1
|
Deng H, Li Y, He X, Wang H, Wang S, Zhang H, Zhu J, Gu L, Li R, Wang G. An intranasal attenuated Coxsackievirus B3 vaccine induces strong systemic and mucosal immunity against CVB3 lethal challenge. J Med Virol 2024; 96:e29831. [PMID: 39072815 DOI: 10.1002/jmv.29831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Coxsackievirus B3 (CVB3) triggers viral myocarditis, with no effective vaccine yet. This fecal-oral transmitted pathogen has prompted interest in mucosal immunization strategies to impede CVB3 spread. We developed a new attenuated vaccine strain, named CVB3(mu). The potential of CVB3(mu) to stimulate mucosal immune protection remains to be elucidated. This study evaluates the attenuation characteristics of CVB3(mu) via a rapid evolution cellular model and RNA sequencing. Its temperature sensitivity and safety were evaluated through in vitro and in vivo experiments. The mucosal immunity protection of CVB3(mu) was assessed via intranasal immunization in Balb/c mice. The results indicate that CVB3(mu) exhibits temperature sensitivity and forms smaller plaques. It sustains fewer genetic mutations and still possesses certain attenuated traits up to the 25th passage, in comparison to CVB3(WT). Intranasal immunization elicited a significant serum neutralizing antibodies, and a substantial sIgA response in nasal washes. In vivo trials revealed CVB3(mu) protection in adult mice and passive protection in suckling mice against lethal CVB3(WT) challenges. In conclusion, CVB3(mu), a live attenuated intranasal vaccine, provides protection involving humoral and mucosal immunity, making it a promising candidate to control CVB3 spread and infection.
Collapse
MESH Headings
- Animals
- Immunity, Mucosal
- Administration, Intranasal
- Mice, Inbred BALB C
- Enterovirus B, Human/immunology
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/prevention & control
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Mice
- Immunoglobulin A, Secretory/immunology
- Humans
- Female
- Disease Models, Animal
Collapse
Affiliation(s)
- Huixiong Deng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Yanlei Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Xuanting He
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Haoyang Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Shenmiao Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Hengyao Zhang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Jiacheng Zhu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Liming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| | - Gefei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Pan C, Ye J, Zhang S, Li X, Shi Y, Guo Y, Wang K, Sun P, Wu J, Wang H, Zhu L. Production of a promising modular proteinaceous self-assembled delivery system for vaccination. NANOSCALE 2023. [PMID: 37326289 DOI: 10.1039/d2nr06718h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, there have been enormous advances in nano-delivery materials, especially safer and more biocompatible protein-based nanoparticles. Generally, proteinaceous nanoparticles (such as ferritin and virus-like particles) are self-assembled from some natural protein monomers. However, to ensure their capability of assembly, it is difficult to upgrade the protein structure through major modifications. Here, we have developed an efficient orthogonal modular proteinaceous self-assembly delivery system that could load antigens with an attractive coupling strategy. In brief, we constructed a nanocarrier by fusing two orthogonal domains-a pentameric cholera toxin B subunit and a trimer forming peptide-and an engineered streptavidin monomer for binding biotinylated antigens. After successfully preparing the nanoparticles, the receptor-binding domain of SARS-CoV-2 spike protein and influenza virus haemagglutination antigen are used as model antigens for further evaluation. We found that the biotinylated antigen is able to bind to the nanoparticles with high affinity and achieve efficient lymph node drainage when loaded on the nanoparticles. Then, T cells are greatly activated and the formation of germinal centers is observed. Experiments of two mouse models demonstrate the strong antibody responses and prophylactic effects of these nanovaccines. Thus, we establish a proof-of-concept for the delivery system with the potential to load diverse antigen cargos to generate high-performance nanovaccines, thereby offering an attractive platform technology for nanovaccine preparation.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Millitary Medical Sciences, Beijing, 100071, PR China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yixin Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- College of Life Science, Hebei University, Baoding, 071002, PR China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| |
Collapse
|
3
|
Novikov DV, Melentev DA. [Enteroviral (Picornaviridae: Enterovirus) (nonpolio) vaccines]. Vopr Virusol 2022; 67:185-192. [PMID: 35831961 DOI: 10.36233/0507-4088-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Non-polio enteroviruses (NPEVs) are ubiquitous and are one of the main causative agents of viral infections in children. NPEVs most commonly infect newborns and young children, due to their lack of antibodies. In children, clinical manifestations can range from acute febrile illness to severe complications that require hospitalization and lead in some cases to disability or death. NPEV infections can have severe consequences, such as polio-like diseases, serous meningitis, meningoencephalitis, myocarditis, etc. The most promising strategy for preventing such diseases is vaccination. No less than 53 types of NPEVs have been found to circulate in Russia. However, of epidemic importance are the causative agents of exanthemic forms of the disease, aseptic meningitis and myocarditis. At the same time, the frequency of NPEV detection in the constituent entities of the Russian Federation is characterized by uneven distribution and seasonal upsurges. The review discusses the epidemic significance of different types of enteroviruses, including those relevant to the Russian Federation, as well as current technologies used to create enterovirus vaccines for the prevention of serious diseases.
