1
|
Lan X, Johnston E, Ning T, Chen G, Haglund L, Li J. Immunomodulatory bioadhesive technologies. Biomaterials 2025; 321:123274. [PMID: 40156979 DOI: 10.1016/j.biomaterials.2025.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Bioadhesives have found significant use in medicine and engineering, particularly for wound care, tissue engineering, and surgical applications. Compared to traditional wound closure methods such as sutures and staples, bioadhesives offer advantages, including reduced tissue damage, enhanced healing, and ease of implementation. Recent progress highlights the synergy of bioadhesives and immunoengineering strategies, leading to immunomodulatory bioadhesives capable of modulating immune responses at local sites where bioadhesives are applied. They foster favorable therapeutic outcomes such as reduced inflammation in wounds and implants or enhanced local immune responses to improve cancer therapy efficacy. The dual functionalities of bioadhesion and immunomodulation benefit wound management, tissue regeneration, implantable medical devices, and post-surgical cancer management. This review delves into the interplay between bioadhesion and immunomodulation, highlighting the mechanobiological coupling involved. Key areas of focus include the modulation of immune responses through chemical and physical strategies, as well as the application of these bioadhesives in wound healing and cancer treatment. Discussed are remaining challenges such as achieving long-term stability and effectiveness, necessitating further research to fully harness the clinical potential of immunomodulatory bioadhesives.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Evan Johnston
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Tianqin Ning
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Ave W, Montreal, Quebec, H3A 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec, H4A 0A9, Canada.
| | - Jianyu Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
2
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
3
|
Graczyk S, Pasławski R, Grzeczka A, Pasławska U, Świeczko-Żurek B, Malisz K, Popat K, Sionkowska A, Golińska P, Rai M. Antimicrobial and Antiproliferative Coatings for Stents in Veterinary Medicine-State of the Art and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6834. [PMID: 37959431 PMCID: PMC10649059 DOI: 10.3390/ma16216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Microbial colonization in veterinary stents poses a significant and concerning issue in veterinary medicine. Over time, these pathogens, particularly bacteria, can colonize the stent surfaces, leading to various complications. Two weeks following the stent insertion procedure, the colonization becomes observable, with the aggressiveness of bacterial growth directly correlating with the duration of stent placement. Such microbial colonization can result in infections and inflammations, compromising the stent's efficacy and, subsequently, the animal patient's overall well-being. Managing and mitigating the impact of these pathogens on veterinary stents is a crucial challenge that veterinarians and researchers are actively addressing to ensure the successful treatment and recovery of their animal patients. In addition, irritation of the tissue in the form of an inserted stent can lead to overgrowth of granulation tissue, leading to the closure of the stent lumen, as is most often the case in the trachea. Such serious complications after stent placement require improvements in the procedures used to date. In this review, antibacterial or antibiofilm strategies for several stents used in veterinary medicine have been discussed based on the current literature and the perspectives have been drawn. Various coating strategies such as coating with hydrogel, antibiotic, or other antimicrobial agents have been reviewed.
Collapse
Affiliation(s)
- Szymon Graczyk
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Robert Pasławski
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Arkadiusz Grzeczka
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Urszula Pasławska
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Beata Świeczko-Żurek
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Klaudia Malisz
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Ketul Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| | - Mahendra Rai
- Department of Chemistry, Federal University of Piaui (UFPI), Teresina 64049-550, Brazil;
| |
Collapse
|
4
|
Viudes-de-Castro MP, Marco Jimenez F, Vicente JS. Reproductive Performance of Female Rabbits Inseminated with Extenders Supplemented with GnRH Analogue Entrapped in Chitosan-Based Nanoparticles. Animals (Basel) 2023; 13:ani13101628. [PMID: 37238058 DOI: 10.3390/ani13101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Rabbit is a reflexively ovulating species. Accordingly, in the practice of artificial insemination (AI) ovulation must be induced via exogenous GnRH (Gonadotropin-Releasing Hormone) administration, which may be performed intramuscularly, subcutaneously, or intravaginally. Unfortunately, the bioavailability of the GnRH analogue when added to the extender is lower due to the proteolytic activity in the seminal plasma and the poor permeability of the vaginal mucosa. The aim of the study was to refine the practice of AI practice in rabbits by replacing parenteral GnRH analogue administration (subcutaneous, intravenous, or intramuscular injection) with intravaginal application, while reducing its concentration in the diluent. Extenders containing the buserelin acetate in chitosan-dextran sulphate and chitosan-alginate nanoparticles were designed and 356 females were inseminated. Reproductive performance of females inseminated with the two experimental extenders, receiving 4 μg of buserelin acetate intravaginally per doe, was compared with that in the control group, the does of which were inseminated with the extender without the GnRH analogue and induced to ovulate with 1 μg of buserelin acetate administered intramuscularly. The entrapment efficiency of the chitosan-dextran sulphate complex was higher than that of chitosan-alginate. However, females inseminated with both systems showed similar reproductive performance. We conclude that both nanoencapsulation systems are an efficient way of intravaginal ovulation induction, allowing a reduction in the level of the GnRH analogue normally used in seminal doses from 15-25 μg to 4 μg.
