1
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
2
|
Mohamadi S, Mehrasa P, Mehramuz B, Kobravi S, Taghizadieh M, Salmaninejad A, Bayat M, Sadri Nahand J. The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189189. [PMID: 39343066 DOI: 10.1016/j.bbcan.2024.189189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.
Collapse
Affiliation(s)
- Solmaz Mohamadi
- Faculty of Dentistry, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| |
Collapse
|
3
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Brough S, Alizadeh M. Recent perspectives on the synergy of mesenchymal stem cells with micro/nano strategies in peripheral nerve regeneration-a review. Front Bioeng Biotechnol 2024; 12:1401512. [PMID: 39050683 PMCID: PMC11266111 DOI: 10.3389/fbioe.2024.1401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Brough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Yumkham R, Nagarathna C, Sanjenbam N, Gopilal Singh A, Philip Singh H, Ashem A. Isolation and characterization of stem cells from human exfoliated deciduous teeth. Bioinformation 2024; 20:557-561. [PMID: 39132248 PMCID: PMC11309116 DOI: 10.6026/973206300200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
SHEDs have been shown to have a higher rate of proliferation and raise in cell population doublings when compared to stem cells from permanent teeth. Hence, using them in tissue engineering may be advantageous over stem cells from adult human teeth. Stem cells were removed from pulpal tissues of thirty primary teeth undergoing extraction under six to fourteen year of age. The tissues were incubated after centrifuging and adding DMEM-KO following the addition of a 2 mg/ml collagenase blend for examination of plates in search of cell attachment and growth. Flow cytometric analysis showed successful isolation of SHEDs using fluoresce inisothiocyanate (FITC)-conjugated CD-34, CD-105, and PE (R-phycoerythrin)-conjugated CD-45, CD-90, CD-73, and HLA-DR antibodies. The surface antigens CD-73, CD-90 and CD-105 which are known to be present in mesenchymal lineages were positively expressed in SHEDs according to flow cytometry analysis, whereas CD-34, CD-45, and HLA-DR were not.
Collapse
Affiliation(s)
- Ratna Yumkham
- Department of Paediatric and Preventive Dentistry, Dental College, RIMS, Imphal, Manipur, India
| | - C Nagarathna
- Department of Pedodontics and Preventive Dentistry, RajaRajeswari Dental College and Hospital, Bangalore, Karnataka, India
| | - Nelson Sanjenbam
- Department of Oral and Maxillofacial Surgery Dental College, JNIMS, Porompat, Imphal, Manipur, India
| | | | | | - Albert Ashem
- Department of Oral Medicine and radiology, Dental College, RIMS, Imphal, Manipur, India
| |
Collapse
|
5
|
Li Z, Liu Y, Li X, Yang S, Feng S, Li G, Jin F, Nie S. Knockdown the moyamoya disease susceptibility gene, RNF213, upregulates the expression of basic fibroblast growth factor and matrix metalloproteinase-9 in bone marrow derived mesenchymal stem cells. Neurosurg Rev 2024; 47:246. [PMID: 38811382 DOI: 10.1007/s10143-024-02448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Moyamoya disease (MMD) is a chronic, progressive cerebrovascular occlusive disease. Ring finger protein 213 (RNF213) is a susceptibility gene of MMD. Previous studies have shown that the expression levels of angiogenic factors increase in MMD patients, but the relationship between the susceptibility gene RNF213 and these angiogenic mediators is still unclear. The aim of the present study was to investigate the pathogenesis of MMD by examining the effect of RNF213 gene knockdown on the expression of matrix metalloproteinase-9 (MMP-9) and basic fibroblast growth factor (bFGF) in rat bone marrow-derived mesenchymal stem cells (rBMSCs). Firstly, 40 patients with MMD and 40 age-matched normal individuals (as the control group) were enrolled in the present study to detect the levels of MMP-9 and bFGF in serum by ELISA. Secondly, Sprague-Dawley male rat BMSCs were isolated and cultured using the whole bone marrow adhesion method, and subsequent phenotypic analysis was performed by flow cytometry. Alizarin red and oil red O staining methods were used to identify osteogenic and adipogenic differentiation, respectively. Finally, third generation rBMSCs were transfected with lentivirus recombinant plasmid to knockout expression of the RNF213 gene. After successful transfection was confirmed by reverse transcription-quantitative PCR and fluorescence imaging, the expression levels of bFGF and MMP-9 mRNA in rBMSCs and the levels of bFGF and MMP-9 protein in the supernatant of the culture medium were detected on the 7th and 14th days after transfection. There was no significant difference in the relative expression level of bFGF among the three groups on the 7th day. For the relative expression level of MMP-9, there were significant differences on the 7th day and 14th day. In addition, there was no statistically significant difference in the expression of bFGF in the supernatant of the RNF213 shRNA group culture medium, while there was a significant difference in the expression level of MMP-9. The knockdown of the RNF213 gene affects the expression of bFGF and MMP-9. However, further studies are needed to determine how they participate in the pathogenesis of MMD. The findings of the present study provide a theoretical basis for clarifying the pathogenesis and clinical treatment of MMD.
Collapse
Affiliation(s)
- Zhengyou Li
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Yang Liu
- Department of Neurosurgery, Fushan District People's Hospital, Yantai, Shandong, 265500, P.R. China
| | - Xiumei Li
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Shaojing Yang
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Song Feng
- Department of Neurosurgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences and Qingdao Central Hospital Medical Group, 127 Siliu South Road, Qingdao, Shandong, 266042, P.R. China
| | - Genhua Li
- Department of Geriatric Neurology, Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China
| | - Feng Jin
- Department of Neurosurgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences and Qingdao Central Hospital Medical Group, 127 Siliu South Road, Qingdao, Shandong, 266042, P.R. China.
| | - Shanjing Nie
- Department of Geriatric Neurology, Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
6
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
7
|
Chen Y, Zhu L, Wang Y, Hu J, Zhang H, Zhu J, Gong W, Liu X, Xiao F, Li X. Tumor-derived mesenchymal progenitor cell-related genes in the regulation of breast cancer proliferation. Gland Surg 2024; 13:325-339. [PMID: 38601284 PMCID: PMC11002474 DOI: 10.21037/gs-23-387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/20/2024] [Indexed: 04/12/2024]
Abstract
Background Breast cancer (BC) is one of the most common malignancies worldwide, and its development is affected in various ways by the tumor microenvironment (TME). Tumor-derived mesenchymal progenitor cells (MPCs), as the most important components of the TME, participate in the proliferation and metastasis of BC in several ways. In this study, we aimed to characterize the genes associated with tumor-derived MPCs and determine their effects on BC cells. Methods Tumor-derived MPCs and normal breast tissue-derived mesenchymal stem cells (MSCs) were isolated from tissues specimens of patients with BC. We conducted culture and passage, phenotype identification, proliferation and migration detection, inflammatory factor release detection, and other experiments on isolated MPCs from tumors and MSCs from normal breast tissues. Three paired tumor-derived MPCs and normal breast tissue-derived MSCs were then subjected to transcriptome analysis to determine the expression profiles of the relevant genes, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to further confirm gene expression. Subsequently, the overexpression plasmids were transfected into tumor-derived MPCs, and the expression of various inflammatory factors of tumor-derived MPCs and their proliferation were characterized with a cell viability test reagent (Cell Counting Kit 8). Subsequently, the transfected tumor-derived MPCs were cocultured with BC cells using a conditioned medium coculture method to clarify the role of tumor-derived MSCs in BC. Results Tumor-derived MPCs expressed stem cell characteristics including CD105, CD90, and CD73 and exhibited adipogenic and osteogenic differentiation in vitro. The proliferation of tumor-derived MPCs was significantly lower than that of normal breast tissue-derived MSCs, and the invasive metastatic ability was comparable; however, MPCs were found to release inflammatory factors such as interleukin 6 (IL-6) and transforming growth factor β (TGF-β). Transcriptome analysis showed that stomatin (STOM), collagen and calcium binding EGF domains 1 (CCBE1), and laminin subunit alpha 5 (LAMA5) were significantly upregulated in tumor-derived MPCs. Among them, STOM was highly expressed in tumor-derived MPCs, which mediated the slow proliferation of MPCs and promoted the proliferation of BC cells. Conclusions STOM, CCBE1, and LAMA5 were highly expressed in tumor-derived MPCs, with STOM being found to retard the proliferation of MPCs but promote the proliferation of BC cells. There findings present new possibilities in targeted microenvironmental therapy for BC.
