotropic hormone (LH) and follicle-stimulating hormone (FSH), and T levels decreased in adolescent mice after ENR treatment for 30d in vivo. Hematoxylin and eosin (H&E) staining showed that ENR exposure potentially induced testicular injury, while the real-time quantitative PCR (qPCR) results indicated that ENR inhibited the mRNA expression of key genes in the Leydig cells (cyp11a1, 3β-HSD, and 17β-HSD), Sertoli cells (Inhbβ and Gdnf) and spermatogenic cells (Plzf, Stra8 and Dmc1). In conclusion, these findings indicated that ENR exposure might influence the development of the testes of pubescent mice.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
6
|
Jafari A, Mokhtari G, Madani A, Leyli E. Sildenafil citrate effects on seminal parameters in male participants with idiopathic infertility; A randomized, double-blind, controlled cross-over clinical trial study. UROLOGICAL SCIENCE 2022. [DOI: 10.4103/uros.uros_113_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Sellem E, Jammes H, Schibler L. Sperm-borne sncRNAs: potential biomarkers for semen fertility? Reprod Fertil Dev 2021; 34:160-173. [PMID: 35231268 DOI: 10.1071/rd21276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Semen infertility or sub-fertility, whether in humans or livestock species, remains a major concern for clinicians and technicians involved in reproduction. Indeed, they can cause tragedies in human relationships or have a dramatic overall negative impact on the sustainability of livestock breeding. Understanding and predicting semen fertility issues is therefore crucial and quality control procedures as well as biomarkers have been proposed to ensure sperm fertility. However, their predictive values appeared to be too limited and additional relevant biomarkers are still required to diagnose sub-fertility efficiently. During the last decade, the study of molecular mechanisms involved in spermatogenesis and sperm maturation highlighted the regulatory role of a variety of small non-coding RNAs (sncRNAs) and led to the discovery that sperm sncRNAs comprise both remnants from spermatogenesis and post-testicular sncRNAs acquired through interactions with extracellular vesicles along epididymis. This has led to the hypothesis that sncRNAs may be a source of relevant biomarkers, associated either with sperm functionality or embryo development. This review aims at providing a synthetic overview of the current state of knowledge regarding implication of sncRNA in spermatogenesis defects and their putative roles in sperm maturation and embryo development, as well as exploring their use as fertility biomarkers.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012 Paris, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350 Jouy en Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | | |
Collapse
|
8
|
Shahid MN, Khan TM, Neoh CF, Lean QY, Bukhsh A, Karuppannan M. Effectiveness of Pharmacological Intervention Among Men with Infertility: A Systematic Review and Network Meta-Analysis. Front Pharmacol 2021; 12:638628. [PMID: 34483894 PMCID: PMC8415454 DOI: 10.3389/fphar.2021.638628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/09/2021] [Indexed: 01/18/2023] Open
Abstract
Background. Infertility is an emerging health issue for men. Comparative efficacy of different pharmacological interventions on male infertility is not clear. The aim of this review is to investigate the efficacy of various pharmacological interventions among men with idiopathic male infertility. All randomized control trials evaluating the effectuality of interventions on male infertility were included for network meta-analysis (NMA) from inception to 31 April 2020, systematically performed using STATA through the random effect model. The protocol was registered at PROSPERO (CRD42020152891). Results. The outcomes of interest were semen and hormonal parameters. Treatment effects (p < 0.05) were estimated through WMD at the confidence interval of 95%. Upon applying exclusion criteria, n=28 RCTs were found eligible for NMA. Results from NMA indicated that consumption of supplements increases sperm concentration levels [6.26, 95% CI 3.32, 9.21] in comparison to SERMs [4.97, 95% CI 1.61, 8.32], hormones [4.14, 95% CI 1.83, 6.46], and vitamins [0.15, 95% CI -20.86, 21.15)] with placebo, whereas the use of SERMs increased percentage sperm motility [6.69, 95% CI 2.38, 10.99] in comparison to supplements [6.46, 95% CI 2.57, 10.06], hormones [3.47, 95% CI 0.40, 6.54], and vitamins [-1.24, 95% CI -11.84, 9.43] with placebo. Consumption of hormones increased the sperm morphology [3.71, 95% CI, 1.34, 6.07] in contrast to supplements [2.22, 95% CI 0.12, 4.55], SERMs [2.21, 95% CI -0.78, 5.20], and vitamins [0.51, 95% CI -3.60, 4.62] with placebo. Supplements boosted the total testosterone levels [2.70, 95% CI 1.34, 4.07] in comparison to SERMs [1.83, 95% CI 1.16, 2.50], hormones [0.40, 95% CI -0.49, 1.29], and vitamins [-0.70, 95% CI -6.71, 5.31] with placebo. SERMs increase the serum FSH levels [3.63, 95% CI 1.48, 5.79] better than hormones [1.29, 95% CI -0.79, 3.36], vitamins [0.03, 95% CI -2.69, 2.76], and supplements [-4.45, 95% CI -7.15, -1.76] in comparison with placebo. Conclusion. This review establishes that all interventions had a significantly positive effect on male infertility. Statistically significant increased sperm parameters were noted in combinations of zinc sulfate (220 mg BID), clomiphene citrate (50 mg BID), and testosterone undecanoate and CoQ10; tamoxifen citrate and FSH were shown to improve the hormonal profile in infertile males.