Collapse
Affiliation(s)
- Maria Pilar Viudes-de-Castro
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CI-TA-IVIA), Polígono La Esperanza No. 100, 12400 Segorbe, Spain
| | - Francisco Marco Jimenez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Salvador Vicente
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
5
|
Yu S, Cha C. Bioadhesives based on multifunctional biopolymers for biomedical applications. Macromol Res 2023. [DOI: 10.1007/s13233-023-00141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Kulkarni R, Fanse S, Burgess DJ. Mucoadhesive drug delivery systems: a promising noninvasive approach to bioavailability enhancement. Part II: formulation considerations. Expert Opin Drug Deliv 2023; 20:413-434. [PMID: 36803264 DOI: 10.1080/17425247.2023.2181332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer of the epithelium for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, several dosage forms have been developed for localized as well as systemic drug delivery at different anatomical sites. AREAS COVERED The objective of this review is to provide a detailed understanding of the different aspects of MDDS. Part II describes the origin and evolution of MDDS, followed by a discussion of the properties of mucoadhesive polymers. Finally, a synopsis of the different commercial aspects of MDDS, recent advances in the development of MDDS for biologics and COVID-19 as well as future perspectives are provided. EXPERT OPINION A review of the past reports and recent advances reveal MDDS as highly versatile, biocompatible, and noninvasive drug delivery systems. The rise in the number of approved biologics, the introduction of newer highly efficient thiomers, as well as the recent advances in the field of nanotechnology have led to several excellent applications of MDDS, which are predicted to grow significantly in the future.
Collapse
Affiliation(s)
- Radha Kulkarni
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Suraj Fanse
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
7
|
Račić A, Krajišnik D. Biopolymers in Mucoadhesive Eye Drops for Treatment of Dry Eye and Allergic Conditions: Application and Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020470. [PMID: 36839790 PMCID: PMC9962975 DOI: 10.3390/pharmaceutics15020470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Dry eye syndrome and allergic conjunctivitis are the most common inflammatory disorders of the eye surface. Although eye drops are the most usual prescribed dosage form, they are characterized by low ocular availability due to numerous barrier mechanisms of the eye. The use of biopolymers in liquid ophthalmic preparations has numerous advantages, such as increasing the viscosity of the tear film, exhibiting bioadhesive properties, and resisting the drainage system, leading to prolonged retention of the preparation at the site of application, and improvement of the therapeutic effect. Some mucoadhesive polymers are multifunctional excipients, so they act by different mechanisms on increasing the permeability of the cornea. Additionally, many hydrophilic biopolymers can also represent the active substances in artificial tear preparations, due to their lubrication and moisturizing effect. With the modification of conventional ophthalmic preparations, there is a need for development of new methods for their characterization. Numerous methods for the assessment of mucoadhesiveness have been suggested by the literature. This review gives an overview related to the development of mucoadhesive liquid ophthalmic formulations for the treatment of dry eye and allergic conditions.
Collapse
Affiliation(s)
- Anđelka Račić
- Department of Pharmacy, University of Banja Luka-Faculty of Medicine, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-395-1359
| |
Collapse
|
8
|
de Lima LS, Mortari MR. Therapeutic nanoparticles in the brain: A review of types, physicochemical properties and challenges. Int J Pharm 2022; 612:121367. [PMID: 34896565 DOI: 10.1016/j.ijpharm.2021.121367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
One of the main obstacles in the treatment of neurological diseases, perhaps the biggest one, is the delivery of therapeutic compounds to the central nervous system, and nanoparticles are promising tools to overcome this challenge. Different types of nanoparticles may be used as delivery systems, including liposomes, carbon nanotubes, and dendrimers. Nevertheless, these nanoparticles must display characteristics to be useful in brain drug delivery, such as stability, permeability to blood vessels, biocompatibility, and specificity. All of these aspects are intrinsically related to the physicochemical properties of nanoformulations: size, composition, electric charge, hydrophobicity, mucoadherence, permeability to the blood-brain barrier, and many others. Furthermore, there are challenging hindrances involved in the development and application of nanoparticles - hence the importance of studying and understanding these pharmaceutical tools.