Collapse
Affiliation(s)
- Yizhu Chen
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Zhu
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yiming Wang
- School of Nursing, Jilin University, Changchun, China
| | - Jia Hu
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Hao Zhang
- Medical Research Institute, Hebei Yanda Hospital, Langfang, China
| | - Jingjin Zhu
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Wenye Gong
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaohan Liu
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiru Li
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
8
|
Zong Q, Bundkirchen K, Neunaber C, Noack S. Effect of High BMI on Human Bone Marrow-Derived Mesenchymal Stromal Cells. Cell Transplant 2024; 33:9636897241226546. [PMID: 38258516 PMCID: PMC10807335 DOI: 10.1177/09636897241226546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) are attractive candidates in tissue engineering and regenerative medicine. Growing evidence has suggested that a high body mass index (BMI) can affect the properties of BMSCs, resulting in a reduced quality of the cells. However, the results are not consistent. Therefore, this study aimed to investigate the influences of high BMI on human BMSCs (hBMSCs). To avoid gender bias, BMSCs from females and males were studied independently. Finally, hBMSCs from 89 females and 152 males were separately divided into the normal BMI group (18.5 kg/m2 ≤ BMI < 25 kg/m2) and the high BMI group (BMI > 25 kg/m2). The cells were analyzed for the colony-forming potential; proliferation capacity; in vitro adipogenic, osteogenic, and chondrogenic differentiation potentials; and the expression of 32 common surface antigens. The results showed that high BMI did not change the number of colonies at passage 1 in females and males. In contrast, significantly reduced colony numbers at passage 4 (P4) were found in both female and male donors with high BMI. The doubling time of hBMSCs was comparable between the normal and the high BMI groups of females and males. Furthermore, the results of trilineage differentiation did not differ between the different BMI groups of males. In females, the high and the normal BMI groups also showed similar adipogenic and chondrogenic differentiation, while osteogenic differentiation was significantly enhanced in the high-BMI group. Regarding the expression of surface antigens, the expressions of CD200 and SSEA4 on hBMSCs were reduced in the high-BMI group of females and males, respectively. In conclusion, high BMI suppressed the clonogenicity of female and male hBMSCs at P4, improved the in vitro osteogenesis of female hBMSCs, and decreased the expressions of CD200 on hBMSCs in females and SSEA4 in males.
Collapse
Affiliation(s)
- Qiang Zong
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Sandra Noack
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Li N, Liu G, Gao H, Wu Q, Meng J, Wang F, Jiang S, Chen M, Xu W, Zhang Y, Wang Y, Feng Y, Liu J, Xu C, Lu H. Geriatric syndromes, chronic inflammation, and advances in the management of frailty: A review with new insights. Biosci Trends 2023; 17:262-270. [PMID: 37612125 DOI: 10.5582/bst.2023.01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
As people age, geriatric syndromes characterized by frailty significantly impact both clinical practice and public health. Aging weakens people's immune functions, leading to chronic low-grade inflammation that ultimately contributes to the development of frailty. Effectively managing geriatric syndromes and frailty can help alleviate the economic burden of an aging population. This review delves into the intricate relationship among aging, infection-induced inflammation, chronic inflammation, and frailty. In addition, it analyzes various approaches and interventions to address frailty, such as smart rehabilitation programs and stem-cell treatments, offering promising solutions in this new era. Given the importance of this topic, further research into the mechanisms of frailty is crucial. Equally essential is the devising of relevant measures to delay its onset and the formulation of comprehensive clinical, research, and public health strategies to enhance the quality of life for elderly individuals.
Collapse
Affiliation(s)
- Niuniu Li
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Gaolin Liu
- Washington University in St. Louis, St. Louis, United States
| | - Hong Gao
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Qiang Wu
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Juan Meng
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Fei Wang
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Siwei Jiang
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Meixia Chen
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Wenhui Xu
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yifan Zhang
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yanjun Wang
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yingqian Feng
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Juncai Liu
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Cheng Xu
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
11
|
Jaime-Rodríguez M, Cadena-Hernández AL, Rosales-Valencia LD, Padilla-Sánchez JM, Chavez-Santoscoy RA. Are genetic drift and stem cell adherence in laboratory culture issues for cultivated meat production? Front Nutr 2023; 10:1189664. [PMID: 37701376 PMCID: PMC10493286 DOI: 10.3389/fnut.2023.1189664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Mesenchymal stem cell-based cultivated meat is a promising solution to the ecological and ethical problems posed by traditional meat production, since it exhibits a protein content and composition that is more comparable to original meat proteins than any other source of cultivated meat products, including plants, bacteria, and fungi. Nonetheless, the nature and laboratory behavior of mesenchymal stem cells pose two significant challenges for large-scale production: genetic drift and adherent growth in culture. Culture conditions used in the laboratory expose the cells to a selective pressure that causes genetic drift, which may give rise to oncogene activation and the loss of "stemness." This is why genetic and functional analysis of the cells during culture is required to determine the maximum number of passages within the laboratory where no significant mutations or loss of function are detected. Moreover, the adherent growth of mesenchymal stem cells can be an obstacle for their large-scale production since volume to surface ratio is limited for high volume containers. Multi-tray systems, roller bottles, and microcarriers have been proposed as potential solutions to scale-up the production of adherent cells required for cultivated meat. The most promising solutions for the safety problems and large-scale obstacles for cultivated meat production are the determination of a limit number of passages based on a genetic analysis and the use of microcarriers from edible materials to maximize the volume to surface proportion and decrease the downstream operations needed for cultivated meat production.
Collapse
|
12
|
Yang G, Fan X, Liu Y, Jie P, Mazhar M, Liu Y, Dechsupa N, Wang L. Immunomodulatory Mechanisms and Therapeutic Potential of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1214-1231. [PMID: 37058201 PMCID: PMC10103048 DOI: 10.1007/s12015-023-10539-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are regarded as highly promising cells for allogeneic cell therapy, owing to their multipotent nature and ability to display potent and varied functions in different diseases. The functions of MSCs, including native immunomodulation, high self-renewal characteristic, and secretory and trophic properties, can be employed to improve the immune-modulatory functions in diseases. MSCs impact most immune cells by directly contacting and/or secreting positive microenvironmental factors to influence them. Previous studies have reported that the immunomodulatory role of MSCs is basically dependent on their secretion ability from MSCs. This review discusses the immunomodulatory capabilities of MSCs and the promising strategies to successfully improve the potential utilization of MSCs in clinical research.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Yingchun Liu
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Pingping Jie
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yong Liu
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
13
|
Zhao H, Liu H, Liu Y, Jin J, He Q, Lin B. The role of extracellular vesicles in vascular calcification in chronic kidney disease. Front Med (Lausanne) 2022; 9:997554. [PMID: 36388921 PMCID: PMC9651939 DOI: 10.3389/fmed.2022.997554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Widespread vascular calcification (VC) in patients with chronic kidney disease (CKD) is the pathological basis for the development of cardiovascular disease, and VC has been identified as an independent risk factor for increased cardiovascular mortality in cases of CKD. While VC was earlier thought to be a passive deposition process following calcium and phosphorus supersaturation, recent studies have suggested that it is an active, modifiable, biological process similar to bone development. The involvement of extracellular vesicles (EVs) in the process of VC has been reported as an important transporter of material transport and intercellular communication. This paper reviews the mechanism of the role of EVs, especially exosomes, in VC and the regulation of VC by stem cell-derived EVs, and discusses the possible and promising application of related therapeutic targets in the clinical setting.
