1
|
Long Y, Mao C, Liu S, Tao Y, Xiao D. Epigenetic modifications in obesity-associated diseases. MedComm (Beijing) 2024; 5:e496. [PMID: 38405061 PMCID: PMC10893559 DOI: 10.1002/mco2.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
The global prevalence of obesity has reached epidemic levels, significantly elevating the susceptibility to various cardiometabolic conditions and certain types of cancer. In addition to causing metabolic abnormalities such as insulin resistance (IR), elevated blood glucose and lipids, and ectopic fat deposition, obesity can also damage pancreatic islet cells, endothelial cells, and cardiomyocytes through chronic inflammation, and even promote the development of a microenvironment conducive to cancer initiation. Improper dietary habits and lack of physical exercise are important behavioral factors that increase the risk of obesity, which can affect gene expression through epigenetic modifications. Epigenetic alterations can occur in early stage of obesity, some of which are reversible, while others persist over time and lead to obesity-related complications. Therefore, the dynamic adjustability of epigenetic modifications can be leveraged to reverse the development of obesity-associated diseases through behavioral interventions, drugs, and bariatric surgery. This review provides a comprehensive summary of the impact of epigenetic regulation on the initiation and development of obesity-associated cancers, type 2 diabetes, and cardiovascular diseases, establishing a theoretical basis for prevention, diagnosis, and treatment of these conditions.
Collapse
Affiliation(s)
- Yiqian Long
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
| | - Shuang Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic SurgerySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Lee SE, Wang F, Grefe M, Trujillo-Ocampo A, Ruiz-Vasquez W, Takahashi K, Abbas HA, Borges P, Antunes DA, Al-Atrash G, Daver N, Molldrem JJ, Futreal A, Garcia-Manero G, Im JS. Immunologic Predictors for Clinical Responses during Immune Checkpoint Blockade in Patients with Myelodysplastic Syndromes. Clin Cancer Res 2023; 29:1938-1951. [PMID: 36988276 PMCID: PMC10192218 DOI: 10.1158/1078-0432.ccr-22-2601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/10/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE The aim of this study is to determine immune-related biomarkers to predict effective antitumor immunity in myelodysplastic syndrome (MDS) during immunotherapy (IMT, αCTLA-4, and/or αPD-1 antibodies) and/or hypomethylating agent (HMA). EXPERIMENTAL DESIGN Peripheral blood samples from 55 patients with MDS were assessed for immune subsets, T-cell receptor (TCR) repertoire, mutations in 295 acute myeloid leukemia (AML)/MDS-related genes, and immune-related gene expression profiling before and after the first treatment. RESULTS Clinical responders treated with IMT ± HMA but not HMA alone showed a significant expansion of central memory (CM) CD8+ T cells, diverse TCRβ repertoire pretreatment with increased clonality and emergence of novel clones after the initial treatment, and a higher mutation burden pretreatment with subsequent reduction posttreatment. Autophagy, TGFβ, and Th1 differentiation pathways were the most downregulated in nonresponders after treatment, while upregulated in responders. Finally, CTLA-4 but not PD-1 blockade attributed to favorable changes in immune landscape. CONCLUSIONS Analysis of tumor-immune landscape in MDS during immunotherapy provides clinical response biomarkers.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
| | - Feng Wang
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Maison Grefe
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
| | - Abel Trujillo-Ocampo
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
| | - Wilfredo Ruiz-Vasquez
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
| | - Koichi Takahashi
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Hussein A. Abbas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Pamella Borges
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Biology and Biochemistry, The University of Houston
| | | | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Navel Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Jeffrey J. Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| | - Guillermo Garcia-Manero
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
| | - Jin S. Im
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas M.D, Anderson Cancer Center
- Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center
| |
Collapse
|
3
|
Zhao F, Wang J, Yao L, Qin YT, Tuerxun N, Wang H, Jiang M, Hao JP. Synergistic inhibitory effect of Smo inhibitor jervine and its combination with decitabine can target Hedgehog signaling pathway to inhibit myelodysplastic syndrome cell line. ACTA ACUST UNITED AC 2021; 26:518-528. [PMID: 34314648 DOI: 10.1080/16078454.2021.1950897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Hypomethylating agents (HMAs) have been reported to target the Sonic Hedgehog (Shh) signaling pathway in myelodysplastic syndrome (MDS). However, the synergistic inhibitory effect of Smo inhibitor jervine and its combination with decitabine in MUTZ-1 cell lines remains lacking. METHODS We used a CCK-8 assay to detect the in-vitro proliferation rate of MUTZ-1 cell lines. Besides, the Annexin V-FITC/PI double staining flow cytometry was utilized to detect the apoptosis rate and cell cycle changes. The expression levels of mRNA were quantified by using qRT-PCR, and the western blot was employed to detect the expression of proteins. RESULTS We found that the single-agent jervine or