Collapse
Affiliation(s)
- Larissa Silva de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, 70910-900 Brasilia, Distrito Federal, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, 70910-900 Brasilia, Distrito Federal, Brazil.
| |
Collapse
|
9
|
Das R, Fernandez JG. Biomaterials for Mimicking and Modelling Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:139-170. [DOI: 10.1007/978-3-031-04039-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Mucoadhesive Biopolymer Nanoparticles for Encapsulation of Lipophilic Nutrients With Enhanced Bioactivity. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Kawamoto E, Nago N, Okamoto T, Gaowa A, Masui-Ito A, Sakakura Y, Akama Y, Soe ZY, Prajuabjinda O, Darkwah S, Appiah MG, Myint PK, Obeng G, Park EJ, Imai H, Shimaoka M. Anti-adhesive effects of human soluble thrombomodulin and its domains. Biochem Biophys Res Commun 2019; 511:312-317. [PMID: 30777333 DOI: 10.1016/j.bbrc.2019.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
Abstract
We reported previously that leukocyte β2 integrins (LFA-1 and Mac-1) bind to the serine/threonine-rich domain of thrombomodulin (TM) expressed on vascular endothelial cells (VECs). Recombinant human soluble TM (rhsTM, TMD123) has been approved as a therapeutic drug for septic disseminated intravascular coagulation. However, the roles of TMD123 on the adhesion of leukocyte integrins to VECs remain unclear. In the current study, we have revealed that an integrin-dependent binding between human peripheral blood mononuclear cells (PBMCs) and VECs was inhibited by TMD123. Next, using mutant proteins composed of isolated TM extracellular domains, we examined the structural characteristics responsible for the anti-adhesion properties of TMD123. Namely, we investigated whether the effects of the binding of TM and leukocytes was inhibited by the administration of TMD123. In fact, we confirmed that TMD123, TMD1, and TMD3 inhibited the binding of PBMCs to the immobilized recombinant proteins TMD123 and TMD3. These results indicate that TMD123 inhibited the adhesion of leukocytes to endothelial cells via β2 integrins and endothelial TM. Moreover, since TMD1 might bind to leukocytes via other adhesion receptors than integrins, TMD1 and TMD3 appear to inhibit leukocyte binding to TM on VECs via different mechanisms. In summary, TMD123 (rhsTM), TMD1 or TMD3 is a promising treatment option for sepsis that attenuates integrin-dependent binding of leukocytes to VECs, and may inhibit the undesirable adhesion and migration of leukocytes to VECs in sepsis.
Collapse
Affiliation(s)
- Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan.
| | - Nodoka Nago
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan; Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka-city, Mie, 510-0293, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane, 693-8501, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Asami Masui-Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Yosuke Sakakura
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Yuichi Akama
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Zay Yar Soe
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Onmanee Prajuabjinda
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Hiroshi Imai
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| |
Collapse
|
12
|
Rossi S, Vigani B, Bonferoni MC, Sandri G, Caramella C, Ferrari F. Rheological analysis and mucoadhesion: A 30 year-old and still active combination. J Pharm Biomed Anal 2018; 156:232-238. [PMID: 29729636 DOI: 10.1016/j.jpba.2018.04.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
At the end of 80s and in the early 90s, an increasing interest in the development of mucoadhesive formulations occurred in the pharmaceutical field. Such formulations, prolonging the drug permanence on the mucosa of action/absorption, improve drug availability/bioavailability and therefore its therapeutic effectiveness. Among the various methods reported in the literature for the evaluation of the mucoadhesive properties of polymers, in the early 1990s, the study of the rheological variation of the polymer solutions after mixing with a mucin solution/dispersion has been proposed as an approach to measure the strength of the mucoadhesive joint. Even today, both viscosity and viscoelastic measurements are used to evaluate the ability of polymers and formulations to adhere to the mucosa of application/action. This review aims at providing an overview of the rheological approaches employed in the development and characterization of mucoadhesive formulation, highlighting their advantages and disadvantages. To do this the scientific path that, since the beginning of the 90s, has led to the affirmation of the rheological analysis as a useful tool for the evaluation of the strength of the mucoadhesive bond is retraced.