Collapse
Affiliation(s)
- Huan Zhao
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Haojie Liu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Yueming Liu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Juan Jin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bo Lin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejian, China
| |
Collapse
|
14
|
Beheshtizadeh N, Gharibshahian M, Pazhouhnia Z, Rostami M, Zangi AR, Maleki R, Azar HK, Zalouli V, Rajavand H, Farzin A, Lotfibakhshaiesh N, Sefat F, Azami M, Webster TJ, Rezaei N. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomed Pharmacother 2022; 153:113431. [DOI: 10.1016/j.biopha.2022.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
|
15
|
Zhang J, Zhai H, Yu P, Shang D, Mo R, Li Z, Wang X, Lu J, Xie Q, Xiang X. Human Umbilical Cord Blood Mononuclear Cells Ameliorate CCl4-Induced Acute Liver Injury in Mice via Inhibiting Inflammatory Responses and Upregulating Peripheral Interleukin-22. Front Pharmacol 2022; 13:924464. [PMID: 35942221 PMCID: PMC9356225 DOI: 10.3389/fphar.2022.924464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Human umbilical cord blood mononuclear cells (hUCBMNCs) show therapeutic effects on many inflammatory diseases. The deterioration of acute liver injury is attributed to excessive inflammatory responses triggered by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Whether hUCBMNCs treatment is a promising strategy for acute liver injury/failure needs to be investigated.Methods: Liver injury mice induced by PAMPs, DAMPs, or DAMPs plus PAMPs were developed. DAMPs included CCl4 (carbon tetrachloride), APAP (acetaminophen), and ConA (Concanavalin A). PAMPs included Klebsiella pneumoniae (K.P.) and Salmonella typhimurium (S. Typhimurium). DAMP plus PAMP-induced liver injury was developed by sequential CCl4 and K.P. administration. hUCBMNCs were injected intravenously.Results: hUCBMNCs significantly prolonged mice survival time in DAMP plus PAMP-induced liver failure but had no benefit in bacteria-infected mice. hUCBMNCs significantly alleviated hepatic necrosis post CCl4/ConA insult. In CCl4-induced acute liver injury, peripheral levels of interleukin (IL)-22 were upregulated and liver regeneration was enhanced after treating with hUCBMNCs at 48h. The levels of p62 and LC3B-II, autophagy markers, were also upregulated in the hUCBMNC-treated group.Conclusion: hUCBMNCs as a kind of cell therapeutic strategy could attenuate acute liver injury in mice, which is executed by enhancing autophagy and regeneration in the liver via inhibiting inflammatory responses and upregulating peripheral IL-22.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengben Zhai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Yu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dabao Shang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jie Lu, ; Qing Xie, ; Xiaogang Xiang,
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jie Lu, ; Qing Xie, ; Xiaogang Xiang,
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jie Lu, ; Qing Xie, ; Xiaogang Xiang,
| |
Collapse
|
16
|
Neural Differentiation Potential of Mesenchymal Stem Cells Enhanced by Biocompatible Chitosan-Gold Nanocomposites. Cells 2022; 11:cells11121861. [PMID: 35740991 PMCID: PMC9221394 DOI: 10.3390/cells11121861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan (Chi) is a natural polymer that has been demonstrated to have potential as a promoter of neural regeneration. In this study, Chi was prepared with various amounts (25, 50, and 100 ppm) of gold (Au) nanoparticles for use in in vitro and in vivo assessments. Each as-prepared material was first characterized by UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and Dynamic Light Scattering (DLS). Through the in vitro experiments, Chi combined with 50 ppm of Au nanoparticles demonstrated better biocompatibility. The platelet activation, monocyte conversion, and intracellular ROS generation was remarkably decreased by Chi–Au 50 pm treatment. Furthermore, Chi–Au 50 ppm could facilitate colony formation and strengthen matrix metalloproteinase (MMP) activation in mesenchymal stem cells (MSCs). The lower expression of CD44 in Chi–Au 50 ppm treatment demonstrated that the nanocomposites could enhance the MSCs undergoing differentiation. Chi–Au 50 ppm was discovered to significantly induce the expression of GFAP, β-Tubulin, and nestin protein in MSCs for neural differentiation, which was verified by real-time PCR analysis and immunostaining assays. Additionally, a rat model involving subcutaneous implantation was used to evaluate the superior anti-inflammatory and endothelialization abilities of a Chi–Au 50 ppm treatment. Capsule formation and collagen deposition were decreased. The CD86 expression (M1 macrophage polarization) and leukocyte filtration (CD45) were remarkably reduced as well. In summary, a Chi polymer combined with 50 ppm of Au nanoparticles was proven to enhance the neural differentiation of MSCs and showed potential as a biosafe nanomaterial for neural tissue engineering.
Collapse
|
17
|
MMP2 promotes osteoblast differentiation and calcification of muscle-derived mesenchymal stem cells by interaction with miR-29b-3p. Tissue Cell 2022; 76:101807. [DOI: 10.1016/j.tice.2022.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/23/2022]
|
18
|
Sun Y, Xiao F, Sun H, Zhang L, Chen W, Du L, Sun C, Zhang W, Xu Q, Miao C, Wang L. Transcriptome analysis of tumor-derived mesenchymal progenitor cells shows that CHST15 is a fibrosis regulator of retroperitoneal liposarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:360. [PMID: 35434026 PMCID: PMC9011283 DOI: 10.21037/atm-22-963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
Background Retroperitoneal liposarcoma (RPLS) is a rare, biologically heterogeneous tumor with distinct clinical characteristics, such as frequent local recurrence, repeated relapse, and rare distant metastasis. No effective targeted therapy is available for RPLS. Here, we aim to determine the pathological functions and therapeutic potential of carbohydrate sulfotransferase 15 (CHST15) in RPLS. Methods Tumor-derived mesenchymal progenitor cells (MPCs) and normal adipose derived mesenchymal stem cells (MSCs) were obtained from patients with RPLS. MPCs and MSCs were isolated and characterized based on surface markers, proliferation, and differentiation using flow cytometry and molecular staining. Transcriptome analysis was performed to decipher expression profile of differentiation-related genes in 3 paired MSCs and MPCs. Further confirmation of genes were performed using quantitative real-time polymerase chain reaction (qRT-PCR). Plasmids overexpressing CHST15 were transfected into adipose MSCs to examine fibrosis-related gene expression at mRNA level by real-time PCR. Results The tumor stromal-derived MPCs expressed CD105, CD73, and CD90, and exhibited osteogenic and adipogenic differentiation potential in vitro. The proliferation of tumor-derived MPCs was significantly lower than that of normal adipose-derived MSCs (P<0.001). Transcriptome analysis revealed upregulation of IL-7R, ALPL, PKNOX2, and CHST15 in tumor-derived MPCs. CHST15 was highly expressed in tumor-derived MPCs (P<0.001). CHST15 mediated fibrosis-related FGF2 gene expression in MSCs (P<0.05) and MPCs (P<0.001). Conclusions CHST15 is upregulated in tumor-derived MPCs and regulates fibrosis in RPLS. This provides clues for development of novel therapeutic strategies by targeting CHST15-induced MPC activation in RPLS.
Collapse
Affiliation(s)
- Yang Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.,Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Huiyan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Sanhe, China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Weida Chen
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Chengfeng Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Sanhe, China
| | - Weiyuan Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.,Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Chengli Miao
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing, China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Mesenchymal Stem Cell-Based Therapy as a New Approach for the Treatment of Systemic Sclerosis. Clin Rev Allergy Immunol 2022; 64:284-320. [PMID: 35031958 DOI: 10.1007/s12016-021-08892-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis (SSc) is an intractable autoimmune disease with unmet medical needs. Conventional immunosuppressive therapies have modest efficacy and obvious side effects. Targeted therapies with small molecules and antibodies remain under investigation in small pilot studies. The major breakthrough was the development of autologous haematopoietic stem cell transplantation (AHSCT) to treat refractory SSc with rapidly progressive internal organ involvement. However, AHSCT is contraindicated in patients with advanced visceral involvement. Mesenchymal stem cells (MSCs) which are characterized by immunosuppressive, antifibrotic and proangiogenic capabilities may be a promising alternative option for the treatment of SSc. Multiple preclinical and clinical studies on the use of MSCs to treat SSc are underway. However, there are several unresolved limitations and safety concerns of MSC transplantation, such as immune rejections and risks of tumour formation, respectively. Since the major therapeutic potential of MSCs has been ascribed to their paracrine signalling, the use of MSC-derived extracellular vesicles (EVs)/secretomes/exosomes as a "cell-free" therapy might be an alternative option to circumvent the limitations of MSC-based therapies. In the present review, we overview the current knowledge regarding the therapeutic efficacy of MSCs in SSc, focusing on progresses reported in preclinical and clinical studies using MSCs, as well as challenges and future directions of MSC transplantation as a treatment option for patients with SSc.