Collapse
Affiliation(s)
- Muhammad Nabeel Shahid
- Department of Pharmacy Practice, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia
- Department of Pharmacy Practice, Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Mehmood Khan
- Department of Pharmacy Practice, Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
- School of Pharmacy, Monash University, Subang Jaya, Malaysia
| | - Chin Fen Neoh
- Department of Pharmacy Practice, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia
| | - Qi Ying Lean
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Pulau Pinang, Malaysia
- Vector-Borne Diseases Research Group (VERDI), Pharmaceutical and Life Sciences CoRe, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
| | - Allah Bukhsh
- Department of Pharmacy Practice, Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
- School of Pharmacy, Monash University, Subang Jaya, Malaysia
| | - Mahmathi Karuppannan
- Department of Pharmacy Practice, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
9
|
Musicki B, Karakus S, La Favor JD, Chen H, Silva FH, Sturny M, Zirkin BR, Burnett AL. TSPO ligand FGIN-1-27 controls priapism in sickle cell mice via endogenous testosterone production. J Cell Physiol 2020; 236:3073-3082. [PMID: 32974910 DOI: 10.1002/jcp.30075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/10/2022]
Abstract
Priapism, a prolonged penile erection in the absence of sexual arousal, is common among patients with sickle cell disease (SCD). Hypogonadism is also common in patients with SCD. While the administration of exogenous testosterone reverses hypogonadism, it is contraceptive. We hypothesized that the stimulation of endogenous testosterone production decreases priapism by normalizing molecular signaling involved in penile erection without decreasing intratesticular testosterone production, which would affect fertility. Treatment of SCD mice with FGIN-1-27, a ligand for translocator protein (TSPO) that mobilizes cholesterol to the inner mitochondrial membrane, resulted in eugonadal levels of serum testosterone without decreasing intratesticular testosterone production. Normalized testosterone levels, in turn, decreased priapism. At the molecular level, TSPO restored phosphodiesterase 5 activity and decreased NADPH oxidase-mediated oxidative stress in the penis, which are major molecular signaling molecules involved in penile erection and are dysregulated in SCD. These results indicate that pharmacologic activation of TSPO could be a novel, targetable pathway for treating hypogonadal men, particularly patients with SCD, without adverse effects on fertility.
Collapse
Affiliation(s)
- Biljana Musicki
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serkan Karakus
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin D La Favor
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida, USA
| | - Haolin Chen
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fabio H Silva
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mikael Sturny
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arthur L Burnett
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Dobrzy Ska MGM, Gajowik A. Amelioration of sperm count and sperm quality by lycopene supplementation in irradiated mice. Reprod Fertil Dev 2020; 32:1040-1047. [PMID: 32731920 DOI: 10.1071/rd19433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 12/30/2022] Open
Abstract
Male mice were exposed to lycopene (LYC; 0.15 and 0.30mg kg-1) and irradiation (0.5, 1 Gy) alone or in combination (0.5 Gy+0.15mg kg-1 LYC; 0.5 Gy+0.30mg kg-1 LYC; 1 Gy+0.15mg kg-1 LYC; 1 Gy+0.30mg kg-1 LYC) for 2 weeks. LYC administration in the drinking water was started 24h or on Day 8 after the first irradiation dose or equivalent time point for groups treated with LYC alone. Sperm count, motility, morphology and DNA damage were determined at the end of the 2-week treatment period. Irradiation deteriorated sperm count and quality. Supplementation with LYC from 24h significantly increased the sperm count compared with irradiation alone. In almost all combined treatment groups, the percentage of abnormal spermatozoa was significantly decreased compared with that after irradiation alone. In some cases, combined treatment reduced levels of DNA damage in gametes. Both doses of LYC administered from Day 8 significantly reduced the percentage of morphologically abnormal spermatozoa compared with that seen after 1 Gy irradiation and reduced DNA damage in all combined treatment groups. In conclusion, LYC supplementation after irradiation can ameliorate the harmful effects of irradiation on gametes. Mitigation of radiation-induced damage in germ cells following LYC administration may be useful for radiological accidents and to protect non-treated tissues in patients with cancer undergoing radiotherapy.
Collapse
Affiliation(s)
- Ma Gorzata M Dobrzy Ska
- National Institute of Public Health - National Institute of Hygiene, Department of Radiation Hygiene and Radiobiology, 24 Chocimska Street, 00-791 Warsaw, Poland; and Corresponding author.