decitabine can significantly inhibit the proliferation rate of MUTZ-1 cell lines, and this inhibitory effect is time-dependent and concentration-dependent. The combined intervention of the jervine and decitabine can more significantly inhibit cell proliferation, induce cell apoptosis, and block the G1 phase of the cell cycle. The combined intervention of the two drugs significantly reduced Smo and G1i-1 mRNA expression in MUTZ-1 cells. Furthermore, after combining both of the drug treatments, the proteins levels of Smo, G1i-1, PI3K, p-AKT, Bcl2, and Cyclin Dl were significantly downregulated, and Caspase-3 is upregulated, indicating that jervine with its combination of decitabine might be effective for controlling the proliferation, apoptosis, and cell cycle. CONCLUSION The Smo inhibitor jervine and its combination with decitabine have a synergistic effect on the proliferation, cell cycle, and apoptosis of MUTZ-1 cells, and its mechanism may be achieved by interfering with the Shh signaling pathway.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Liu Yao
- The First Clinical Medical College of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yu-Ting Qin
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Niluopaer Tuerxun
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Huan Wang
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Ming Jiang
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
4
|
Zhang G, Gao X, Zhao X, Wu H, Yan M, Li Y, Zeng H, Ji Z, Guo X. Decitabine inhibits the proliferation of human T-cell acute lymphoblastic leukemia molt4 cells and promotes apoptosis partly by regulating the PI3K/AKT/mTOR pathway. Oncol Lett 2021; 21:340. [PMID: 33747197 PMCID: PMC7967925 DOI: 10.3892/ol.2021.12601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematological cancer; however, there is a lack of effective chemotherapeutic or targeted drugs for the treatment of T-ALL. Decitabine is a DNA demethylation agent but it has not been used for T-ALL treatment. Therefore, the present study aimed to assess the inhibitory effect of decitabine on T-ALL molt4 cells and determine its regulatory role in the PI3K/AKT/mTOR pathway. Molt4 cells were stimulated with decitabine in vitro, after which cell proliferation, apoptosis and cell cycle analyses were performed to assess cell viability. Subcellular morphology was observed using transmission electron microscopy. Expression levels of phosphate and tension homology (PTEN), genes involved in the PI3K/AKT/mTOR pathway and the corresponding downstream genes were analyzed using reverse transcription-quantitative PCR and western blotting. The results showed that decitabine induced apoptosis, inhibited proliferation and arrested molt4 cells in the G2 phase. Following decitabine intervention, an increase in the number of lipid droplets, autophagosomes and mitochondrial damage was observed. At concentrations of 1 and 10 µM, decitabine downregulated the expression of PI3K, AKT, mTOR, P70S6 and eukaryotic initiating factor 4E-binding protein 1, which in turn upregulated PTEN expression; however, 50 µM decitabine downregulated PTEN levels. Overall, these results demonstrated that decitabine reduced the viability of molt4 cells partly by inhibiting the PI3K/AKT/mTOR pathway via PTEN, especially at low decitabine concentrations.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohui Gao
- Department of Pediatrics, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoyan Zhao
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Haibing Wu
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Minchao Yan
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yuan Li
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Hui Zeng
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhaoning Ji
- Department of Medical Oncology, The Cancer Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaojun Guo
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
5
|
Thieulent C, Hue ES, Sutton G, Fortier C, Dallemagne P, Zientara S, Munier-Lehmann H, Hans A, Paillot R, Vidalain PO, Pronost S. Identification of antiviral compounds against equid herpesvirus-1 using real-time cell assay screening: Efficacy of decitabine and valganciclovir alone or in combination. Antiviral Res 2020; 183:104931. [PMID: 32926887 DOI: 10.1016/j.antiviral.2020.104931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Equid herpesvirus-1 infections cause respiratory, neurological and reproductive syndromes. Despite preventive treatments with vaccines, resurgence of EHV-1 infection still constitutes a major threat to equine industry. However, no antiviral compound is available to treat infected horses. In this study, 2891 compounds were screened against EHV-1 using impedance measurement. 22 compounds have been found to be effective in vitro against EHV-1. Valganciclovir, ganciclovir, decitabine, aphidicolin, idoxuridine and pritelivir (BAY 57-1293) are the most effective compounds identified, and their antiviral potency was further assessed on E. Derm, RK13 and EEK cells and against 3 different field strains of EHV-1 (ORF30 2254 A/G/C). We also provide evidences of synergistic interactions between valganciclovir and decitabine in our in vitro antiviral assay as determined by MacSynergy II, isobologramm and Chou-Talalay methods. Finally, we showed that deoxycytidine reverts the antiviral effect of decitabine, thus supporting some competition at the level of nucleoside phosphorylation by deoxycytidine kinase and/or DNA synthesis. Deoxycitidine analogues, like decitabine, is a family of compounds identified for the first time with promising antiviral efficacy against herpesviruses.