Collapse
Affiliation(s)
- Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | | | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| |
Collapse
|
13
|
Malekzad H, Mirshekari H, Sahandi Zangabad P, Moosavi Basri SM, Baniasadi F, Sharifi Aghdam M, Karimi M, Hamblin MR. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit Rev Biotechnol 2018; 38:47-67. [PMID: 28434263 PMCID: PMC5654697 DOI: 10.1080/07388551.2017.1312267] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.
Collapse
Affiliation(s)
- Hedieh Malekzad
- a Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG) , Iran University of Medical Sciences , Tehran , Iran
| | - Hamed Mirshekari
- b Department of Biotechnology , University of Kerala , Trivandrum , India
| | - Parham Sahandi Zangabad
- c Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS) , Tabriz , Iran
- d Department of Material Science and Engineering , Sharif University of technology , Tehran , Iran
- e Universal Scientific Education and Research Network (USERN) , Tehran, Iran
| | - S M Moosavi Basri
- f Bioenvironmental Research Center, Sharif University of Technology , Tehran , Iran
- g Civil & Environmental Engineering Department , Shahid Beheshti University , Tehran , Iran
| | - Fazel Baniasadi
- d Department of Material Science and Engineering , Sharif University of technology , Tehran , Iran
| | | | - Mahdi Karimi
- i Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
- j Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
- k Applied Biotechnology Research Center, School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University , Tehran , Iran
| | - Michael R Hamblin
- l Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA
- m Department of Dermatology , Harvard Medical School , Boston , MA , USA
- n Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
14
|
Pereira MN, Reis TA, Matos BN, Cunha-Filho M, Gratieri T, Gelfuso GM. Novel ex vivo protocol using porcine vagina to assess drug permeation from mucoadhesive and colloidal pharmaceutical systems. Colloids Surf B Biointerfaces 2017; 158:222-228. [DOI: 10.1016/j.colsurfb.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 01/13/2023]
|
15
|
Meng-Lund E, Jacobsen J, Müllertz A, Jørgensen EB, Holm R. Buccal absorption of diazepam is improved when administered in bioadhesive tablets—An in vivo study in conscious Göttingen mini-pigs. Int J Pharm 2016; 515:125-131. [DOI: 10.1016/j.ijpharm.2016.09.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
16
|
Calles JA, López-García A, Vallés EM, Palma SD, Diebold Y. Preliminary characterization of dexamethasone-loaded cross-linked hyaluronic acid films for topical ocular therapy. Int J Pharm 2016; 509:237-243. [PMID: 27242313 DOI: 10.1016/j.ijpharm.2016.05.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/25/2023]
Abstract
The aim of this work was to design and characterize cross-linked hyaluronic acid (HA)-itaconic acid (IT) films loaded with dexamethasone sodium phosphate salt (DEX) for topical therapy of inflammatory ocular surface diseases. Films were chemically cross-linked with polyethylene glycol diglycidyl ether (PEGDE), then physical and mechanical characterization by stress-strain, X-ray diffraction, X-ray fluorescence spectrometry and swelling assays was conducted. A sequential in vitro therapeutic efficacy model was designed to assess changes in interleukin (IL)-6 production in an inflamed human corneal epithelial (HCE) cell line after film exposure. Changes in cell proliferation after film exposure were assessed using the alamarBlue(®) proliferation assay. Experimental findings showed desirable mechanical properties and in vitro efficacy to reduce cell inflammation. A moderately decreased proliferation rate was induced in HCE cells by DEX-loaded films, compared to commercial DEX eye drops. These results suggest that DEX and HA have opposite effects. The sequential in vitro therapeutic efficacy model arises as an efficient tool to study drug release from delivery systems by indirect measurement of a biological response.
Collapse
Affiliation(s)
- J A Calles
- Institute of Applied Ophthalmo-Biology (IOBA), University of Valladolid, 47011 Valladolid, Spain; PLAPIQUI, CONICET, National University at Bahía Blanca (UNS), 8000 Bahía Blanca, Argentina; Department of Biology, Biochemistry and Pharmacy, UNS, 8000 Bahía Blanca, Argentina
| | - A López-García
- Institute of Applied Ophthalmo-Biology (IOBA), University of Valladolid, 47011 Valladolid, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - E M Vallés
- PLAPIQUI, CONICET, National University at Bahía Blanca (UNS), 8000 Bahía Blanca, Argentina
| | - S D Palma
- UNITEFA, CONICET, National University of Córdoba, X5000HUA Córdoba, Argentina
| | - Y Diebold
- Institute of Applied Ophthalmo-Biology (IOBA), University of Valladolid, 47011 Valladolid, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
17
|
Brooks AE. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery. Front Chem 2015; 3:65. [PMID: 26636069 PMCID: PMC4659904 DOI: 10.3389/fchem.2015.00065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.