Collapse
|
20
|
Franck T, Ceusters J, Graide H, Mouithys-Mickalad A, Serteyn D. Muscle Derived Mesenchymal Stem Cells Inhibit the Activity of the Free and the Neutrophil Extracellular Trap (NET)-Bond Myeloperoxidase. Cells 2021; 10:3486. [PMID: 34943996 PMCID: PMC8700239 DOI: 10.3390/cells10123486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to migrate to tissue injury sites to participate in immune modulation, tissue remodelling and wound healing, reducing tissue damage. Upon neutrophil activation, there is a release of myeloperoxidase (MPO), an oxidant enzyme. But little is known about the direct role of MSCs on MPO activity. The aim of this study was to investigate the effect of equine mesenchymal stem cells derived from muscle microinvasive biopsy (mdMSC) on the oxidant response of neutrophils and particularly on the activity of the myeloperoxidase released by stimulated equine neutrophils. After specific treatment (trypsin and washings in phosphate buffer saline), the mdMSCs were exposed to isolated neutrophils. The effect of the suspended mdMSCs was studied on the ROS production and the release of total and active MPO by stimulated neutrophils and specifically on the activity of MPO in a neutrophil-free model. Additionally, we developed a model combining adherent mdMSCs with neutrophils to study total and active MPO from the neutrophil extracellular trap (NET). Our results show that mdMSCs inhibited the ROS production, the activity of MPO released by stimulated neutrophils and the activity of MPO bound to the NET. Moreover, the co-incubation of mdMSCs directly with MPO results in a strong inhibition of the peroxidase activity of MPO, probably by affecting the active site of the enzyme. We confirm the strong potential of mdMSCs to lower the oxidant response of neutrophils. The novelty of our study is an evident inhibition of the activity of MPO by MSCs. The results indicated a new potential therapeutic approach of mdMSCs in the inhibition of MPO, which is considered as a pro-oxidant actor in numerous chronic and acute inflammatory pathologies.
Collapse
Affiliation(s)
- Thierry Franck
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (J.C.); (H.G.); (A.M.-M.); (D.S.)
- Research Unit FARAH, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Justine Ceusters
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (J.C.); (H.G.); (A.M.-M.); (D.S.)
- Research Unit FARAH, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Hélène Graide
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (J.C.); (H.G.); (A.M.-M.); (D.S.)
| | - Ange Mouithys-Mickalad
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (J.C.); (H.G.); (A.M.-M.); (D.S.)
| | - Didier Serteyn
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (J.C.); (H.G.); (A.M.-M.); (D.S.)
- Research Unit FARAH, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
21
|
Assunção Silva RC, Pinto L, Salgado AJ. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med Res Rev 2021; 42:850-896. [PMID: 34783046 DOI: 10.1002/med.21865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.
Collapse
Affiliation(s)
- Rita C Assunção Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Huynh PD, Vu NB, To XHV, Le TM. Culture and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Growth Factor-Rich Fibrin Scaffolds to Produce Engineered Cartilages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021:193-208. [PMID: 34739721 DOI: 10.1007/5584_2021_670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION After injuries, the cartilage healing capacity is limited owing to its nature as a particular connective tissue without blood vessels, lymphatics, or nerves. The creation of artificial cartilage tissue mimics the biological properties of native cartilage and can reduce the need for donated tissue. Fibrin is a type of biodegradable scaffold that has great potential in tissue engineering applications. It can become good material for cell adhesion and proliferation in vitro. Therefore, this study aimed to create a cartilage tissue in vitro using umbilical cord-derived mesenchymal stem cells (UCMSC) and growth factor-rich fibrin (GRF) scaffolds. METHODS UCMSCs were isolated and expanded, and platelet-rich plasma (PRP) preparations were performed following previously published protocols. PRP was activated (aPRP) by a 0.45-μm syringe filter to release growth factors inside the platelets. Each 2.105 of the UCMSCs were suspended in 2 ml of aPRP to make the mixture of MSC and PRP (MSC-PRP). Then, Ca2+ solution was added to this mixture to produce the fibril scaffold with UCMSCs inside. UCMSCs' adhesion and proliferation inside the scaffold were evaluated by observation under inverted microscopy, H-E staining, MTT assays, and scanning electron microscopy (SEM). The fibril structure containing UCMSCs was cultured, and chondrogenesis was induced using commercial chondrogenesis media for 21 days (iMSC-GRF). The differentiation in efficacy toward cartilage was evaluated based on the accumulation of aggrecan (acan), glycosaminoglycans (GAGs), and collagen type II (Col II). RESULTS The results showed that we successfully created a cartilage tissue with some characteristics that mimic the properties of natural cartilage. The engineered cartilage tissue was positive with some cartilage protein, such as acan, GAG, and Coll II. In vitro cartilage presented some natural chondrocyte-like cells. The artificial cartilage tissue was positive for CD14, CD34, CD90, CD105, and HLA-DR and negative for CD44, CD45, and CD73. CONCLUSION These results showed that using UCMSCs and growth factor-rich fibril from platelet-rich plasma was feasible to produce engineered cartilage tissue for further experiments or clinical usage.
Collapse
Affiliation(s)
- Phat Duc Huynh
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngoc Bich Vu
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Xuan Hoang-Viet To
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuan Minh Le
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
23
|
Xuan X, Tian C, Zhao M, Sun Y, Huang C. Mesenchymal stem cells in cancer progression and anticancer therapeutic resistance. Cancer Cell Int 2021; 21:595. [PMID: 34736460 PMCID: PMC8570012 DOI: 10.1186/s12935-021-02300-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the tumor microenvironment appears to play an increasingly important role in cancer progression and therapeutic resistance. Several types of cells within the tumor stroma had distinct impacts on cancer progression, either promoting or inhibiting cancer cell growth. Mesenchymal stem cells (MSCs) are a distinct type of cells that is linked to tumor development. MSCs are recognized for homing to tumor locations and promoting or inhibiting cancer cell proliferation, angiogenesis and metastasis. Moreover, emerging studies suggests that MSCs are also involved in therapeutic resistance. In this review, we analyzed the existing researches and elaborate on the functions of MSCs in cancer progression and anticancer therapeutic resistance, demonstrating that MSCs may be a viable cancer therapeutic target.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chunxia Tian
- Department of Cardiology, Hubei Provincial Hospital of TCM, Wuhan, 430022, Hubei, China
| | - Mengjie Zhao
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, 430022, Hubei, China.
| | - Yanhong Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
24
|
Sun SJ, Wei R, Li F, Liao SY, Tse HF. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports 2021; 16:1662-1673. [PMID: 34115984 PMCID: PMC8282428 DOI: 10.1016/j.stemcr.2021.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cell (MSC)-derived exosomes play a promising role in regenerative medicine. Their trophic and immunomodulatory potential has made them a promising candidate for cardiac regeneration and repair. Numerous studies have demonstrated that MSC-derived exosomes can replicate the anti-inflammatory, anti-apoptotic, and pro-angiogenic and anti-fibrotic effects of their parent cells and are considered a substitute for cell-based therapies. In addition, their lower tumorigenic risk, superior immune tolerance, and superior stability compared with their parent stem cells make them an attractive option in regenerative medicine. The therapeutic effects of MSC-derived exosomes have consequently been evaluated for application in cardiac regeneration and repair. In this review, we summarize the potential mechanisms and therapeutic effects of MSC-derived exosomes in cardiac regeneration and repair and provide evidence to support their clinical application.