Collapse
Affiliation(s)
- Côme Thieulent
- LABÉO Frank Duncombe, 14280, Saint-Contest, France; Normandie Univ, Unicaen, BIOTARGEN EA7450, 14280, Saint-Contest, France
| | - Erika S Hue
- LABÉO Frank Duncombe, 14280, Saint-Contest, France; Normandie Univ, Unicaen, BIOTARGEN EA7450, 14280, Saint-Contest, France; Normandie Univ, UNICAEN, ImpedanCELL, 14280, Saint-Contest, France
| | - Gabrielle Sutton
- LABÉO Frank Duncombe, 14280, Saint-Contest, France; Normandie Univ, Unicaen, BIOTARGEN EA7450, 14280, Saint-Contest, France
| | - Christine Fortier
- LABÉO Frank Duncombe, 14280, Saint-Contest, France; Normandie Univ, Unicaen, BIOTARGEN EA7450, 14280, Saint-Contest, France; Normandie Univ, UNICAEN, ImpedanCELL, 14280, Saint-Contest, France
| | | | - Stephan Zientara
- Université Paris-Est, Laboratoire de Santé Animale, ANSES, INRAE, ENVA, UMR 1161 Virologie, 94700, Maisons-Alfort, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, CNRS UMR 3523, 75015, Paris, France
| | - Aymeric Hans
- ANSES, Laboratoire de Santé Animale, Site de Normandie, PhEED Unit, 14430, Goustranville, France
| | - Romain Paillot
- LABÉO Frank Duncombe, 14280, Saint-Contest, France; Normandie Univ, Unicaen, BIOTARGEN EA7450, 14280, Saint-Contest, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France; Equipe Chimie et Biologie, Modélisation et Immunologie pour La Thérapie (CBMIT), Université Paris Descartes, CNRS UMR 8601, 75006, Paris, France
| | - Stéphane Pronost
- LABÉO Frank Duncombe, 14280, Saint-Contest, France; Normandie Univ, Unicaen, BIOTARGEN EA7450, 14280, Saint-Contest, France; Normandie Univ, UNICAEN, ImpedanCELL, 14280, Saint-Contest, France.
| |
Collapse
|
6
|
Ma YY, Zhao M, Liu Y, Zhao DF, Wang LX, Chen XP, Li L. Use of decitabine for patients with refractory or relapsed acute myeloid leukemia: a systematic review and meta-analysis. Hematology 2019; 24:507-515. [PMID: 31242832 DOI: 10.1080/16078454.2019.1632407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yuan-yuan Ma
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Min Zhao
- Department of Nutrition, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yi Liu
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - De-feng Zhao
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li-xin Wang
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiao-ping Chen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li Li
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
7
|
The Roles of Human DNA Methyltransferases and Their Isoforms in Shaping the Epigenome. Genes (Basel) 2019; 10:genes10020172. [PMID: 30813436 PMCID: PMC6409524 DOI: 10.3390/genes10020172] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
A DNA sequence is the hard copy of the human genome and it is a driving force in determining the physiological processes in an organism. Concurrently, the chemical modification of the genome and its related histone proteins is dynamically involved in regulating physiological processes and diseases, which overall constitutes the epigenome network. Among the various forms of epigenetic modifications, DNA methylation at the C-5 position of cytosine in the cytosine–guanine (CpG) dinucleotide is one of the most well studied epigenetic modifications. DNA methyltransferases (DNMTs) are a family of enzymes involved in generating and maintaining CpG methylation across the genome. In mammalian systems, DNA methylation is performed by DNMT1 and DNMT3s (DNMT3A and 3B). DNMT1 is predominantly involved in the maintenance of DNA methylation during cell division, while DNMT3s are involved in establishing de novo cytosine methylation and maintenance in both embryonic and somatic cells. In general, all DNMTs require accessory proteins, such as ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domain 1 (UHRF1) or DNMT3-like (DNMT3L), for their biological function. This review mainly focuses on the role of DNMT3B and its isoforms in de novo methylation and maintenance of DNA methylation, especially with respect to their role as an accessory protein.