Collapse
Affiliation(s)
- Amanda E Brooks
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA
| |
Collapse
|
18
|
Direct Determination of Chitosan–Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate–Mucin Interactions. Polymers (Basel) 2015. [DOI: 10.3390/polym7020161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
19
|
Meng-Lund E, Muff-Westergaard C, Sander C, Madelung P, Jacobsen J. A mechanistic based approach for enhancing buccal mucoadhesion of chitosan. Int J Pharm 2014; 461:280-5. [DOI: 10.1016/j.ijpharm.2013.10.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
|
20
|
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4:1443-67. [PMID: 24228993 PMCID: PMC3956587 DOI: 10.4155/tde.13.104] [Citation(s) in RCA: 495] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed.
Collapse
Affiliation(s)
- Benjamin J Bruno
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Geoffrey D Miller
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Carol S Lim
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| |
Collapse
|
21
|
Yeboah KG, Akande J, Addo RT, Siwale RC, Aninkorah-Yeboah K, Siddig A. In vitroandex vivocharacterization of lectin-labeledMycobacterium tuberculosisantigen-containing microspheres for enhanced oral delivery. J Drug Target 2013; 22:34-47. [DOI: 10.3109/1061186x.2013.833206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Calles JA, Tártara LI, Lopez-García A, Diebold Y, Palma SD, Vallés EM. Novel bioadhesive hyaluronan-itaconic acid crosslinked films for ocular therapy. Int J Pharm 2013; 455:48-56. [PMID: 23911915 DOI: 10.1016/j.ijpharm.2013.07.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/24/2013] [Accepted: 07/19/2013] [Indexed: 01/20/2023]
Abstract
New hyaluronic acid (HA)-itaconic acid (IT) films have been previously synthesized and used as potential topical drug delivery systems (DDS) for ocular administration. In this study we explored homogeneous and heterogeneous crosslinking reactions of HA using glutaraldehyde (GTA) and polyethylene glycol diglycidyl ether (PEGDE) in the presence of IT, a naturally occurring compound that is non-toxic and readily biodegradable. We have studied the morphology, mechanical properties and in vitro biocompatibility between these new materials and ocular surface cells (human corneal epithelial cell line) and evaluated the biopharmaceutical performance of the designed formulations. Although all the synthesized materials exhibited good mechanical properties, the PEGDE modified films exhibited the best biocompatibility, with in vivo assays showing good adhesive performance and minimal irritation. PEGDE films were also tested for their effects in the treatment of intraocular pressure (IOP) in rabbits using timolol maleate (TM) as the model drug. These results may be useful for further design of novel bioadhesive matrix containing drugs by topical application in ophthalmology.
Collapse
Affiliation(s)
- J A Calles
- PLAPIQUI-CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, Bahía Blanca, 8000, Argentina.
| | | | | | | | | | | |
Collapse
|
23
|
Li H, Yu Y, Faraji Dana S, Li B, Lee CY, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target 2013; 21:611-29. [PMID: 23869879 DOI: 10.3109/1061186x.2013.805335] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.
Collapse
Affiliation(s)
- Hairui Li
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
24
|
Yandrapu SK, Kanujia P, Chalasani KB, Mangamoori L, Kolapalli RV, Chauhan A. Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: An acyclovir model formulation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:514-22. [DOI: 10.1016/j.nano.2012.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 09/27/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
|
25
|
Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447:75-93. [PMID: 23428883 DOI: 10.1016/j.ijpharm.2013.02.030] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/28/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1-2%). An ideal oral drug delivery system should be capable of (a) maintaining the integrity of protein molecules until it reaches the site of absorption, (b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and (c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules.