Collapse
Affiliation(s)
- Si-Jia Sun
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Rui Wei
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Fei Li
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Song-Yan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China; Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China; Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China; Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China.
| |
Collapse
|
25
|
Nguyen-Truong M, Hematti P, Wang Z. Current status of myocardial restoration via the paracrine function of mesenchymal stromal cells. Am J Physiol Heart Circ Physiol 2021; 321:H112-H127. [PMID: 34085844 DOI: 10.1152/ajpheart.00217.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stromal cells (MSCs) have been studied for nearly two decades as a therapy for myocardial restoration. An emerging direction to repair myocardium is through their paracrine function, which includes the utilization of MSC-derived conditioned medium or extracellular vesicles. In this review, we go over the unique characteristics of MSCs that make it suitable for "off the shelf," cell-free regenerative therapy, current MSC-derived cell-free approaches including their advantages and disadvantages, and the known mechanisms of action of the paracrine effect of MSCs. With a summary of the clinical trials and preclinical studies of MSC-derived cell-free therapy, we classify the aforementioned mechanisms into angiogenesis, immunomodulation, extracellular matrix remodeling, antiapoptosis, and antioxidation. Particularly, we discuss on ways researchers have worked toward enhancing these desired properties to improve the therapeutic outcomes and the investigation of mechanobiology involved in MSC paracrine function. Lastly, we bring up the remaining challenges in this arising field and suggestions for future directions to improve our understanding and control over the potential of MSC paracrine function for myocardial restoration.
Collapse
Affiliation(s)
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
26
|
Ausems CRM, van Engelen BGM, van Bokhoven H, Wansink DG. Systemic cell therapy for muscular dystrophies : The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy. Stem Cell Rev Rep 2021; 17:878-899. [PMID: 33349909 PMCID: PMC8166694 DOI: 10.1007/s12015-020-10100-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
The intrinsic regenerative capacity of skeletal muscle makes it an excellent target for cell therapy. However, the potential of muscle tissue to renew is typically exhausted and insufficient in muscular dystrophies (MDs), a large group of heterogeneous genetic disorders showing progressive loss of skeletal muscle fibers. Cell therapy for MDs has to rely on suppletion with donor cells with high myogenic regenerative capacity. Here, we provide an overview on stem cell lineages employed for strategies in MDs, with a focus on adult stem cells and progenitor cells resident in skeletal muscle. In the early days, the potential of myoblasts and satellite cells was explored, but after disappointing clinical results the field moved to other muscle progenitor cells, each with its own advantages and disadvantages. Most recently, mesoangioblasts and pericytes have been pursued for muscle cell therapy, leading to a handful of preclinical studies and a clinical trial. The current status of (pre)clinical work for the most common forms of MD illustrates the existing challenges and bottlenecks. Besides the intrinsic properties of transplantable cells, we discuss issues relating to cell expansion and cell viability after transplantation, optimal dosage, and route and timing of administration. Since MDs are genetic conditions, autologous cell therapy and gene therapy will need to go hand-in-hand, bringing in additional complications. Finally, we discuss determinants for optimization of future clinical trials for muscle cell therapy. Joined research efforts bring hope that effective therapies for MDs are on the horizon to fulfil the unmet clinical need in patients.
Collapse
Affiliation(s)
- C Rosanne M Ausems
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| | - Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Shahsavari A, Weeratunga P, Ovchinnikov DA, Whitworth DJ. Pluripotency and immunomodulatory signatures of canine induced pluripotent stem cell-derived mesenchymal stromal cells are similar to harvested mesenchymal stromal cells. Sci Rep 2021; 11:3486. [PMID: 33568729 PMCID: PMC7875972 DOI: 10.1038/s41598-021-82856-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
With a view towards harnessing the therapeutic potential of canine mesenchymal stromal cells (cMSCs) as modulators of inflammation and the immune response, and to avoid the issues of the variable quality and quantity of harvested cMSCs, we examined the immunomodulatory properties of cMSCs derived from canine induced pluripotent stem cells (ciMSCs), and compared them to cMSCs harvested from adipose tissue (cAT-MSC) and bone marrow (cBM-MSC). A combination of deep sequencing and quantitative RT-PCR of the ciMSC transcriptome confirmed that ciMSCs express more genes in common with cBM-MSCs and cAT-MSCs than with the ciPSCs from which they were derived. Both ciMSCs and harvested cMSCs express a range of pluripotency factors in common with the ciPSCs including NANOG, POU5F1 (OCT-4), SOX-2, KLF-4, LIN-28A, MYC, LIF, LIFR, and TERT. However, ESRRB and PRDM-14, both factors associated with naïve, rather than primed, pluripotency were expressed only in the ciPSCs. CXCR-4, which is essential for the homing of MSCs to sites of inflammation, is also detectable in ciMSCs, cAT- and cBM-MSCs, but not ciPSCs. ciMSCs constitutively express the immunomodulatory factors iNOS, GAL-9, TGF-β1, PTGER-2α and VEGF, and the pro-inflammatory mediators COX-2, IL-1β and IL-8. When stimulated with the canine pro-inflammatory cytokines tumor necrosis factor-α (cTNF-α), interferon-γ (cIFN-γ), or a combination of both, ciMSCs upregulated their expression of IDO, iNOS, GAL-9, HGF, TGF-β1, PTGER-2α, VEGF, COX-2, IL-1β and IL-8. When co-cultured with mitogen-stimulated lymphocytes, ciMSCs downregulated their expression of iNOS, HGF, TGF-β1 and PTGER-2α, while increasing their expression of COX-2, IDO and IL-1β. Taken together, these findings suggest that ciMSCs possess similar immunomodulatory capabilities as harvested cMSCs and support further investigation into their potential use for the management of canine immune-mediated and inflammatory disorders.
Collapse
Affiliation(s)
- Arash Shahsavari
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia
| | - Prasanna Weeratunga
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia
| | - Dmitry A. Ovchinnikov
- grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4067 Australia
| | - Deanne J. Whitworth
- grid.1003.20000 0000 9320 7537School of Veterinary Science, University of Queensland, Gatton, QLD 4343 Australia ,grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4067 Australia
| |
Collapse
|
28
|
Zannetti A, Benga G, Brunetti A, Napolitano F, Avallone L, Pelagalli A. Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells 2020; 9:cells9122678. [PMID: 33322145 PMCID: PMC7763964 DOI: 10.3390/cells9122678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid regulation of the cell volume. Furthermore, several reports have shown that AQPs play a crucial role in modulating MSC attachment to the extracellular matrix, their spread, and migration. Shedding light on how AQPs are able to regulate MSC physiological functions can increase our knowledge of their biological behaviours and improve their application in regenerative and reparative medicine.
Collapse
Affiliation(s)
- Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy
| | - Gheorghe Benga
- Romanian Academy, Cluj-Napoca Branch, Strada Republicii 9, 400015 Cluj-Napoca, Romania
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy
| | - Alessandra Pelagalli
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
29
|
Non-viral delivery systems of DNA into stem cells: Promising and multifarious actions for regenerative medicine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Jacob G, Shimomura K, Nakamura N. Osteochondral Injury, Management and Tissue Engineering Approaches. Front Cell Dev Biol 2020; 8:580868. [PMID: 33251212 PMCID: PMC7673409 DOI: 10.3389/fcell.2020.580868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Osteochondral lesions (OL) are a common clinical problem for orthopedic surgeons worldwide and are associated with multiple clinical scenarios ranging from trauma to osteonecrosis. OL vary from chondral lesions in that they involve the subchondral bone and chondral surface, making their management more complex than an isolated chondral injury. Subchondral bone involvement allows for a natural healing response from the body as marrow elements are able to come into contact with the defect site. However, this repair is inadequate resulting in fibrous scar tissue. The second differentiating feature of OL is that damage to the subchondral bone has deleterious effects on the mechanical strength and nutritive capabilities to the chondral joint surface. The clinical solution must, therefore, address both the articular cartilage as well as the subchondral bone beneath it to restore and preserve joint health. Both cartilage and subchondral bone have distinctive functional requirements and therefore their physical and biological characteristics are very much dissimilar, yet they must work together as one unit for ideal joint functioning. In the past, the obvious solution was autologous graft transfer, where an osteochondral bone plug was harvested from a non-weight bearing portion of the joint and implanted into the defect site. Allografts have been utilized similarly to eliminate the donor site morbidity associated with autologous techniques and overall results have been good but both techniques have their drawbacks and limitations. Tissue engineering has thus been an attractive option to create multiphasic scaffolds and implants. Biphasic and triphasic implants have been under explored and have both a chondral and subchondral component with an interface between the two to deliver an implant which is biocompatible and emulates the osteochondral unit as a whole. It has been a challenge to develop such implants and many manufacturing techniques have been utilized to bring together two unalike materials and combine them with cellular therapies. We summarize the functions of the osteochondral unit and describe the currently available management techniques under study.