Collapse
|
8
|
Niu C, Li M, Zhu S, Chen Y, Zhou L, Xu D, Li W, Cui J, Liu Y, Chen J. Decitabine Inhibits Gamma Delta T Cell Cytotoxicity by Promoting KIR2DL2/3 Expression. Front Immunol 2018; 9:617. [PMID: 29632540 PMCID: PMC5879086 DOI: 10.3389/fimmu.2018.00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Gamma delta (γδ) T cells, which possess potent cytotoxicity against a wide range of cancer cells, have become a potential avenue for adoptive immunotherapy. Decitabine (DAC) has been reported to enhance the immunogenicity of tumor cells, thereby reinstating endogenous immune recognition and tumor lysis. However, DAC has also been demonstrated to have direct effects on immune cells. In this study, we report that DAC inhibits γδ T cell proliferation. In addition, DAC increases the number of KIR2DL2/3-positive γδ T cells, which are less cytotoxic than the KIR2DL2/3-negative γδ T cells. We found that DAC upregulated KIR2DL2/3 expression in KIR2DL2/3-negative γδ T cells by inhibiting KIR2DL2/3 promoter methylation, which enhances the binding of KIR2DL2/3 promoter to Sp-1 and activates KIR2DL2/3 gene expression. Our data demonstrated that DAC can inhibit the function of human γδ T cells at both cellular and molecular levels, which confirms and extrapolates the results of previous studies showing that DAC can negatively regulate the function of NK cells and αβ T cells of the immune system.
Collapse
Affiliation(s)
- Chao Niu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yongchong Chen
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng Xu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yongjun Liu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Swerev TM, Wirth T, Ushmorov A. Activation of oncogenic pathways in classical Hodgkin lymphoma by decitabine: A rationale for combination with small molecular weight inhibitors. Int J Oncol 2016; 50:555-566. [DOI: 10.3892/ijo.2016.3827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 11/06/2022] Open
|
10
|
Shi X, Chen P, Liu H, Qiao F, Liu H, Gong X, Li Y, Du H, Liu W, Tang G, Cao J, Wu Y. Decitabine Improves the Clinical Manifestations of Rats With l-NAME-Induced Pre-eclampsia: A Potential Approach to Studying Pre-eclampsia. Hypertens Pregnancy 2015; 34:464-473. [PMID: 26389732 DOI: 10.3109/10641955.2015.1074245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Pre-eclampsia is a major cause of maternal mortality and morbidity. Conditions with low oxygen tension are regarded as a key factor. Decitabine can partly attenuate the effects of hypoxia. This research was designed to investigate the effects of decitabine in rats with NG-Nitro-L-arginine Methyl Eater (L-NAME) induced pre-eclampsia and to explore the molecular mechanisms. METHODS A Wistar rat model of pre-eclampsia was established by intraperitoneal injection of L-NAME, and the intervention reagent was decitabine. Blood pressure (BP) and 24-h urinary protein were monitored. The expression of Mammary Serine Protease Inhibitor (SERPINB5, maspin) in the placenta was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting. RESULTS Systolic BP in the tail artery of pregnant rats was increased by more than 30 mm Hg, and 24-h urinary protein was significantly increased after L-NAME was added. After decitabine treatment, blood pressure and 24-h urinary protein were significantly decreased. The expression of SERPINB5 in the placenta significantly increased after L-NAME was added. Decitabine significantly elevated the expression of SERPINB5 in the placenta of rats with L-NAME-induced preeclampsia. CONCLUSION Decitabine reduced 24-h urinary protein and partly decreased blood pressure of pre-eclampsia in late pregnancy in rats with L-NAME-induced pre-eclampsia and increased the expression of SERPINB5, but the molecular mechanism of decitabine's effect remains unknown. This research provided a potential approach to studying the pathogenesis, treatment and prevention of pre-eclampsia.