| | - Aneta Gajowik
- National Institute of Public Health - National Institute of Hygiene, Department of Radiation Hygiene and Radiobiology, 24 Chocimska Street, 00-791 Warsaw, Poland
| |
Collapse
|
11
|
Arhin SM, Mensah KB, Agbeno E, Badii VS, Ansah C. Pharmacotherapy of infertility in Ghana: retrospective study at the cape coast teaching hospital. J Pharm Policy Pract 2019; 12:28. [PMID: 31700644 PMCID: PMC6827228 DOI: 10.1186/s40545-019-0191-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Infertility is a major challenge for couples globally. Due to low income levels and the high cost of other assisted reproductive techniques, pharmacotherapy remain the major first line treatment option for infertility in Sub-Saharan Africa. Objective The aim of this study was to assess the prevalence of infertility as well as the effectiveness and success achieved following infertility pharmacotherapy at the Cape Coast Teaching Hospital in Ghana. Methods This study was a retrospective observational study of 825 couples attending infertility clinic at the hospital. Results Prevalence of infertility at the study center was estimated to be 12.3%. Treatment mainly involved the use of clomiphene citrate, antioxidants, herbo-mineral drugs (Ayurveda), multivitamin and antibiotics. Pharmacotherapy resulted in successful conception in one out of every five couples (19.4%; n = 160). Secondary infertility, although more prevalent in the study population (44.8%; n = 370), had lower conception rates during pharmacotherapy than primary infertility (15% vs 26.2%). Age, kind of infertility, employment status but not educational level were significantly associated with pharmacotherapy success. In ovulation induction, clomiphene citrate plus folic acid and vitamin E adjuncts improved ovulation rates during cycle treatments compared to clomiphene citrate alone. Pharmacotherapy of idiopathic infertility (39%, n = 323) was a major challenge with very limited success rates. Interestingly, it was noted that treating couples or female partners only for idiopathic infertility resulted in higher success rates than treating the male partner only. Again, 90-day treatment regimen doubled conception rates when compared with corresponding 30-day treatment regimen. However, zinc sulfate even in short term treatment regimens (30 days) enhanced conception rates in idiopathic infertility. Conclusions Prevalence of infertility was estimated to be about 12.3%. One out of every five infertile couples achieved success with pharmacotherapy. Factors such as age, type of infertility, employment status, but not education were significantly associated with treatment success.
Collapse
Affiliation(s)
- Stephen Mensah Arhin
- 1Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwesi Boadu Mensah
- 1Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evans Agbeno
- 2Department of Obstetrics and Gynaecology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Vitus Sambo Badii
- 1Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Charles Ansah
- 1Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
12
|
Panner Selvam MK, Agarwal A, Pushparaj PN, Baskaran S, Bendou H. Sperm Proteome Analysis and Identification of Fertility-Associated Biomarkers in Unexplained Male Infertility. Genes (Basel) 2019; 10:genes10070522. [PMID: 31336797 PMCID: PMC6678187 DOI: 10.3390/genes10070522] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/13/2023] Open
Abstract
Up to 30% of men with normal semen parameters suffer from infertility and the reason for this is unknown. Altered expression of sperm proteins may be a major cause of infertility in these men. Proteomic profiling was performed on pooled semen samples from eight normozoospermic fertile men and nine normozoospermic infertile men using LC-MS/MS. Furthermore, key differentially expressed proteins (DEPs) related to the fertilization process were selected for validation using Western blotting. A total of 1139 and 1095 proteins were identified in normozoospermic fertile and infertile men, respectively. Of these, 162 proteins were identified as DEPs. The canonical pathway related to free radical scavenging was enriched with upregulated DEPs in normozoospermic infertile men. The proteins associated with reproductive system development and function, and the ubiquitination pathway were underexpressed in normozoospermic infertile men. Western blot analysis revealed the overexpression of annexin A2 (ANXA2) (2.03 fold change; P = 0.0243), and underexpression of sperm surface protein Sp17 (SPA17) (0.37 fold change; P = 0.0205) and serine protease inhibitor (SERPINA5) (0.32 fold change; P = 0.0073) in men with unexplained male infertility (UMI). The global proteomic profile of normozoospermic infertile men is different from that of normozoospermic fertile men. Our data suggests that SPA17, ANXA2, and SERPINA5 may potentially serve as non-invasive protein biomarkers associated with the fertilization process of the spermatozoa in UMI.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hocine Bendou
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
13
|
Abbasihormozi SH, Babapour V, Kouhkan A, Niasari Naslji A, Afraz K, Zolfaghary Z, Shahverdi AH. Stress Hormone and Oxidative Stress Biomarkers Link Obesity and Diabetes with Reduced Fertility Potential. CELL JOURNAL 2019; 21:307-313. [PMID: 31210437 PMCID: PMC6582426 DOI: 10.22074/cellj.2019.6339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/11/2018] [Indexed: 11/04/2022]
Abstract
Objective Tilting the balance in favor of antioxidant agents could increase infertility problems in obese and diabetic individuals. The aim of this study was to evaluate oxidative stress status in semen of men with type 2 diabetes and obesity to investigate whether excessive amounts of oxidative stress, as a result of diabetes and obesity, influence infertility potential. Materials and Methods A case-control study was conducted in men (n=150) attending the Infertility Center of Royan Institute between December 2016 and February 2017. Participants were categorized into four groups; normal weight (BMI<25 kg/m2) and non-type-2 diabetic (control=40), obese and non- type-2 diabetic (obese=40), non-obese and type- 2 diabetic (Nob-DM=35), and obese and type-2 diabetic (Ob-DM=35). The semen analysis was performed according to the World Health Organization criteria. Oxidative stress, DNA fragmentation, sperm apoptosis, and total antioxidant capacity (TAC) were evaluated in semen samples of men. Serum glucose, HbA1c, cortisol, and testosterone levels were determined using the enzyme-linked immunosorbent assay (ELISA) method. Results Compared with the control group, sperm motility, progressive motility, and normal morphology were significantly decreased in the obese, Nob-DM, and Ob-DM groups (P<0.01). The obese, Nob-DM, and Ob-DM groups showed significantly lower levels of TAC and higher amounts of oxidative stress, early apoptotic sperm, and the percentage of DNA fragmentation as compared with the control group (P<0.05). Testosterone concentration was decreased in the obese, Nob-DM, and Ob-DM groups when compared with healthy individuals (P<0.05), whereas the cortisol level was significantly increased in the Nob-DM and Ob-DM groups in comparison to the obese and control group (P<0.01). Conclusion Increased amount of reactive oxygen species (ROS) levels and DNA fragmentation in men affected by either diabetes or obesity could be considered prognostic factors in sub-fertile patients, alerting physicians to an early screen of male patients to avoid the development of infertility in prone patients.