Collapse
Affiliation(s)
- George Jacob
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Orthopedics, Tejasvini Hospital, Mangalore, India
| | - Kazunori Shimomura
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
31
|
Shariati A, Nemati R, Sadeghipour Y, Yaghoubi Y, Baghbani R, Javidi K, Zamani M, Hassanzadeh A. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. Eur J Cell Biol 2020; 99:151097. [PMID: 32800276 DOI: 10.1016/j.ejcb.2020.151097] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a variety of diseases including Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) along with some other less common diseases generally described by the advanced deterioration of central or peripheral nervous system, structurally or functionally. In the last two decades, mesenchymal stromal cells (MSCs) due to their unique assets encompassing self-renewal, multipotency and accessibility in association with low ethical concern open new frontiers in the context of neurodegenerative diseases therapy. Interestingly, MSCs can be differentiated into endodermal and ectodermal lineages (e.g., neurons, oligodendrocyte, and astrocyte), and thus could be employed to advance cell-based therapeutic strategy. Additionally, as inflammation ordinarily ensues as a local response provoked by microglia in the neurodegenerative diseases, MSCs therapy because of their pronounced immunomodulatory properties is noticed as a rational approach for their treatment. Recently, varied types of studies have been mostly carried out in vitro and rodent models using MSCs upon their procurement from various sources and expansion. The promising results of the studies in rodent models have motivated researchers to design and perform several clinical trials, with a speedily rising number. In the current review, we aim to deliver a brief overview of MSCs sources, expansion strategies, and their immunosuppressive characteristics and discuss credible functional mechanisms exerted by MSCs to treat neurodegenerative disorders, covering AD, PD, ALS, MS, and HD.
Collapse
Affiliation(s)
- Ali Shariati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Nemati
- Department of Medical Emergencies, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Yasin Sadeghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Baghbani
- Department of Medical Emergencies, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Yin N, Wang Y, Ding L, Yuan J, Du L, Zhu Z, Pan M, Xue F, Xiao H. Platelet-rich plasma enhances the repair capacity of muscle-derived mesenchymal stem cells to large humeral bone defect in rabbits. Sci Rep 2020; 10:6771. [PMID: 32317711 PMCID: PMC7174361 DOI: 10.1038/s41598-020-63496-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/23/2020] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cell-based therapy is a highly attractive strategy that promotes bone tissue regeneration. The aim of the present study was to evaluate the combination effect of muscle-derived mesenchymal stem cells (M-MSCs) and platelet-rich plasma (PRP) on bone repair capacity in rabbits with large humeral bone defect. Precise cylindrical bone defects of 10 mm diameter and 5 mm depth were established in rabbit humeral bones, which were unable to be repaired under natural conditions. The rabbits received treatment with M-MSCs/PRP gel, M-MSCs gel, or PRP gel, or no treatment. The bone tissue regeneration was evaluated at day 0-90 after surgery by HE morphological staining, Lane-Sandhu histopathological scoring, tetracycline detection, Gomori staining and micro-computed tomography. Beyond that, Transwell assay, CCK8 assay, Western blot analysis and ALP activity detection were performed in M-MSCs in vitro with or without PRP application to detect the molecular effects of PRP on M-MSCs. We found that the repair effect of M-MSCs group or PRP group was limited and the bone defects were not completely closed at post-operation 90 d. In contrast, M-MSCs/PRP group received obvious filling in the bone defects with a Lane-Sandhu evaluation score of 9. Tetracycline-labeled new bone area in M-MSCs/PRP group and new mineralized bone area were significantly larger than that in other groups. Micro-computed tomography result of M-MSCs/PRP group displayed complete recovery of humeral bone at post-operation 90 d. Further in vitro experiment revealed that PRP significantly induced migration, enhanced the growth, and promoted the expression of Cbfa-1 and Coll I in M-MSCs. In conclusion, PRP application significantly enhanced the regeneration capacity of M-MSCs in large bone defect via promoting the migration and proliferation of M-MSCs, and also inducing the osteogenic differentiation.
Collapse
Affiliation(s)
- Nuo Yin
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Yifei Wang
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Liang Ding
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Junjie Yuan
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Li Du
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Zhongsheng Zhu
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Mingmang Pan
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Feng Xue
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China.
| | - Haijun Xiao
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China.
| |
Collapse
|
33
|
Sun DZ, Abelson B, Babbar P, Damaser MS. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat Rev Urol 2020; 16:363-375. [PMID: 30923338 DOI: 10.1038/s41585-019-0169-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The extensive arsenal of bioactive molecules secreted by mesenchymal stem cells (MSCs), known as the secretome, has demonstrated considerable therapeutic benefit in regenerative medicine. Investigation into the therapeutic potential of the secretome has enabled researchers to replicate the anti-inflammatory, pro-angiogenic and trophic effects of stem cells without the need for the cells themselves. Furthermore, treatment with the MSC secretome could circumvent hurdles associated with cellular therapy, including oncogenic transformation, immunoreactivity and cost. Thus, a clear rationale exists for investigating the therapeutic potential of the MSC secretome in regenerative urology. Indeed, preclinical studies have demonstrated the therapeutic benefits of the MSC secretome in models of stress urinary incontinence, renal disease, bladder dysfunction and erectile dysfunction. However, the specific mechanisms underpinning therapeutic activity are unclear and require further research before clinical translation. Improvements in current proteomic methods used to characterize the secretome will be necessary to provide further insight into stem cells and their secretome in regenerative urology.
Collapse
Affiliation(s)
- Daniel Z Sun
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA. .,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Benjamin Abelson
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paurush Babbar
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Margot S Damaser
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
34
|
Gois Beghini D, Iwao Horita S, Monteiro da Fonseca Cardoso L, Anastacio Alves L, Nagaraju K, Henriques-Pons A. A Promising Future for Stem-Cell-Based Therapies in Muscular Dystrophies-In Vitro and In Vivo Treatments to Boost Cellular Engraftment. Int J Mol Sci 2019; 20:ijms20215433. [PMID: 31683627 PMCID: PMC6861917 DOI: 10.3390/ijms20215433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.
Collapse
Affiliation(s)
- Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Samuel Iwao Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | | | - Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, NY 13902, USA.
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| |
Collapse
|
35
|
Vissers C, Ming GL, Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev 2019; 148:239-251. [PMID: 30797953 PMCID: PMC6703981 DOI: 10.1016/j.addr.2019.02.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/19/2018] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
Abstract
The convergence of nanoparticles and stem cell therapy holds great promise for the study, diagnosis, and treatment of neurodegenerative disorders. Researchers aim to harness the power of nanoparticles to regulate cellular microenvironment, improve the efficiency of cell and drug delivery to the brain, and enhance the survival of stem cell transplants. Understanding the various properties of different nanoparticles is key to applying them to clinical therapies; the many distinct types of nanoparticles offer unique capacities for medical imaging, diagnosis, and treatment of neurodegeneration disorders. In this review we introduce the biology of Alzheimer's, Parkinson's Disease, and amyotrophic lateral sclerosis, and discuss the potentials and shortcomings of metal, silica, lipid-based, polymeric, and hydrogel nanoparticles for diagnosis and treatment of neurodegenerative disorders. We then provide an overview of current strategies in stem cell therapies and how they can be combined with nanotechnology to improve clinical outcomes.
Collapse
Affiliation(s)
- Caroline Vissers
- The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2019; 60:225-237. [PMID: 31212021 DOI: 10.1016/j.semcancer.2019.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from the mesoderm that give rise to several mesenchymal lineages, including osteoblasts, adipocytes, chondrocytes and myocytes. Their potent ability to home to tumors coupled with their differentiation potential and immunosuppressive function positions MSCs as key regulators of tumor fate. Here we review the existing knowledge on the involvement of MSCs in multiple tumor-promoting processes, including angiogenesis, epithelial-mesenchymal transition, metastasis, immunosuppression and therapy resistance. We also discuss the clinical potential of MSC-based therapy for cancer.