Collapse
Affiliation(s)
- Xinwei Shi
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ping Chen
- b Department of Obstetrics and Gynecology , Shenzhen Baoan Maternal and Child Health Hospital , Shenzhen , China
| | - Hao Liu
- c Department of Urology , Wuhan Third Hospital , Guanggu Campus , Wuhan , China
| | - Fuyuan Qiao
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Haiyi Liu
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xun Gong
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yuqi Li
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Hui Du
- d Department of Obstetrics , Hubei Women and Children Hospital , Wuhan , China , and
| | - Wanlu Liu
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Guiju Tang
- e Department of Obstetrics and Gynecology , Wuhan Women and Children Medical Care Center , Wuhan , China
| | - Jing Cao
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yuanyuan Wu
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
11
|
Gomez A, Ingelman-Sundberg M. Pharmacoepigenetic aspects of gene polymorphism on drug therapies: effects of DNA methylation on drug response. Expert Rev Clin Pharmacol 2014; 2:55-65. [DOI: 10.1586/17512433.2.1.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Guan H, Xie L, Klapproth K, Weitzer CD, Wirth T, Ushmorov A. Decitabine represses translocated MYC oncogene in Burkitt lymphoma. J Pathol 2013; 229:775-83. [PMID: 23341364 DOI: 10.1002/path.4164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 01/22/2023]
Abstract
Burkitt lymphoma (BL) is caused by translocation of the MYC gene to an immunoglobulin locus resulting in its constitutive expression depending on the activity of the immunoglobulin (Ig) enhancer elements. Treatment of BL cell lines with epigenetic modifiers is known to repress B-cell-specific genes and to up-regulate B-cell-inappropriate genes including the transcription repressor ID2 expression. We found that the DNA methyltransferase inhibitor decitabine/5-aza-2-deoxycytidine (5-aza-dC) represses the MYC oncogene on RNA and protein levels by inducing ID2. Down-regulation of MYC was associated with repression of transcriptional activity of the Ig locus and with inhibition of proliferation. The induction of ID2 can be in part explained by activation of the transcription factor NF-κB. We conclude that up-regulation of ID2 contributes to anti-tumour activity of 5-aza-dC via repression of Ig locus activity and consequently MYC expression.
Collapse
Affiliation(s)
- Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
13
|
Karahoca M, Momparler RL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics 2013; 5:3. [PMID: 23369223 PMCID: PMC3570332 DOI: 10.1186/1868-7083-5-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/04/2013] [Indexed: 12/31/2022] Open
Abstract
5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine), an epigenetic drug that inhibits DNA methylation, is currently used to treat myelodysplastic syndrome (MDS), and is under investigation for treating acute myeloid leukemia (AML) and other malignancies. 5-AZA-CdR can reactivate tumor suppressor genes silenced by aberrant DNA methylation, a frequent event in all types of cancer. Because this epigenetic change is reversible, it is a good target for 5-AZA-CdR therapy. We have reviewed the preclinical data of 5-AZA-CdR to analyze the concentrations and exposure times required to eradicate cancer stem cells. We analyzed the dose-schedules used in animal models that show potent antineoplastic activity of 5-AZA-CdR. We attempted to correlate the preclinical data with the responses obtained in clinical trials of 5-AZA-CdR in patients with cancer. The pharmacokinetics and drug distribution of 5-AZA-CdR are key parameters because adequate therapeutic drug levels are required to eliminate cancer stem cells in all anatomic compartments. The plasma half-life of 5-AZA-CdR in humans is approximately 20 minutes due to the high levels in the liver of cytidine deaminase, the enzyme that inactivates this analogue. This provides a rationale to use an inhibitor of cytidine deaminase in combination with 5-AZA-CdR. Low-dose 5-AZA-CdR is effective for MDS and AML and can induce complete remissions (CR). However, maintenance of CR with low-dose 5-AZA-CdR is difficult. Based on analyses of preclinical and clinical data, low dose 5-AZA-CdR has the potential to be an effective form of therapy in some patients with cancer. For patients who do not respond to low dose therapy we recommend dose-intensive treatment with 5-AZA-CdR. Patients who are candidates for intensive dose 5-AZA-CdR should have a good bone marrow status so as to permit adequate recovery from myelosuppression, the major toxicity of 5-AZA-CdR. Solid tumors are also interesting targets for therapy with 5-AZA-CdR. Both low dose and intensive therapy with 5-AZA-CdR can reduce the proliferative potential of tumor stem cells in animal models. We propose novel dose schedules of 5-AZA-CdR for investigation in patients with cancer. The full chemotherapeutic potential of 5-AZA-CdR to treat cancer merits further clinical investigation and can only be realized when its optimal dose-schedule is determined.