Collapse
Affiliation(s)
- S Hima Abbasihormozi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Kouhkan
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Niasari Naslji
- Department of Midwifery and Reproductive Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kaveh Afraz
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zolfaghary
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdol Hossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
14
|
Hou X, Zhu L, Zhang X, Zhang L, Bao H, Tang M, Wei R, Wang R. Testosterone disruptor effect and gut microbiome perturbation in mice: Early life exposure to doxycycline. CHEMOSPHERE 2019; 222:722-731. [PMID: 30738315 DOI: 10.1016/j.chemosphere.2019.01.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Veterinary tetracyclines drugs are emerging organic pollutants detected at high concentrations in the urine of school children and a potential public health risk. However, the implications of early-life exposure to tetracyclines on testosterone production, being new endocrine disruptors, remain unknown. We investigated whether the early-life exposure to low-doxycycline, a widely used tetracycline, on mitochondria dysfunction and testosterone disruption in Leydig cells in vitro and in vivo. Next, we determined the mRNA levels of testis cells markers for early-life exposure to low-doxycycline outcomes of testis health in later-life. Finally, we compared the weight gain performance exposed to low- and therapeutic-doses through 15 weeks and examined the role of the microbiota during development. Our results showed doxycycline disturbed steroidogenesis process by mitochondrial dysfunction in mouse Leydig tumor cell line (MLTC-1) cells in vitro. Leydig cells mitochondrial function was disrupted by early-life exposure to low-doxycycline from birth to 49 days, causing testosterone deficiency and decreased quality of the sperm in mice. Early-life exposure to low-doxycycline significantly altered the mRNA levels of key genes in Leydig cells (Cyp11a1, Cyp17a1 and 17β-HSD) and spermatogenic cells (Grfal, Plzf, and Stra8) in later-life in mice. Subchronic low- and therapeutic-doses doxycycline changed gut microbiota differences in diversity reduction and compositional alteration. Moreover, the weight gain effects of doxycycline were only observed in low-dose in male mice. Overall, these results provide insight into the effects of doxycycline on both testis and gut microbiota health. The results provide insight that environmental antibiotics are needed additional research to classify as ECDs.
Collapse
Affiliation(s)
- Xiang Hou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Lei Zhu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xianwei Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lili Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hongduo Bao
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Minmin Tang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Ruicheng Wei
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Durg S, Shivaram SB, Bavage S. Withania somnifera (Indian ginseng) in male infertility: An evidence-based systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:247-256. [PMID: 30466985 DOI: 10.1016/j.phymed.2017.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/19/2017] [Accepted: 11/29/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Withania somnifera Dunal, commonly known as Indian ginseng, has been in use since ancient times as anti-stress agent, aphrodisiac, for impotence and infertility treatment. PURPOSE To evaluate the efficacy and safety of W. somnifera treatment in infertile men. STUDY DESIGN An evidence-based systematic review and meta-analysis using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. METHODS Published literature was searched in PubMed/MEDLINE, EMBASE, Scopus, the Cochrane Library, and DHARA. Grey literature was assessed from the WHO International Clinical Trials Registry Platform (http://apps.who.int/trialsearch/) and the US National Institutes of Health (https://clinicaltrials.gov/). RESULTS Four clinical trials (comprising 5 publications: observational, n = 4; randomized controlled trial [RCT], n = 1) were included in the study. As only one RCT included, meta-analysis of RCT was not performed; however, systematically reviewed data demonstrated statistical (p ≤ .002 versus baseline) increase in sperm concentration (167%), semen volume (59%), and sperm motility (57%) in oligospermic males after 90 days of W. somnifera treatment, as well, serum testosterone (17%) and luteinizing hormone (34%) levels. Meta-analysis of observational (versus pre-treatment) studies showed that W. somnifera treatment significantly improved semen parameters (semen volume: mean difference [MD], 0.28 ml; 95% confidence interval [CI], 0.12 to 0.43; p = .0004; sperm concentration: MD, 13.57 million/ml; 95% CI, 11.12 to 16.01; p < .00001; sperm motility: MD, 8.50%; 95% CI, 7.36 to 9.63; p < .00001) with 14% of pregnancy outcome success rate in normozoospermic men. Meta-analysis findings also evidenced significant improvement in serum hormonal profile, oxidative biomarkers and antioxidant vitamins in seminal plasma. No adverse effects were reported in infertile men taking W. somnifera treatment. CONCLUSION Due to a small number of eligible studies, the available data, though promising, are too limited to provide novel and sufficiently robust evidence of the benefits of W. somnifera in male infertility. Additional RCTs of high quality with a larger sample size are warranted to further strength clinical use of W. somnifera in treating male factor infertility. Future research also needs to elucidate the molecular mechanism(s) of W. somnifera as well its active principles in male infertility.