Collapse
Affiliation(s)
- Michael Timaner
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, and Division of Gastroenterology, Wan Fang Hospital, and Graduate Institutes of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei Taiwan; National Institute of Cancer Research, National Health Research Institutes, Taiwan
| | - Yuval Shaked
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
37
|
Abdal Dayem A, Lee SB, Kim K, Lim KM, Jeon TI, Seok J, Cho ASG. Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming. Int J Mol Sci 2019; 20:ijms20081922. [PMID: 31003536 PMCID: PMC6514654 DOI: 10.3390/ijms20081922] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a broad spectrum of therapeutic applications and have been used in clinical trials. MSCs are mainly retrieved from adult or fetal tissues. However, there are many obstacles with the use of tissue-derived MSCs, such as shortages of tissue sources, difficult and invasive retrieval methods, cell population heterogeneity, low purity, cell senescence, and loss of pluripotency and proliferative capacities over continuous passages. Therefore, other methods to obtain high-quality MSCs need to be developed to overcome the limitations of tissue-derived MSCs. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are considered potent sources for the derivation of MSCs. PSC-derived MSCs (PSC-MSCs) may surpass tissue-derived MSCs in proliferation capacity, immunomodulatory activity, and in vivo therapeutic applications. In this review, we will discuss basic as well as recent protocols for the production of PSC-MSCs and their in vitro and in vivo therapeutic efficacies. A better understanding of the current advances in the production of PSC-MSCs will inspire scientists to devise more efficient differentiation methods that will be a breakthrough in the clinical application of PSC-MSCs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | | | | | | | | | | | | |
Collapse
|
38
|
Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010174] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of proper cells for bone tissue engineering remains a major challenge worldwide. Cells play a pivotal role in the repair and regeneration of the bone tissue in vitro and in vivo. Currently, a large number of differentiated (somatic) and undifferentiated (stem) cells have been used for bone reconstruction alone or in combination with different biomaterials and constructs (e.g., scaffolds). Although the results of the cell transplantation without any supporting or adjuvant material have been very effective with regard to bone healing. Recent advances in bone scaffolding are now becoming new players affecting the osteogenic potential of cells. In the present study, we have critically reviewed all the currently used cell sources for bone reconstruction and discussed the new horizons that are opening up in the context of cell-based bone tissue engineering strategies.
Collapse
|
39
|
Berebichez-Fridman R, Montero-Olvera PR. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18:e264-e277. [PMID: 30607265 DOI: 10.18295/squmj.2018.18.03.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources-including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues-have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Roberto Berebichez-Fridman
- Department of Orthopaedic Surgery, American British Cowdray Medical Center, Mexico City, Mexico.,Tissue Engineering, Cell Therapy & Regenerative Medicine Unit, National Institute of Rehabilitation, Mexico City, Mexico
| | - Pablo R Montero-Olvera
- Tissue Engineering, Cell Therapy & Regenerative Medicine Unit, National Institute of Rehabilitation, Mexico City, Mexico
| |
Collapse
|
40
|
Gomes E, Vieira de Castro J, Costa B, Salgado A. The impact of Mesenchymal Stem Cells and their secretome as a treatment for gliomas. Biochimie 2018; 155:59-66. [DOI: 10.1016/j.biochi.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
|
41
|
Mahmoudian-Sani MR, Rafeei F, Amini R, Saidijam M. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing. J Cosmet Dermatol 2018; 17:650-659. [PMID: 29504236 DOI: 10.1111/jocd.12512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential of proliferation, high self-renewal, and the potential of multilineage differentiation. The differentiation potential of the MSCs in vivo and in vitro has caused these cells to be regarded as potentially appropriate tools for wound healing. After the burn, trauma or removal of the tumor of wide wounds is developed. Although standard treatment for skin wounds is primary healing or skin grafting, they are not always practical mainly because of limited autologous skin grafting. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science have been searched. EVIDENCE SYNTHESIS For clinical use of the MSCs in wound healing, two key issues should be taken into account: First, engineering biocompatible scaffolds clinical use of which leads to the least amount of side effects without any immunologic response and secondly, use of stem cells secretions with the least amount of clinical complications despite their high capability of healing damage. CONCLUSION In light of the MSCs' high capability of proliferation and multilineage differentiation as well as their significant role in modulating immunity, these cells can be used in combination with tissue engineering techniques. Moreover, the MSCs' secretions can be used in cell therapy to heal many types of wounds. The combination of MSCs and PRP aids wound healing which could potentially be used to promote wound healing.
Collapse
Affiliation(s)
| | - Fatemeh Rafeei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Amini
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
42
|
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med 2017; 6:2173-2185. [PMID: 29076267 PMCID: PMC5702523 DOI: 10.1002/sctm.17-0129] [Citation(s) in RCA: 471] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185.
Collapse
Affiliation(s)
- Rebekah M. Samsonraj
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Department of Orthopaedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Michael Raghunath
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Center for Cell Biology and Tissue Engineering, Competence Center for Tissue Engineering and Substance Testing (TEDD)Institute for Chemistry and Biotechnology, ZHAW School of Life Sciences and Facility Management, Zurich University of Applied SciencesSwitzerland
| | - Victor Nurcombe
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
| | - James H. Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | | | - Simon M. Cool
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
43
|
Yao Y, Li ZY, Zhang H, Zheng YH, Mai LX, Liu WJ, Zhang ZG, Sun YP. Synovial fluid‑derived synovial fragments represent an improved source of synovial mesenchymal stem cells in the temporomandibular joint. Int J Mol Med 2017; 41:173-183. [PMID: 29115378 PMCID: PMC5746324 DOI: 10.3892/ijmm.2017.3210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Surgery-obtained synovium specimens (SSSs) can provide a source of synovial mesenchymal stem cells (SMSCs) for experimental studies. However, these specimens contain diverse tissues, including the intima and subintima; therefore, these SMSCs are not entirely derived from the intima and their cell source is heterogeneous. The present study isolated synovial fragments (SFs) from synovial fluid dilutions extracted from patients with temporomandibular joint (TMJ) osteoarthrosis. Unlike SSSs, SFs, which are membranous and translucent, consist of only several cell layers, indicating the presence of only the intima. In the present study, SF cells (SFCs) and SSS cells (SSSCs) exhibited a homogeneous, fibroblast-like, spindle-shaped morphology after passaging in vitro. Furthermore, both cell types exhibited similar proliferative and differentiation potentials in vitro. However, SFCs exhibited more uniform surface markers compared with SSSCs when analysed by flow cytometry. Taken together, these results indicated that SFs contained a greater amount of unmixed intima than SSSs, and that SFCs exhibited more homogeneous characteristics than SSSCs, thereby offering an improved source of SMSCs in the TMJ.