Collapse
Affiliation(s)
- Metin Karahoca
- Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
14
|
Yan M, Himoudi N, Basu BP, Wallace R, Poon E, Adams S, Hasan F, Xue SA, Wilson N, Dalgleish A, Williams O, Anderson J. Increased PRAME antigen-specific killing of malignant cell lines by low avidity CTL clones, following treatment with 5-Aza-2'-Deoxycytidine. Cancer Immunol Immunother 2011; 60:1243-55. [PMID: 21553146 PMCID: PMC11029732 DOI: 10.1007/s00262-011-1024-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/17/2011] [Indexed: 12/22/2022]
Abstract
The cancer testis antigen Preferentially Expressed Antigen of Melanoma (PRAME) is overexpressed in many solid tumours and haematological malignancies whilst showing minimal expression in normal tissues and is therefore a promising target for immunotherapy. HLA-A0201-restricted peptide epitopes from PRAME have previously been identified as potential immunogens to drive antigen-specific autologous CTL responses, capable of lysing PRAME expressing tumour cells. CTL lines, from 13 normal donors and 10 melanoma patients, all of whom were HLA-A0201 positive, were generated against the PRAME peptide epitope PRA(100-108). Specific killing activity against PRA(100-108) peptide-pulsed targets was weak compared with CTL lines directed against known immunodominant peptides. Moreover, limiting dilution cloning from selected PRAME-specific CTL lines resulted in the generation of a clone of only low to intermediate avidity. Addition of the demethylating agent 5-aza-2'-Deoxycytidine (DAC) increased PRAME expression in 7 out of 11 malignant cell lines including several B lineage leukaemia lines and also increased class I expression. Pre-treatment of target cells was associated with increased sensitivity to antigen-specific killing by the low avidity CTL. When CTL, as well as of the target cells, were treated, the antigen-specific killing was further augmented. Interestingly, one HLA-A0201-negative DAC-treated line (RAJI) showed increased sensitivity to killing by clones despite a failure of expression of PRAME or HLA-A0201. Together these data point to a general increased augmentation of cancer immunogenocity by DAC involving both antigen-specific and non-specific mechanisms.
Collapse
Affiliation(s)
- Mengyong Yan
- Unit of Molecular Haematology and Cancer Biology, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Nourredine Himoudi
- Unit of Molecular Haematology and Cancer Biology, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - B. Piku Basu
- Unit of Molecular Haematology and Cancer Biology, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Rebecca Wallace
- Unit of Molecular Haematology and Cancer Biology, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Edmund Poon
- Unit of Molecular Haematology and Cancer Biology, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Stuart Adams
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Fyeza Hasan
- Unit of Molecular Haematology and Cancer Biology, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Shao-An Xue
- Department of Immunology, University College London Royal Free Campus, London, UK
| | - Natalie Wilson
- Department of Medical Oncology, St George’s Hospital Medical School, London, UK
| | - Angus Dalgleish
- Department of Medical Oncology, St George’s Hospital Medical School, London, UK
| | - Owen Williams
- Unit of Molecular Haematology and Cancer Biology, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - John Anderson
- Unit of Molecular Haematology and Cancer Biology, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
15
|
Bryan J, Kantarjian H, Garcia-Manero G, Jabbour E. Pharmacokinetic evaluation of decitabine for the treatment of leukemia. Expert Opin Drug Metab Toxicol 2011; 7:661-72. [PMID: 21500965 DOI: 10.1517/17425255.2011.575062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a life-threatening malignancy that primarily afflicts an elderly population. Treatment of elderly patients with intensive chemotherapy is associated with high treatment-related morbidity and mortality. Therefore, less toxic approaches involving low-dose decitabine-based regimens are being explored in this patient population. AREAS COVERED This drug evaluation article discusses the rationale for targeting aberrant DNA methylation in hematologic malignancies, in particular the myelodysplastic syndromes (MDS) and AML. The authors review the pharmacokinetic data gained from low-dose decitabine, as well as the clinical progress of decitabine in the treatment of hematologic malignancies. Published manuscripts in English were selected from PubMed using a combination of the following search terms: acute myeloid leukemia, pharmacokinetics, decitabine, 5-aza-2'-deoxycytidine, DNA methylation, DNA methyltransferase, myelodysplastic syndrome and leukemia. EXPERT OPINION Decitabine has established efficacy in MDS and shown promising activity in AML at low doses. Given decitabine’s favorable toxicity profile and emerging clinical efficacy, decitabine may be a low intensity therapeutic option for elderly patients with AML who are considered unfit for aggressive chemotherapy.