Collapse
Affiliation(s)
| | | | - Sachin Bavage
- Independent Researcher, Bidar 585401, Karnataka, India
| |
Collapse
|
16
|
Duca Y, Calogero AE, Cannarella R, Condorelli RA, La Vignera S. Current and emerging medical therapeutic agents for idiopathic male infertility. Expert Opin Pharmacother 2018; 20:55-67. [DOI: 10.1080/14656566.2018.1543405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ylenia Duca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Zhang DL, Sun YJ, Ma ML, Wang YJ, Lin H, Li RR, Liang ZL, Gao Y, Yang Z, He DF, Lin A, Mo H, Lu YJ, Li MJ, Kong W, Chung KY, Yi F, Li JY, Qin YY, Li J, Thomsen ARB, Kahsai AW, Chen ZJ, Xu ZG, Liu M, Li D, Yu X, Sun JP. Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. eLife 2018; 7:e33432. [PMID: 29393851 PMCID: PMC5839696 DOI: 10.7554/elife.33432] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/23/2022] Open
Abstract
Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and β-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or β-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that β-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/β-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Dao-Lai Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yu-Jing Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Ming-Liang Ma
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yi-jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Rui-Rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Zong-Lai Liang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yuan Gao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Amy Lin
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Hui Mo
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yu-Jing Lu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Meng-Jing Li
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and PathophysiologySchool of Basic Medical Sciences, Peking UniversityBeijingChina
| | | | - Fan Yi
- Department of PharmacologyShandong University School of MedicineJinanChina
| | - Jian-Yuan Li
- Key Laboratory of Male Reproductive Health, National Research Institute for Family PlanningNational Health and Family Planning CommissionBeijingChina
| | - Ying-Ying Qin
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
| | - Jingxin Li
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Alex R B Thomsen
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Alem W Kahsai
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologyShandong University School of Life SciencesJinanChina
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesInstitute of Biomedical Sciences, East China Normal UniversityShanghaiChina
- Department of Molecular and Cellular Medicine, Institute of Biosciences and TechnologyTexas A&M University Health Science CenterHoustonUnited States
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesInstitute of Biomedical Sciences, East China Normal UniversityShanghaiChina
| | - Xiao Yu
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| |
Collapse
|
18
|
Defective Wnt3 expression by testicular Sertoli cells compromise male fertility. Cell Tissue Res 2017; 371:351-363. [PMID: 29064078 DOI: 10.1007/s00441-017-2698-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 09/08/2017] [Indexed: 01/24/2023]
Abstract
Testicular Sertoli cells make a niche for the division and differentiation of germ cells. Sertoli cells respond to increased follicle-stimulating hormone (FSH) and testosterone (T) levels at the onset of puberty by producing paracrine factors which affect germ cells and trigger robust onset of spermatogenesis. Such paracrine support to germ cells is absent during infancy, despite Sertoli cells being exposed to high FSH and T within the infant testis. This situation is similar to certain cases of male idiopathic infertility where post-pubertal Sertoli cells fail to support germ cell division and differentiation in spite of endogenous or exogenous hormonal support. Defective Sertoli cells in such individuals may fail to express the full complement of their paracrine repertoire. Identification and supplementation with such factors may overcome Sertoli cells deficiencies and help trigger quantitatively and qualitatively normal differentiation of germ cells. To this end, we compared the transcriptome of FSH- and T-treated infant and pubertal monkey Sertoli cells by DNA microarray. Expression of Wnt3, a morphogen of the Wnt/β-catenin pathway, was higher in pubertal Sertoli cells relative to infant Sertoli cells. Transgenic mice were generated by us in which Wnt3 expression was curtailed specifically in post-pubertal Sertoli cells by shRNA. Subfertility and oligozoospermia were noticed in such animals with low Wnt3 expression in post-pubertal Sertoli cells along with diminished expression of Connexin43, a gap-junctional molecule essential for germ cell development. We report that the FSH- and T-targetedf Wnt3 governs Sertoli cell-mediated regulation of spermatogenesis and hence is crucial for fertility.
Collapse
|
19
|
Chae MR, Kang SJ, Lee KP, Choi BR, Kim HK, Park JK, Kim CY, Lee SW. Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C-mediated activation of the human voltage-gated proton channel. Andrology 2017; 5:979-989. [PMID: 28805023 DOI: 10.1111/andr.12406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Onion (Allium cepa L.) and quercetin protect against oxidative damage and have positive effects on multiple functional parameters of spermatozoa, including viability and motility. However, the associated underlying mechanisms of action have not yet been identified. The aim of this study was to investigate the effect of onion peel extract (OPE) on voltage-gated proton (Hv1) channels, which play a critical role in rapid proton extrusion. This process underlies a wide range of physiological processes, particularly male fertility. The whole-cell patch-clamp technique was used to record the changes in Hv1 currents in HEK293 cells transiently transfected with human Hv1 (HVCN1). The effects of OPE on human sperm motility were also analyzed. OPE significantly activated the outward-rectifying proton currents in a concentration-dependent manner, with an EC50 value of 30 μg/mL. This effect was largely reversible upon washout. Moreover, OPE induced an increase in the proton current amplitude and decreased the time constant of activation at 0 mV from 4.9 ± 1.7 to 0.6 ± 0.1 sec (n = 6). In the presence of OPE, the half-activation voltage (V1/2 ) shifted in the negative direction, from 20.1 ± 5.8 to 5.2 ± 8.7 mV (n = 6), but the slope was not significantly altered. The OPE-induced current was profoundly inhibited by 10 μm Zn2+ , the most potent Hv1 channel inhibitor, and was also inhibited by treatment with GF109203X, a specific protein kinase C (PKC) inhibitor. Furthermore, sperm motility was significantly increased in the OPE-treated groups. OPE exhibits protective effects on sperm motility, at least partially via regulation of the proton channel. Moreover, similar effects were exerted by quercetin, the major flavonoid in OPE. These results suggest OPE, which is rich in the potent Hv1 channel activator quercetin, as a possible new candidate treatment for human infertility.