Collapse
Affiliation(s)
- D V Novikov
- 1Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
| | - D A Melentev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology; N.I. Lobachevsky State University of Nizhny Novgorod
| |
Collapse
|
4
|
Development of Group B Coxsackievirus as an Oncolytic Virus: Opportunities and Challenges. Viruses 2021; 13:v13061082. [PMID: 34198859 PMCID: PMC8227215 DOI: 10.3390/v13061082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses have emerged as a promising strategy for cancer therapy due to their dual ability to selectively infect and lyse tumor cells and to induce systemic anti-tumor immunity. Among various candidate viruses, coxsackievirus group B (CVBs) have attracted increasing attention in recent years. CVBs are a group of small, non-enveloped, single-stranded, positive-sense RNA viruses, belonging to species human Enterovirus B in the genus Enterovirus of the family Picornaviridae. Preclinical studies have demonstrated potent anti-tumor activities for CVBs, particularly type 3, against multiple cancer types, including lung, breast, and colorectal cancer. Various approaches have been proposed or applied to enhance the safety and specificity of CVBs towards tumor cells and to further increase their anti-tumor efficacy. This review summarizes current knowledge and strategies for developing CVBs as oncolytic viruses for cancer virotherapy. The challenges arising from these studies and future prospects are also discussed in this review.
Collapse
|
5
|
Fu X, Mao L, Wan Z, Xu R, Ma Y, Shen L, Jin X, Zhang C. High proportion of coxsackievirus B3 genotype A in hand, foot and mouth disease in Zhenjiang, China, 2011–2016. Int J Infect Dis 2019; 87:1-7. [DOI: 10.1016/j.ijid.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
|
6
|
Medical and Microbial Applications of Controlled Shape of Silver Nanoparticles Prepared by Ionizing Radiation. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00622-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Gou W, Zhang Z, Yang C, Li Y. MiR-223/Pknox1 axis protects mice from CVB3-induced viral myocarditis by modulating macrophage polarization. Exp Cell Res 2018. [PMID: 29524390 DOI: 10.1016/j.yexcr.2018.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrophage polarization plays a crucial role in regulating myocardial inflammation and injuries of coxsackievirus B3 (CVB3)-induced viral myocarditis (VM). It has been reported that miR-223 is a potent regulator of inflammatory responses that involved in macrophage polarization. However, the functional roles of miR-223 in CVB3-induced VM still remain unknown. Here, we found that miR-223 expression was significantly down-regulated in heart tissues and heart-infiltrating macrophages of CVB3-infected mice. Up-regulation of miR-223 in vivo protected the mice against CVB3-induced myocardial injuries characterized by the increased body weight and survival, enhanced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), relieved inflammation, depressed creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and aspartate transaminase (AST) levels, reduced production of interferon (IFN)-γ, interleukin (IL)- 6 as well as increased IL-10. We subsequently found that miR-233 up-regulation significantly suppressed the expression of M1 markers (iNOS, TNF-α and CD 86), and promoted the expression of M2 markers (Arginase-1, Fizz-1 and CD 206) in vivo and in vitro. Furthermore, we confirmed that miR-223 directly targeted Pknox1 to inhibit its expression, and the expression of Pknox1 was inversely correlated with miR-223 expression in heart tissues and heart-infiltrating macrophages of CVB3-infected mice. Gain-of-function analyses indicated that Pknox1 overexpression partially reversed the polarization phenotypes regulated by miR-223 overexpression. Taken together, the data suggest that miR-223 protects against CVB3-induced inflammation and myocardial damage, which may partly attribute to the regulation of macrophage polarization via targeting Pknox1.