Collapse
Affiliation(s)
- Jwala Renukuntla
- Division of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody's Lane, Knoxville, TN 37931, USA
| | | | | | | | | |
Collapse
|
26
|
Barthelmes J, Dünnhaupt S, Unterhofer S, Perera G, Schlocker W, Bernkop-Schnürch A. Thiolated particles as effective intravesical drug delivery systems for treatment of bladder-related diseases. Nanomedicine (Lond) 2012; 8:65-75. [PMID: 22812707 DOI: 10.2217/nnm.12.76] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To prove in vivo mucoadhesiveness of thiolated and well-established polymeric microparticles and nanoparticles (NPs) as a promising nanomedical tool for the treatment of bladder-related diseases. MATERIALS & METHODS Spray drying and ionic gelation were used in order to generate microparticles and NPs. For particle detection, the fluorescent marker, fluorescein diacetate, was incorporated in microparticles and NPs, respectively. Mucoadhesive properties of the particles were pre-evaluated via rheological measurements and ex vivo in the porcine urinary bladder model to identify the most appropriate particles for in vivo application in female Sprague Dawley rats. RESULTS Pretrials indicated that particles based on chitosan were most suitable as an intravesical drug delivery system for in vivo application. The retention time of thiolated chitosan NPs on the rat urinary bladder mucosa was approximately 170-fold higher in comparison with the pure fluorescent marker, fluorescein diacetate, having being applied as aqueous suspension without polymeric excipients. CONCLUSION This advanced nanomedical tool based on thiolated chitosan seems to be a promising approach for the treatment of bladder-related diseases.
Collapse
Affiliation(s)
- Jan Barthelmes
- Pharmaceutical Technology, Center for Molecular Biosciences, Leopold-Franzens-University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Satheesh Madhav NV, Semwal R, Semwal DK, Semwal RB. Recent trends in oral transmucosal drug delivery systems: an emphasis on the soft palatal route. Expert Opin Drug Deliv 2012; 9:629-47. [PMID: 22512535 DOI: 10.1517/17425247.2012.679260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The oral mucosa is an appropriate route for drug delivery systems, as it evades first-pass metabolism, enhances drug bioavailability and provides the means for rapid drug transport to the systematic circulation. This delivery system offers a more comfortable and convenient delivery route compared with the intravenous route. Although numerous drugs have been evaluated for oral mucosal delivery, few of them are available commercially. This is due to limitations such as the high costs associated with developing such drug delivery systems. AREAS COVERED The present review covers recent developments and applications of oral transmucosal drug delivery systems. More specifically, the review focuses on the suitability of the oral soft palatal site as a new route for drug delivery systems. EXPERT OPINION The novelistic oral soft palatal platform is a promising mucoadhesive site for delivering active pharmaceuticals, both systemically and locally, and it can also serve as a smart route for the targeting of drugs to the brain.
Collapse
|
28
|
Shaji J, Patole V. Protein and Peptide drug delivery: oral approaches. Indian J Pharm Sci 2011; 70:269-77. [PMID: 20046732 PMCID: PMC2792531 DOI: 10.4103/0250-474x.42967] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/18/2008] [Accepted: 05/05/2008] [Indexed: 11/16/2022] Open
Abstract
Till recent, injections remained the most common means for administering therapeutic proteins and peptides because of their poor oral bioavailability. However, oral route would be preferred to any other route because of its high levels of patient acceptance and long term compliance, which increases the therapeutic value of the drug. Designing and formulating a polypeptide drug delivery through the gastro intestinal tract has been a persistent challenge because of their unfavorable physicochemical properties, which includes enzymatic degradation, poor membrane permeability and large molecular size. The main challenge is to improve the oral bioavailability from less than 1% to at least 30-50%. Consequently, efforts have intensified over the past few decades, where every oral dosage form used for the conventional small molecule drugs has been used to explore oral protein and peptide delivery. Various strategies currently under investigation include chemical modification, formulation vehicles and use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers. This review summarizes different pharmaceutical approaches which overcome various physiological barriers that help to improve oral bioavailability that ultimately achieve formulation goals for oral delivery.
Collapse
Affiliation(s)
- Jessy Shaji
- Department of Pharmaceutical Sciences, Prin. K. M. Kundnani College of Pharmacy, Cuffe Parade, Mumbai-400 005, India
| | | |
Collapse
|
29
|
Abstract
Many strategies have been proposed to explore the possibility of exploiting gastroretention for drug delivery. Such systems would be useful for local delivery, for drugs that are poorly soluble at higher pH or primarily absorbed from the proximal small intestine. Generally, the requirements of such strategies are that the vehicle maintains controlled drug release and exhibits prolonged residence time in the stomach. Despite widespread reporting of technologies, many have an inherent drawback of variability in transit times. Microparticulate systems, capable of distributing widely through the gastrointestinal tract, can potentially minimise this variation. While being retained in the stomach, the drug content is released slowly at a desired rate, resulting in reduced fluctuations in drug levels. This review summarises the promising role of microencapsulation in this field, exploring both floating and mucoadhesive microparticles and their application in the treatment of Helicobacter pylori, highlighting the clinical potential of eradication of this widespread infection.