Collapse
Affiliation(s)
- M R Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S J Kang
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K P Lee
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - B R Choi
- Department of Urology, Medical School and Institute for Medical Sciences, Chonbuk National University, Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, Korea
| | - H K Kim
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - J K Park
- Department of Urology, Medical School and Institute for Medical Sciences, Chonbuk National University, Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, Korea
| | - C Y Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - S W Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Naz M, Kamal M. Classification, causes, diagnosis and treatment of male infertility: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13596-017-0269-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Role of oxidative stress in Cannabis sativa -associated spermatotoxicity: Evidence for ameliorative effect of combined but not separate melatonin and vitamin C. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2016.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
22
|
Sheweita SA, Al-Shora S, Hassan M. Effects of benzo[a]pyrene as an environmental pollutant and two natural antioxidants on biomarkers of reproductive dysfunction in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17226-17235. [PMID: 27221463 DOI: 10.1007/s11356-016-6934-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
Benzo[a]pyrene (B[a]P) is an environmental toxicant and endocrine disruptor. Therefore, the aim of the present study was to investigate the toxicity of B[a]P in testis of rats and also to study the role of silymarin and thymoquinone (TQ) as natural antioxidants in the alleviation of such toxicity. Data of the present study showed that levels of testosterone, estrogen and progesterone were significantly decreased after treatment of rats with B[a]P. In addition, B[a]P caused downregulation of the expressions of steroidogenic enzymes including CYP17A1 and CP19A1, and decreased the activity of 17-β hydroxysteroid dehydrogenase (17β-HSD). Moreover, B[a]P decreased the activities of antioxidant enzymes including catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD), and significantly increased free radicals levels in testis of male rats. However, pretreatment of rats with silymarin prior to administration of B[a]P was found to restore the level of free radicals, antioxidant status, and activities of steroidogenic enzymes to their normal levels in testicular tissues. Moreover, histopathological finding showed that silymarin recovered the abnormalities occurred in tubules caused by B[a] P in testis of rats. On the other hand, TQ showed pro-oxidant effects and did not ameliorate the toxic effects of B[a] P on the testicular tissue since it decreased antioxidant enzymes activities and inhibited the protein expression of CYP11A1 and CYP21A2 compared to control rats. Moreover, TQ decreased the levels of testosterone, estrogen, and progesterone either in the presence or absence of B[a]P. It is concluded that B[a]P decreased testosterone levels, inhibited antioxidant enzymes activities, caused downregulation of CYP isozymes involved in steroidogenesis, and increased free radical levels in testis. Moreover, silymarin was more effective than TQ in restoring organism health and alleviating the deleterious effects caused by B[a]P in the testis of rats. Due to its negative impact, it is highly recommended to limit the use of TQ as a dietary supplement since millions of people in the Middle East are using it to improve their health.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt.
| | - S Al-Shora
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt
| | - M Hassan
- Department of Environmental Studies, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt
| |
Collapse
|
23
|
Agarwal A, Ong C, Durairajanayagam D. Contemporary and future insights into fertility preservation in male cancer patients. Transl Androl Urol 2016; 3:27-40. [PMID: 26816750 PMCID: PMC4708292 DOI: 10.3978/j.issn.2223-4683.2014.02.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, survival rates of cancer patients have increased, resulting in a shift of focus from quantity to quality of life. A key aspect of quality of life is fertility potential; patients suffering from iatrogenic infertility often become depressed. Since many cancer therapies—chemotherapy, radiotherapy and/or surgery—and even cancer itself have detrimental effects on the male reproductive system, it is important to preserve fertility before any treatment commences. Currently, the only reliable method of male fertility preservation is sperm banking. For patients who are unable to provide semen samples by the conventional method of masturbation, there are other techniques such as electroejaculation, microsurgical epididymal sperm aspiration and testicular sperm extraction that can be employed. Unfortunately, it is presently impossible to preserve the fertility potential of pre-pubertal patients. Due to the increasing numbers of adolescent cancer patients surviving treatment, extensive research is being conducted into several possible methods such as testicular tissue cryopreservation, xenografting, in vitro gamete maturation and even the creation of artificial gametes. However, in spite of its ease, safety, convenience and many accompanying benefits, sperm banking remains underutilized in cancer patients. There are several barriers involved such as the lack of information and the urgency to begin treatment, but various measures can be put in place to overcome these barriers so that sperm banking can be more widely utilized.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chloe Ong