Collapse
Affiliation(s)
- Weihui Gou
- PICU, First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin 130021, China
| | - Zhen Zhang
- PICU, First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin 130021, China
| | - Chunfeng Yang
- PICU, First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin 130021, China
| | - Yumei Li
- PICU, First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin 130021, China.
| |
Collapse
|
8
|
Yee PTI, Laa Poh C. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus- A71 vaccine development. Virology 2017; 506:121-129. [PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
9
|
Mao Q, Wang Y, Bian L, Xu M, Liang Z. EV-A71 vaccine licensure: a first step for multivalent enterovirus vaccine to control HFMD and other severe diseases. Emerg Microbes Infect 2016; 5:e75. [PMID: 27436364 PMCID: PMC5141264 DOI: 10.1038/emi.2016.73] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023]
Abstract
Enteroviruses (EVs) are the most common viral agents in humans. Although most infections are mild or asymptomatic, there is a wide spectrum of clinical manifestations that may be caused by EV infections with varying degrees of severity. Among these viruses, EV-A71 and coxsackievirus (CV) CV-A16 from group A EVs attract the most attention because they are responsible for hand, foot and mouth disease (HFMD). Other EV-A viruses such as CV-A6 and CV-A10 were also reported to cause HFMD outbreaks in several countries or regions. Group B EVs such as CV-B3, CV-B5 and echovirus 30 were reported to be the main pathogens responsible for myocarditis and encephalitis epidemics and were also detected in HFMD patients. Vaccines are the best tools to control infectious diseases. In December 2015, China's Food and Drug Administration approved two inactivated EV-A71 vaccines for preventing severe HFMD.The CV-A16 vaccine and the EV-A71-CV-A16 bivalent vaccine showed substantial efficacy against HFMD in pre-clinical animal models. Previously, research on EV-B group vaccines was mainly focused on CV-B3 vaccine development. Because the HFMD pathogen spectrum has changed, and the threat from EV-B virus-associated severe diseases has gradually increased, it is necessary to develop multivalent HFMD vaccines. This study summarizes the clinical symptoms of diseases caused by EVs, such as HFMD, myocarditis and encephalitis, and the related EV vaccine development progress. In conclusion, developing multivalent EV vaccines should be strongly recommended to prevent HFMD, myocarditis, encephalitis and other severe diseases.
Collapse
Affiliation(s)
- Qunying Mao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yiping Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lianlian Bian
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
10
|
Gao F, Bian LL, Mao QY, Chen P, Yao X, Li JX, Zhu FC, Liang ZL. An epidemic of coxsackievirus B3 infection in infants and children in Jiangsu Province, China: a prospective cohort study. Arch Virol 2016; 161:1945-7. [PMID: 27020571 DOI: 10.1007/s00705-016-2842-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/20/2016] [Indexed: 12/29/2022]
Abstract
To investigate the epidemiological data on coxsackievirus B3 (CVB3) infection and its incidence in infants and children, a prospective cohort study was carried out from 2012 to 2014 in Jiangsu Province, China. According to the results of seropositive rates and NTAb titers of CVB3, an epidemic of CVB3 infection was found, and a dynamic change in CVB3 neutralizing antibody was also observed. One case was recorded with CVB3-associated hand, foot and mouth disease (HFMD), and the isolates belonged to the CVB3 D2 subtype. Our data help us to better understand the epidemic characteristics of CVB3 infection in infants and children.
Collapse
Affiliation(s)
- Fan Gao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Lian-Lian Bian
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Qun-Ying Mao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Pan Chen
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Xin Yao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Zheng-Lun Liang
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China.
| |
Collapse
|
11
|
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016; 8:57. [PMID: 26907330 PMCID: PMC4810247 DOI: 10.3390/v8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.