Collapse
Affiliation(s)
- Jeffrey Bryan
- The University of Texas, M.D. Anderson Cancer Center, Department of Leukemia, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
16
|
Bryan J, Jabbour E, Prescott H, Garcia-Manero G, Issa JP, Kantarjian H. Current and future management options for myelodysplastic syndromes. Drugs 2010; 70:1381-94. [PMID: 20614946 DOI: 10.2165/11537920-000000000-00000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The management of the myelodysplastic syndromes (MDS) requires insight into the complex biology of the disease. Despite this challenge, two recent developments have contributed significantly to advancements in the treatment of MDS: (i) improvements in classification systems and prognostic models; and (ii) the emergence of US FDA-approved agents such as lenalidomide, azacitidine and decitabine. Prior to these developments, supportive care measures consisting of blood and platelet transfusions, haematopoietic growth factors and antimicrobials remained standard of care for the treatment of MDS. As a result of these developments, clinicians are able to provide patient-tailored therapy for specific MDS subgroups. Clinical trials addressing combination therapies with multiple investigational agents as well as novel combination regimens are ongoing. This review focuses on supportive care modalities, the approved agents indicated for the treatment of MDS and future directions for the treatment of MDS, including agents under clinical investigation.
Collapse
Affiliation(s)
- Jeffrey Bryan
- Department of Leukemia, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
17
|
Evdokimov AA, Zinoviev VV, Kuznetsov VV, Netesova NA, Malygin EG. Design of oligonucleotide inhibitors for human DNA methyltransferase 1. Mol Biol 2009. [DOI: 10.1134/s0026893309030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Patties I, Jahns J, Hildebrandt G, Kortmann RD, Glasow A. Additive effects of 5-aza-2'-deoxycytidine and irradiation on clonogenic survival of human medulloblastoma cell lines. Strahlenther Onkol 2009; 185:331-8. [PMID: 19440673 DOI: 10.1007/s00066-009-1956-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/12/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE In recent years, epigenetic modulators were introduced into tumor therapy. Here, the authors investigated the antitumor effect of 5-aza-2'-deoxycytidine-(5-aza-dC-)induced demethylation combined with irradiation on human medulloblastoma (MB) cells, which form the most common malignant brain tumor in children. MATERIAL AND METHODS Three MB cell lines were treated with 5-aza-dC in a low-dose (0.1 microM, 6 days) or high-dose (3/5 microM, 3 days) setting and irradiated with 2, 4, 6, or 8 Gy single dose on an X-ray unit. Methylation status and mRNA expression of three candidate genes were analyzed by methylation-specific PCR (polymerase chain reaction) and quantitative real-time RT-PCR. Cell survival and mortality were determined by trypan blue exclusion test. Proliferation was analyzed by BrdU incorporation assay, and long-term cell survival was assessed by clonogenic assay. RESULTS 5-aza-dC treatment resulted in partial promoter demethylation and increased expression of hypermethylated candidate genes. A significant decrease of vital cell count, proliferation inhibition and increase of mortality was observed in 5-aza-dC-treated as well as in irradiated MB cells, whereby combination of both treatments led to additive effects. Although high-dose 5-aza-dC treatment was more effective in terms of demethylation, clonogenic assay revealed no differences between high- and low-dose settings indicating no relevance of 5-aza-dC-induced demethylation for decreased cell survival. MB cells pretreated with 5-aza-dC showed significantly lower plating efficiencies than untreated cells at all irradiation doses investigated. Analysis of surviving curves in irradiated MB cells, however, revealed no significant differences of alpha-, beta-values and 2-Gy surviving fraction with or without 5-aza-dC treatment. CONCLUSION 5-aza-dC did not enhance radiation sensitivity of MB cells but significantly reduced the clonogenicity versus irradiation alone, which merits further investigation of its potential clinical application in MB possibly by combination with other chemotherapeutic agents.