Collapse
Affiliation(s)
- Adeola Adebisi
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | | |
Collapse
|
30
|
Davidovich-Pinhas M, Bianco-Peled H. Physical and structural characteristics of acrylated poly(ethylene glycol)-alginate conjugates. Acta Biomater 2011; 7:2817-25. [PMID: 21515425 DOI: 10.1016/j.actbio.2011.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/08/2011] [Accepted: 04/01/2011] [Indexed: 11/28/2022]
Abstract
Transmucosal delivery of therapeutic agents is a non-invasive approach that utilizes human entry paths such as the nasal, buccal, rectal and vaginal routes. Mucoadhesive polymers have the ability to adhere to the mucus layer covering those surfaces and by that promote drug release, targeting and absorption. We have recently demonstrated that acrylated polymers display enhanced mucoadhesive properties due to their ability to covalently attach to mucus type glycoproteins. We have synthesized an acrylated poly(ethylene glycol)-alginate conjugate (alginate-PEGAc), a molecule which combines the gelation ability of alginate with the mucoadhesion properties arising from both the characteristics of poly(ethylene glycol) and the acrylate functionality. In the current investigation we introduce an in-depth characterization of the thermal, mechanical and structural properties of alginate-PEGAc aimed at gaining a better knowledge of its structure-function relations. The thermal stability, evaluated by thermal gravimetric analysis and differential scanning calorimetry, was compared with that of alginate and the intermediate product thiolated alginate. Dehydration at temperatures up to 200 °C was detected for all samples, followed by distinctive decomposition steps arising from the decomposition of the polymer backbone and side-chains. The nanostructure of the solutions and gels was evaluated from small angle X-ray scattering patterns, to which the "broken rod linked by flexible chain" model was fitted, and from rheology measurements. The maxima arising from electrostatic repulsion between the highly charged alginate chains was diminished for both modified alginate samples, suggesting that modification led to electrostatic screening. Alginate, thiolated alginate and alginate-PEGAc cross-linked with calcium ions demonstrated similar scattering patterns. However, different scattering intensities, gel strengths, and gelation kinetics were observed, suggesting a decrease in the cross-linking density in the order alginate>thiolated alginate>alginate-PEGAc. These results were attributed to the increased size of the grafted side groups, which interfere with the gelation process. Examining the effect of the method of alginate-PEGAc gelation (physical or chemical) has shown that additional UV irradiation of calcium cross-linked gels did not cause a significant change in the network structure and strength. It seems that the concentration of the acrylated end group is not high enough to create a chemically cross-linked network.
Collapse
|
31
|
das Neves J, Bahia MF, Amiji MM, Sarmento B. Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv 2011; 8:1085-104. [DOI: 10.1517/17425247.2011.586334] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Palatal mucosa as a route for systemic drug delivery: A review. J Control Release 2011; 151:2-9. [DOI: 10.1016/j.jconrel.2010.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/19/2010] [Indexed: 11/22/2022]
|
33
|
Mugabe C, Matsui Y, So AI, Gleave ME, Heller M, Zeisser-Labouèbe M, Heller L, Chafeeva I, Brooks DE, Burt HM. In Vitro and In Vivo Evaluation of Intravesical Docetaxel Loaded Hydrophobically Derivatized Hyperbranched Polyglycerols in an Orthotopic Model of Bladder Cancer. Biomacromolecules 2011; 12:949-60. [DOI: 10.1021/bm101316q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Alan I. So
- The Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Markus Heller
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | | | - Lindsay Heller
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
34
|
Sajeesh S, Sharma CP. Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)-chitosan for oral drug delivery. Drug Deliv 2010; 18:227-35. [DOI: 10.3109/10717544.2010.528067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
35
|
Akande J, Yeboah KG, Addo RT, Siddig A, Oettinger CW, D'Souza MJ. Targeted delivery of antigens to the gut-associated lymphoid tissues: 2.Ex vivoevaluation of lectin-labelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer's patches. J Microencapsul 2010; 27:325-36. [DOI: 10.3109/02652040903191834] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Madhav NS, Shakya AK, Shakya P, Singh K. Orotransmucosal drug delivery systems: A review. J Control Release 2009; 140:2-11. [DOI: 10.1016/j.jconrel.2009.07.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/27/2009] [Indexed: 11/28/2022]