Collapse
Affiliation(s)
- Jani Ylä-Pelto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Lav Tripathi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
- Biomaterials and Diagnostics Group, Turku University of Applied Sciences, 20520 Turku, Finland.
| |
Collapse
|
12
|
Klein M, Chong P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum Vaccin Immunother 2015; 11:2688-704. [PMID: 26009802 DOI: 10.1080/21645515.2015.1049780] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enterovirus A infections are the primary cause of hand, foot and mouth disease (HFMD) in infants and young children. Although enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the predominant causes of HFMD epidemics worldwide, EV-A71 has emerged as a major neurovirulent virus responsible for severe neurological complications and fatal outcomes. HFMD is a serious health threat and economic burden across the Asia-Pacific region. Inactivated EV-A71 vaccines have elicited protection against EV-A71 but not against CV-A16 infections in large efficacy trials. The current development of a bivalent inactivated EV-A71/CV-A16 vaccine is the next step toward that of multivalent HFMD vaccines. These vaccines should ultimately include other prevalent pathogenic coxsackieviruses A (CV-A6 and CV-A10), coxsackieviruses B (B3 and B5) and echovirus 30 that often co-circulate during HFMD epidemics and can cause severe HFMD, aseptic meningitis and acute viral myocarditis. The prospect and challenges for the development of such multivalent vaccines are discussed.
Collapse
Affiliation(s)
| | - Pele Chong
- b Vaccine R&D Center; National Health Research Institutes ; Zhunan Town, Miaoli County , Taiwan.,c Graduate Institute of Immunology; China Medical University ; Taichung , Taiwan
| |
Collapse
|
13
|
Streptomyces lavendulaeProtease Inhibitor: Purification, Gene Overexpression, and 3-Dimensional Structure. J CHEM-NY 2015. [DOI: 10.1155/2015/963041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protease inhibitorstrypsin (STI1, Streptomyces trypsin inhibitor 1) has been identified, purified by ammonium sulfate precipitation and Sephadex G-100 gel filtration. SDS-PAGE of protease inhibitor showed molecular weight of approximately 10 KDa. PCR product (~1615 bp) ofsti1gene was cloned in expression vectorpACYC177/ET3dand transformed inEscherichia coliJM109.Protease inhibitorstrypsin was purified and used as antivirus against Coxsackievirus B3 (CVB3). CVB3 is one of the major causative agents of chronic, subacute, acute, and fulminant myocarditis as well as pancreatitis and aseptic meningitis. It has been reported that more than 50% of human myocarditis is associated with CVB3 infection.
Collapse
|
14
|
Ge M, Wang H, Zhang G, Yu S, Li Y. The antiviral effect of jiadifenoic acids C against coxsackievirus B3. Acta Pharm Sin B 2014; 4:277-83. [PMID: 26579396 PMCID: PMC4629087 DOI: 10.1016/j.apsb.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/11/2014] [Accepted: 06/19/2014] [Indexed: 12/27/2022] Open
Abstract
Coxsackievirus B type 3 (CVB3) is one of the major causative pathogens associated with viral meningitis and myocarditis, which are widespread in the human population and especially prevalent in neonates and children. These infections can result in dilated cardiomyopathy (DCM) and other severe clinical complications. There are no vaccines or drugs approved for the prevention or therapy of CVB3-induced diseases. During screening for anti-CVB3 candidates in our previous studies, we found that jiadifenoic acids C exhibited strong antiviral activities against CVB3 as well as other strains of Coxsackie B viruses (CVBs). The present studies were carried out to evaluate the antiviral activities of jiadifenoic acids C. Results showed that jiadifenoic acids C could reduce CVB3 RNA and proteins synthesis in a dose-dependent manner. Jiadifenoic acids C also had a similar antiviral effect on the pleconaril-resistant variant of CVB3. We further examined the impact of jiadifenoic acids C on the synthesis of viral structural and non-structural proteins, finding that jiadifenoic acids C could reduce VP1 and 3D protein production. A time-course study with Vero cells showed that jiadifenoic acids C displayed significant antiviral activities at 0-6 h after CVB3 inoculation, indicating that jiadifenoic acids C functioned at an early step of CVB3 replication. However, jiadifenoic acids C had no prophylactic effect against CVB3. Taken together, we show that jiadifenoic acids C exhibit strong antiviral activities against all strains of CVB, including the pleconaril-resistant variant. Our study could provide a significant lead for anti-CVB3 drug development.