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Damayanthi Durairajanayagam
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Cassina A, Silveira P, Cantu L, Montes JM, Radi R, Sapiro R. Defective Human Sperm Cells Are Associated with Mitochondrial Dysfunction and Oxidant Production1. Biol Reprod 2015; 93:119. [DOI: 10.1095/biolreprod.115.130989] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023] Open
|
25
|
Astaxanthin Improves Human Sperm Capacitation by Inducing Lyn Displacement and Activation. Mar Drugs 2015; 13:5533-51. [PMID: 26308013 PMCID: PMC4584338 DOI: 10.3390/md13095533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Astaxanthin (Asta), a photo-protective red pigment of the carotenoid family, is known for its multiple beneficial properties. In this study, the effects of Asta on isolated human sperm were evaluated. Capacitation involves a series of transformations to let sperm acquire the correct features for potential oocyte fertilization, including the generation of a controlled amount of reactive oxygen species (ROS), cholesterol depletion of the sperm outer membrane, and protein tyrosine phosphorylation (Tyr-P) process in the head region. Volunteers, with normal spermiogram values, were divided in two separate groups on the basis of their ability to generate the correct content of endogenous ROS. Both patient group (PG) and control group (CG) were analysed for Tyr-phosphorylation (Tyr-P) pattern and percentages of acrosome-reacted cells (ARC) and non-viable cells (NVC), in the presence or absence of Asta. In addition, the involvement of ROS on membrane reorganization and the presence of Lyn, a Src family kinase associated with lipid rafts, were investigated. Results show that Lyn is present in the membranes of human sperm, mainly confined in midpiece in resting conditions. Following capacitation, Lyn translocated to the head concomitantly with raft relocation, thus allowing the Tyr-P of head proteins. Asta succeeded to trigger Lyn translocation in PG sperm thus bypassing the impaired ROS-related mechanism for rafts and Lyn translocation. In this study, we showed an interdependence between ROS generation and lipid rafts and Lyn relocation leading the cells to undergo the successive acrosome reaction (AR). Asta, by ameliorating PG sperm functioning, may be utilised to decrease male idiopathic infertility.
Collapse
|
26
|
Tamoxifen is a potent antioxidant modulator for sperm quality in patients with idiopathic oligoasthenospermia. Int Urol Nephrol 2015. [DOI: 10.1007/s11255-015-1065-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Beattie MC, Adekola L, Papadopoulos V, Chen H, Zirkin BR. Leydig cell aging and hypogonadism. Exp Gerontol 2015; 68:87-91. [PMID: 25700847 DOI: 10.1016/j.exger.2015.02.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 01/28/2023]
Abstract
Leydig cell testosterone (T) production is reduced with age, resulting in reduced serum T levels (hypogonadism). A number of cellular changes have been identified in the steroidogenic pathway of aged Leydig cells that are associated with reduced T formation, including reductions in luteinizing hormone (LH)-stimulated cAMP production, the cholesterol transport proteins steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and downstream steroidogenic enzymes of the mitochondria and smooth endoplasmic reticulum. Many of the changes in steroid formation that characterize aged Leydig cells can be elicited by the experimental alteration of the redox environment of young cells, suggesting that changes in the intracellular redox balance may cause reduced T production. Hypogonadism is estimated to affect about 5 million American men, including both aged and young. This condition has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass, reduced bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Exogenous T administration is now used widely to elevate serum T levels in hypogonadal men and thus to treat symptoms of hypogonadism. However, recent evidence suggests that men who take exogenous T may face increased risk of stroke, heart attack, and prostate tumorigenesis. Moreover, it is well established that administered T can have suppressive effects on LH, resulting in lower Leydig cell T production, reduced intratesticular T concentration, and reduced spermatogenesis. This makes exogenous T administration inappropriate for men who wish to father children. There are promising new approaches to increase serum T by directly stimulating Leydig cell T production rather than by exogenous T therapy, thus potentially avoiding some of its negative consequences.