Collapse
Affiliation(s)
- Yu Yao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Zheng-Yu Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330046, P.R. China
| | - Hong Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - You-Hua Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Li-Xiang Mai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Wen-Jing Liu
- Stomatological Hospital of Guangdong Province, Affiliated to Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhi-Guang Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yang-Peng Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
44
|
Vieira de Castro J, Gomes ED, Granja S, Anjo SI, Baltazar F, Manadas B, Salgado AJ, Costa BM. Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology. J Transl Med 2017; 15:200. [PMID: 28969635 PMCID: PMC5625623 DOI: 10.1186/s12967-017-1303-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. Methods The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton’s jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. Results We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. Conclusions These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1303-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
45
|
Matsushita K, Dzau VJ. Mesenchymal stem cells in obesity: insights for translational applications. J Transl Med 2017; 97:1158-1166. [PMID: 28414326 DOI: 10.1038/labinvest.2017.42] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
Obesity is now a major public health problem worldwide. Lifestyle modification to reduce the characteristic excess body adiposity is important in the treatment of obesity, but effective therapeutic intervention is still needed to control what has become an obesity epidemic. Unfortunately, many anti-obesity drugs have been withdrawn from market due to adverse side effects. Bariatric surgery therefore remains the most effective therapy for severe cases, although such surgery is invasive and researchers continue to seek new control strategies for obesity. Mesenchymal stem cells (MSCs) are a major source of adipocyte generation, and studies have been conducted into the potential roles of MSCs in treating obesity. However, despite significant progress in stem cell research and its potential applications for obesity, adipogenesis is a highly complex process and the molecular mechanisms governing MSC adipogenesis remain ill defined. In particular, successful clinical application of MSCs will require extensive identification and characterization of the transcriptional regulators controlling MSC adipogenesis. Since obesity is associated with the incidence of multiple important comorbidities, an in-depth understanding of the relationship between MSC adipogenesis and the comorbidities of obesity is also necessary to evaluate the potential of effective and safe MSC-based therapies for obesity. In addition, brown adipogenesis is an attractive topic from the viewpoint of therapeutic innovation and future research into MSC-based brown adipogenesis could lead to a novel breakthrough. Ongoing stem cell studies and emerging research fields such as epigenetics are expected to elucidate the complicated mechanisms at play in MSC adipogenesis and develop novel MSC-based therapeutic options for obesity. This review discusses the current understanding of MSCs in adipogenesis and their potential clinical applications for obesity.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Division of Cardiology, Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
46
|
Li C, Fu Y, Wang Y, Kong Y, Li M, Ma D, Zhai W, Wang H, Lin Y, Liu S, Ren F, Li J, Wang Y. Mesenchymal stromal cells ameliorate acute allergic rhinitis in rats. Cell Biochem Funct 2017; 35:420-425. [PMID: 28940415 PMCID: PMC5698748 DOI: 10.1002/cbf.3291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been extensively investigated as a potential antiinflammatory treatment in many inflammatory‐related diseases; however, it remains unclear whether MSCs could be used to treat acute allergic rhinitis. A rat model of allergic rhinitis was treated with MSCs. The effect of MSCs on the inflammation of allergic rhinitis was evaluated by sneezing, nose rubbing, the pathology of the nasal mucosa, and the expression of interleukin 4, tumour necrosis factor alpha, and immunoglobulin E in the serum of rats. Also, the population of MSCs isolated from umbilical cords of humans was evaluated to determine if they could inhibit the symptoms and inflammation of acute allergic rhinitis in a rat model. We observed that this population of cells inhibited sneezing, nose rubbing, and changes in the pathology of the nasal mucosa. Intriguingly, we observed that MSCs reduced the expression of interleukin 4, tumour necrosis factor alpha, and immunoglobulin E in the serum. Furthermore, MSCs reduced the expression of histamine and the recruitment of macrophages in the nasal mucosa of allergic rhinitis rats. We reasoned that the effect of MSCs on allergic rhinitis might be through its regulation of the secretion of related cytokines from macrophages during the process of acute allergic rhinitis. This work suggested that MSCs from the umbilical cords of humans could be used as a positive clinical therapy for the human disease.
Collapse
Affiliation(s)
- Chunlei Li
- Graduate School of Beijing University of Chinese Medicine, Clinical Medical School of Beijing University of Chinese MedicineBeijing University of Chinese MedicineBeijingChina
- National Clinical Research Center of Respiratory Diseases, Center for Respiratory Diseases China‐Japan Friendship Hospital, The 2nd Pulmonary Department of TCM, The Key Institute of State Administration of Traditional Chinese Medicine (Pneumonopathy Chronic Cough and Dyspnea), Beijing Key Laboratory (no BZ0321)China‐Japan Friendship HospitalBeijingChina
| | - Yanxia Fu
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Yanhua Kong
- National Clinical Research Center of Respiratory Diseases, Center for Respiratory Diseases China‐Japan Friendship Hospital, The 2nd Pulmonary Department of TCM, The Key Institute of State Administration of Traditional Chinese Medicine (Pneumonopathy Chronic Cough and Dyspnea), Beijing Key Laboratory (no BZ0321)China‐Japan Friendship HospitalBeijingChina
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Danhui Ma
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Hao Wang
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Yuting Lin
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Sihan Liu
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| | - Jun Li
- Institute of Immunology, Medical SchoolThird Military Medical UniversityChongqingChina
| | - Yi Wang
- State Key Laboratory of Membrane Biology, School of MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
47
|
|
48
|
Zhou J, Cui H, Lu H, Xu Z, Feng W, Chen L, Jin X, Yang X, Qi Z. Muscle-derived stem cells in peripheral nerve regeneration: reality or illusion? Regen Med 2017. [PMID: 28621200 DOI: 10.2217/rme-2016-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Owing to the complicated and time-consuming regenerative process, the repair of injured peripheral nerves depends largely on ongoing stem-cell therapy. Decades ago, researchers successfully isolated and identified muscle-derived stem cells (MDSCs) and discovered their potential for multidifferentiation. MDSCs play an important role in trauma repair associated with neuromuscular and vascular injury by simultaneously promoting tissue regrowth via direct differentiation and systematic secretion under physiological conditions. However, the isolation, culture, induction and application of MDSCs require further methodological analysis before clinical application. In this review, we comprehensively discuss the challenges associated with neural regeneration and reviewed the progress of stem cell based regenerative medicine, in an effort to realize the potential of MDSCs in nerve regeneration.
Collapse
Affiliation(s)
- Jing Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Haiyan Cui
- Department of Plastic & Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Haibin Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Zhuqiu Xu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Weifeng Feng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Lulu Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Xiaolei Jin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Xiaonan Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Zuoliang Qi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
49
|
Lee HJ, Kim SN, Jeon MS, Yi T, Song SU. ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Sci Rep 2017; 7:44486. [PMID: 28290526 PMCID: PMC5349520 DOI: 10.1038/srep44486] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can modulate lymphocyte proliferation and function. One of the immunomodulatory functions of MSCs involves CD4+CD25+FoxP3+ regulatory T cells (Tregs), which negatively regulate inflammatory responses. MSC-mediated Treg induction is supposed to be regulated by mechanisms requiring both soluble and cell contact-dependent factors. Although the involvement of soluble factors has been revealed, the contact-dependent mechanisms in MSC-mediated Treg induction remain unclear. We attempted to identify molecule(s) other than secreted factors that are responsible for MSC-mediated Treg induction and to uncover the underlying mechanisms. Under in vitro Treg-inducing conditions, ICOSL expression in MSCs coincided with Treg induction in co-cultures of MSCs with CD4+ T cells. When cultured in a transwell plate, MSCs failed to induce Tregs. Neutralization or knockdown of ICOSL significantly reduced Tregs and their IL-10 release. ICOSL overexpression in MSCs promoted induction of functional Tregs. ICOSL-ICOS signaling promoted Treg differentiation from CD4+ T cells through activation of the phosphoinositide 3-kinase-Akt pathway. MSCs primed with Interleukin-1β significantly induced Tregs through ICOSL upregulation. We demonstrated that the Treg-inducing activity of MSCs is proportionate to their basal ICOSL expression. This study provides evidence that ICOSL expression in human MSCs plays an important role in contact-dependent regulation of MSC-mediated Treg induction.
Collapse
Affiliation(s)
- Hyun-Joo Lee
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea.,Drug Development Program, Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Si-Na Kim
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea.,Drug Development Program, Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea.,SCM Lifesciences Co. Ltd., Incheon, Republic of Korea
| | - Myung-Shin Jeon
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - TacGhee Yi
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea.,SunCreate Co. Ltd., Yangju, Republic of Korea
| | - Sun U Song
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea.,SCM Lifesciences Co. Ltd., Incheon, Republic of Korea
| |
Collapse
|
50
|
Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther 2017; 8:28. [PMID: 28173861 PMCID: PMC5297126 DOI: 10.1186/s13287-017-0479-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Background Laminin, a major basement membrane component that has direct contact with pericytes under physiological conditions, actively regulates the proliferation and differentiation/fate determination of pericytes. Recently, two types of pericytes (type I and type II) with different molecular markers and functions have been identified in skeletal muscles. Whether laminin differentially regulates the proliferation and differentiation of these two subpopulations remains unclear. Methods Wild-type and pericytic laminin-deficient mice under Nestin-GFP background were used to determine if laminin differentially regulates the proliferation and differentiation of type I and type II pericytes. Specifically, type I and type II pericytes were isolated from these mice, and their proliferation and differentiation were examined in vitro. Moreover, in vivo studies were also performed. Results We demonstrate that, although laminin inhibits the proliferation of both type I and type II pericytes in vitro, loss of laminin predominantly induces proliferation of type II pericytes in vivo. In addition, laminin negatively regulates the adipogenic differentiation of type I pericytes and positively regulates the myogenic differentiation of type II pericytes in vitro. Conclusions Laminin differentially regulates the proliferation and differentiation of type I and type II pericytes. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0479-4) contains supplementary material, which is available to authorized users.
Collapse
|