Collapse
Key Words
- Antiviral activity
- CAR, coxsackievirus and adenovirus receptor
- CPE, cytopathic effect
- CVB3
- CVB3, coxsackievirus B type 3
- CVBs, coxsackie B viruses
- DAF, decay accelerating factor
- DCM, dilated cardiomyopathy
- IC50, 50% inhibitory concentration
- IRES, internal ribosomal entry site
- Jiadifenoic acids C
- MOI, multiplicity of infection
- NTR, non-translated region
- RBV, ribavirin
- RdRp, RNA-dependent RNA polymerase
- SI, selectivity index
- Vero, African green monkey kidney cells
Collapse
|
15
|
Souii A, Ben M'hadheb-Gharbi M, Gharbi J. Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol Biotechnol 2014; 55:179-202. [PMID: 23881360 DOI: 10.1007/s12033-013-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5' untranslated region (5'UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA-protein and RNA-RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5' and 3'UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir-Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | | | | |
Collapse
|
16
|
Shim SH, Kim DS, Cho W, Nam JH. Coxsackievirus B3 regulates T-cell infiltration into the heart by lymphocyte function-associated antigen-1 activation via the cAMP/Rap1 axis. J Gen Virol 2014; 95:2010-2018. [PMID: 24920725 DOI: 10.1099/vir.0.065755-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coxsackievirus B3 (CVB3) infection can trigger myocarditis and can ultimately lead to dilated cardiomyopathy. It is known that CVB3-induced T-cell infiltration into cardiac tissues is one of the pathological factors causing cardiomyocyte injury by inflammation. However, the underlying mechanism for this remains unclear. We investigated the mechanism of T-cell infiltration by two types of CVB3: the H3 WT strain and the YYFF attenuated strain. T-cell activation was confirmed by changes in the distribution of lymphocyte function-associated antigen-1 (LFA-1). Finally, we identified which viral gene was responsible for LFA-1 activation. CVB3 could infect and activate T-cells in vivo and in vitro, and activated T-cells were detected in CVB3-infected mouse hearts. LFA-1 expressed on the surface of these T-cells had been activated through the cAMP/Rap1 pathway. Recombinant lentiviruses expressing VP2 of CVB3 could also induce LFA-1 activation via an increase in cAMP, whilst VP2 of YYFF did not. These results indicated that CVB3 infection increased cAMP levels and then activated Rap1 in T-cells. In particular, VP2, among the CVB3 proteins, might be critical for this activation. This VP2-cAMP-Rap1-LFA-1 axis could be a potential therapeutic target for treating CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Seung-Hyun Shim
- Department of Biotechnology, Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Dae-Sun Kim
- Department of Biotechnology, Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Whajung Cho
- Department of Biotechnology, Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| |
Collapse
|
17
|
In vitro molecular characterization of RNA-proteins interactions during initiation of translation of a wild-type and a mutant Coxsackievirus B3 RNAs. Mol Biotechnol 2013; 54:515-27. [PMID: 22923320 DOI: 10.1007/s12033-012-9592-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5' untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. With the aim to identify proteins interacting with CVB3 wild-type and Sabin3-like IRESes and to study interactions between HeLa cell or BHK-21 protein extracts and CVB3 RNAs, UV-cross-linking assays were performed. We have observed a number of proteins that specifically interact with both RNAs. In particular, molecular weights of five of these proteins resemble to those of the eukaryotic translation initiation factors 4G, 3b, 4B, and PTB. According to cross-linking patterns obtained, we have demonstrated a better affinity of CVB3 RNA binding to BHK-21 proteins and a reduced interaction of the mutant RNA with almost cellular polypeptides compared to the wild-type IRES. On the basis of phylogeny of some initiation factors and on the knowledge of the initiation of translation process, we focused on the interaction of both IRESes with eIF3, p100 (eIF4G), and 40S ribosomal subunit by filter-binding assays. We have demonstrated a better affinity of binding to the wild-type CVB3 IRES. Thus, the reduction efficiency of the mutant RNA to bind to cellular proteins involved in the translation initiation could be the reason behind inefficient IRES function.