Collapse
Affiliation(s)
- M C Beattie
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - L Adekola
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - V Papadopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Pharmacology, McGill University, Montreal, Quebec, Canada; Department of Therapeutics, McGill University, Montreal, Quebec, Canada
| | - H Chen
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - B R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
28
|
Ayaz A, Agarwal A, Sharma R, Arafa M, Elbardisi H, Cui Z. Impact of precise modulation of reactive oxygen species levels on spermatozoa proteins in infertile men. Clin Proteomics 2015; 12:4. [PMID: 25972767 PMCID: PMC4429661 DOI: 10.1186/1559-0275-12-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Elevated levels of reactive oxygen species (ROS) are detected in 25% to 80% of infertile men. They are involved in the pathology of male infertility. Understanding the effect of increasing levels of ROS on the differential expression of sperm proteins is important to understand the cellular processes and or/pathways that may be implicated in male infertility. The aim of this study was to examine differentially expressed proteins (DEPs) in spermatozoa from patients with low, medium and high ROS levels. Methods A total of 42 infertile men presenting for infertility and 17 proven fertile men were enrolled in the study. ROS levels were measured by chemiluminescence assay. Infertile men were divided into Low (0- < 93 RLU/s/106 sperm) (n = 11), Medium (>93-500 RLU/s/106 sperm) (n = 17) and High ROS (>500 RLU/s/106 sperm) group (n = 14). All fertile men had ROS levels between 4-50 RLU/s/106 sperm. 4 subjects from fertile group and 4 each from the Low, Medium and High ROS were pooled. Protein extraction, protein estimation, gel separation of the proteins, in-gel digestion, LTQ-orbitrap elite hybrid mass spectrometry system was conducted. The DEPs, the cellular localization and pathways of DEPs involved were examined utilizing bioinformatics tools. Results 1035 proteins were identified in the 3 groups by global proteomic analysis. Of these, 305 were DEPs. 51 were unique to the Low ROS group, 47 Medium ROS group and 104 were unique to the High ROS group. 6 DEPs were identified by Uniprot and DAVID that had distinct reproductive functions and they were expressed only in 3 ROS groups but not in the control. Conclusions We have for the first time demonstrated the presence of 6 DEPs with distinct reproductive functions only in men with low, medium or high ROS levels. These DEPs can serve as potential biomarkers of oxidative stress induced male infertility. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-12-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmet Ayaz
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Mohamed Arafa
- Male Infertility Unit, Department of Urology, Hamad Hospital, Doha, Qatar
| | - Haitham Elbardisi
- Male Infertility Unit, Department of Urology, Hamad Hospital, Doha, Qatar
| | - Zhihong Cui
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
29
|
Abstract
Excessive amounts of reactive oxygen species (ROS) cause a state of oxidative stress, which result in sperm membrane lipid peroxidation, DNA damage and apoptosis, leading to decreased sperm viability and motility. Elevated levels of ROS are a major cause of idiopathic male factor infertility, which is an increasingly common problem today. Lycopene, the most potent singlet oxygen quencher of all carotenoids, is a possible treatment option for male infertility because of its antioxidant properties. By reacting with and neutralizing free radicals, lycopene could reduce the incidence of oxidative stress and thus, lessen the damage that would otherwise be inflicted on spermatozoa. It is postulated that lycopene may have other beneficial effects via nonoxidative mechanisms in the testis, such as gap junction communication, modulation of gene expression, regulation of the cell cycle and immunoenhancement. Various lycopene supplementation studies conducted on both humans and animals have shown promising results in alleviating male infertility—lipid peroxidation and DNA damage were decreased, while sperm count and viability, and general immunity were increased. Improvement of these parameters indicates a reduction in oxidative stress, and thus the spermatozoa is less vulnerable to oxidative damage, which increases the chances of a normal sperm fertilizing the egg. Human trials have reported improvement in sperm parameters and pregnancy rates with supplementation of 4–8 mg of lycopene daily for 3–12 months. However, further detailed and extensive research is still required to determine the dosage and the usefulness of lycopene as a treatment for male infertility.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA,
| | | | | |
Collapse
|
30
|
Free radicals in adolescent varicocele testis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:912878. [PMID: 25580183 PMCID: PMC4279722 DOI: 10.1155/2014/912878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022]
Abstract
We examine the relationship between the structure and function of the testis and the oxidative and nitrosative stress, determined by an excessive production of free radicals and/or decreased availability of antioxidant defenses, which occur in the testis of adolescents affected by varicocele. Moreover, the effects of surgical treatment on oxidative stress were provided. We conducted a PubMed and Medline search between 1980 and 2014 using “adolescent,” “varicocele,” “free radicals,” “oxidative and nitrosative stress,” “testis,” and “seminiferous tubules” as keywords. Cross-references were checked in each of the studies, and relevant articles were retrieved. We conclude that increased concentration of free radicals, generated by conditions of hypoxia, hyperthermia, and hormonal dysfunction observed in adolescent affected by varicocele, can harm germ cells directly or indirectly by influencing nonspermatogenic cells and basal lamina. With regard to few available data in current literature, further clinical trials on the pre- and postoperative ROS and RNS levels together with morphological studies of the cellular component of the testis are fundamental for complete comprehension of the role played by free radicals in the pathogenesis of adolescent varicocele and could justify its pharmacological treatment with antioxidants.
Collapse
|
31
|
Holland A, Ohlendieck K. Comparative profiling of the sperm proteome. Proteomics 2014; 15:632-48. [DOI: 10.1002/pmic.201400032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Ashling Holland
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| |
Collapse
|
32
|
Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014; 29:32-58. [DOI: 10.1016/j.rbmo.2014.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 02/08/2023]
|
33
|
Le B, Chen H, Zirkin B, Burnett A. New targets for increasing endogenous testosterone production: clinical implications and review of the literature. Andrology 2014; 2:484-90. [DOI: 10.1111/j.2047-2927.2014.00225.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/03/2014] [Accepted: 04/06/2014] [Indexed: 12/30/2022]
Affiliation(s)
- B. Le
- The James Buchanan Brady Urological Institute; Johns Hopkins Hospital; Baltimore MD USA
| | - H. Chen
- Department of Biochemistry and Molecular Biology, The Bloomberg School of Public Health; Johns Hopkins University; Baltimore MD USA
| | - B. Zirkin
- Department of Biochemistry and Molecular Biology, The Bloomberg School of Public Health; Johns Hopkins University; Baltimore MD USA
| | - A. Burnett
- The James Buchanan Brady Urological Institute; Johns Hopkins Hospital; Baltimore MD USA
| |
Collapse
|