Collapse
Affiliation(s)
- Ina Patties
- Department of Radiotherapy and Radiooncology, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | | | | | | | | |
Collapse
|
19
|
Nishioka C, Ikezoe T, Yang J, Komatsu N, Koeffler HP, Yokoyama A. Blockade of MEK signaling potentiates 5-Aza-2′-deoxycytidine-induced apoptosis and upregulation of p21waf1 in acute myelogenous leukemia cells. Int J Cancer 2009; 125:1168-76. [DOI: 10.1002/ijc.24377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Kadia TM, Garcia-Manero G. Role of epigenetic therapy in myelodysplastic syndrome. Expert Rev Hematol 2008; 1:161-74. [PMID: 21082921 PMCID: PMC3833719 DOI: 10.1586/17474086.1.2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myelodysplastic syndrome, characterized by ineffective hematopoiesis and cytopenias, remains a lethal disease. Until recently, patients with myelodysplastic syndrome have been managed supportively with blood product transfusions and growth factors, until they succumb to infections, bleeding complications or transformation to acute leukemia. The discovery that epigenetic factors play an important role in cancer, and specifically in myelodysplastic syndrome, has led to the recent approval of several new therapies that will make a significant impact on this disease. Epigenetics refers to a number of biochemical modifications to chromatin that do not alter the primary DNA sequence, but play an important role in genomic regulation at the level of gene transcription. Epigenetic factors can be passed on from a cell to its progeny and can mimic traditional genetic lesions that are implicated in cancer. Unlike genetic abnormalities, however, epigenetic changes, such as DNA methylation or histone deacetylation, can be manipulated pharmacologically. Recently developed hypomethylating agents and histone deacetylase inhibitors have shown significant biological and clinical activity in myelodysplastic syndrome. These drugs have been well-tolerated by patients and have been shown to alter the course of this disease. In order to use these drugs optimally, however, we need to better understand the role of these epigenetic changes: how they contribute to the disease process, how we can use them to better select patients and how we can use combinations to target them more effectively.
Collapse
Affiliation(s)
- Tapan M Kadia
- Assistant Professor of Medicine, Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA, Tel.: +1 713 563 3534, Fax: +1 713 794 4297
| | - Guillermo Garcia-Manero
- Associate Professor of Medicine, Chief, Section of MDS, Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA, Tel.: +1 713 745 3428, Fax: +1 713 794 4297
| |
Collapse
|
21
|
Gao S, Mobley A, Miller C, Boklan J, Chandra J. Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells. Leuk Res 2007; 32:771-80. [PMID: 18031811 DOI: 10.1016/j.leukres.2007.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/15/2007] [Accepted: 09/16/2007] [Indexed: 01/05/2023]
Abstract
Epigenetic modifiers are currently in clinical use for various tumor types. Recently, numerous studies supporting the combination of histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors have emerged, encouraging early clinical trials of these agents together. Here we show that MS-275, an HDACi, and 5-azacytidine, a methyltransferase inhibitor, display synergistic cytotoxicity and apoptosis in AML and ALL cells. Intracellular production of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, is a novel marker for this synergism in ALL cells. These data suggest that assessment of oxidative stress can serve as a marker of the concerted action of MS-275 and 5-azacytidine.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pediatrics Research, Children's Cancer Hospital at M.D. Anderson Cancer Center, Houston, Texas, United States
| | | | | | | | | |
Collapse
|
22
|
Current Awareness in Hematological Oncology. Hematol Oncol 2007. [DOI: 10.1002/hon.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Hegde S, Schmidt M. Chapter 32 To Market, To Market – 2006. ANNUAL REPORTS IN MEDICINAL CHEMISTRY VOLUME 42 2007. [DOI: 10.1016/s0065-7743(07)42032-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|