Collapse
|
18
|
Zeng J, Chen XX, Dai JP, Zhao XF, Xin G, Su Y, Wang GF, Li R, Yan YX, Su JH, Deng YX, Li KS. An attenuated coxsackievirus b3 vector: a potential tool for viral tracking study and gene delivery. PLoS One 2013; 8:e83753. [PMID: 24386270 PMCID: PMC3875476 DOI: 10.1371/journal.pone.0083753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/07/2013] [Indexed: 02/05/2023] Open
Abstract
Cardiomyocytes are quite resistant to gene transfer using standard techniques. We developed an expression vector carrying an attenuated but infectious and replicative coxsackievirus B3 (CVB3) genome, and unique ClaI-StuI cloning sites for an exogenous gene, whose product can be released from the nascent viral polyprotein by 2A(pro) cleavage. This vector was tested as an expression vehicle for green fluorescent protein (GFP). The vector transiently expressed GFP in cell cultures for at least ten passages and delivered functional GFP to the infected cardiomyocytes for at least 6 days. Moreover, the recombinant viruses showed virulence attenuation in vitro and in vivo. The findings suggest that the recombinant CVB3 vector could be a useful tool for viral tracking study and delivering exogenous proteins to cardiomyocytes.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Department of Endocrinology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, Hubei, People’s Republic of China
| | - Xiao xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jian ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xiang feng Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Gang Xin
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Ge fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- * E-mail: (GFW); (KSL)
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yin xia Yan
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jing hua Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yu xue Deng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Kang sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- * E-mail: (GFW); (KSL)
| |
Collapse
|
19
|
Zhang Q, Xiao Z, He F, Zou J, Wu S, Liu Z. MicroRNAs regulate the pathogenesis of CVB3-induced viral myocarditis. Intervirology 2012. [PMID: 23183417 DOI: 10.1159/000343750] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS To evaluate the role of microRNAs (miRNAs) in the pathogenesis of Coxsackievirus B3 (CVB3)-induced viral myocarditis. METHODS We detected miRNA expression profiling by microarray utilizing a mouse model on day 4 after CVB3 infection. Then we validated differentially expressed miRNAs using real-time polymerase chain reaction (PCR). We predicted target genes using miRNA target prediction databases and assessed them using mRNA microarray and qualitative reverse transcription PCR measurements. By analyzing the target function of differentially expressed miRNAs, we initially explored the regulating role of miRNAs in viral myocarditis. RESULTS We found five differentially expressed miRNAs that are involved in regulating several important innate immune and antiviral pathways such as the Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine- cytokine receptor interaction, MAPK signaling pathway, JAK-STAT signaling pathway, and natural killer cell-mediated cytotoxicity. CONCLUSION miRNAs regulate the pathogenesis of viral myocarditis. This study may provide a new perspective and a deeper understanding of the pathogenesis of viral myocarditis that may help with the development of novel therapies against CVB3 infection.
Collapse
Affiliation(s)
- Qinghua Zhang
- Graduate School of Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
20
|
Kim DS, Park JH, Kim JY, Kim D, Nam JH. A mechanism of immunoreceptor tyrosine-based activation motif (ITAM)-like sequences in the capsid protein VP2 in viral growth and pathogenesis of Coxsackievirus B3. Virus Genes 2011; 44:176-82. [DOI: 10.1007/s11262-011-0681-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
21
|
Shim SH, Kim YJ, Kim DS, Nam JH. Development of a Gene Therapy Method for Cervical Cancer Using Attenuated Coxsackievirus B3 as a Vector System. ACTA ACUST UNITED AC 2011. [DOI: 10.4167/jbv.2011.41.2.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seung-Hyun Shim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Yeon-Jung Kim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Dae-Sun Kim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| |
Collapse
|