|
37
|
Laulicht B, Cheifetz P, Tripathi A, Mathiowitz E. Are in vivo gastric bioadhesive forces accurately reflected by in vitro experiments? J Control Release 2009; 134:103-10. [DOI: 10.1016/j.jconrel.2008.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/16/2008] [Accepted: 11/02/2008] [Indexed: 11/27/2022]
|
38
|
Yin L, Ding J, Fei L, He M, Cui F, Tang C, Yin C. Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharm 2008; 350:220-9. [DOI: 10.1016/j.ijpharm.2007.08.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 08/27/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
|
39
|
Schmitz T, Grabovac V, Palmberger TF, Hoffer MH, Bernkop-Schnürch A. Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate. Int J Pharm 2008; 347:79-85. [PMID: 17681439 DOI: 10.1016/j.ijpharm.2007.06.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to synthesize and characterize a novel thiolated polymer by covalent attachment of N-acetyl cysteine to chitosan. The obtained conjugate was characterized in vitro by quantification of immobilized thiol groups and their pH dependent oxidation, swelling behaviour in artificial intestinal fluid at pH 6.8, rheological properties and evaluation of its mucoadhesive properties on freshly excised porcine mucosa. The chitosan-N-acetyl cysteine conjugate was synthesized via a carbodiimide mediated coupling reaction displaying up to 325.5+/-41.8 micromol of immobilized thiol groups per gram polymer. 79% of the total amount of thiol groups was oxidized to disulfide groups during the coupling reaction. Adhesion studies on the mucosa indicate that the resulting polymer shows a 50-fold longer residence time on the mucosa and 8.3-fold higher total work of adhesion necessary to detach a flat-faced polymeric tablet from the mucosa in comparison to unmodified chitosan. Swelling properties at pH 6.8 were rather limited displaying only 5% of increment in weight after 2h of experiment. Within 1h the viscosity of an aqueous chitosan-N-acetyl cysteine conjugate mixture at 37 degrees C, pH 5.0 decreased by 35% after addition of hen white egg lysozyme demonstrating its biodegradability. Because of these features chitosan-N-acetyl cysteine seems to represent a promising novel tool, which might be useful in particular for the development of mucoadhesive and biodegradable formulations.
Collapse
Affiliation(s)
- Thierry Schmitz
- Department of Pharmaceutical Technology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Tyagi P, Tyagi S, Kaufman J, Huang L, de Miguel F. Local drug delivery to bladder using technology innovations. Urol Clin North Am 2006; 33:519-30, x. [PMID: 17011388 DOI: 10.1016/j.ucl.2006.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Local delivery of drugs directly into the bladder by way of a urethral catheter is a clever approach to optimize drug delivery to the disease site while reducing systemic bioavailability. Pharmacotherapy by this route is referred to as intravesical delivery. In recent years, intravesical delivery has been used in combination with and oral regimen of drugs or as second-line treatment for neurogenic bladder and detrusor overactivity. Negligible absorption of instilled drugs into the systemic circulation explains the near-minimal adverse toxicity reported with this form of therapy. The authors discuss shortcomings of the current options available for intravesical delivery and provide a broad overview of the latest advances through technology innovation to overcome these drawbacks.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Kaufmann Medical Building, Suite 700, 3471 Fifth Avenue, Pittsburgh, PA 15213-3221, USA.
| | | | | | | | | |
Collapse
|
42
|
Tyagi P, Wu PC, Chancellor M, Yoshimura N, Huang L. Recent advances in intravesical drug/gene delivery. Mol Pharm 2006; 3:369-79. [PMID: 16889430 PMCID: PMC2504416 DOI: 10.1021/mp060001j] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Targeting of drugs administered systemically relies on the higher affinity of ligands for specific receptors to obtain selectivity in drug response. However, achieving the same goal inside the bladder is much easier with an intelligent pharmaceutical approach that restricts drug effects by exploiting the pelvic anatomical architecture of the human body. This regional therapy involves placement of drugs directly into the bladder through a urethral catheter. It is obvious that drug administration by this route holds advantage in chemotherapy of superficial bladder cancer, and it has now become the most widely used treatment modality for this ailment. In recent years, the intravesical route has also been exploited either as an adjunct to an oral regimen or as a second-line treatment for neurogenic bladder. (Lamm, D. L.; Griffith, J. G. Semin. Urol. 1992, 10, 39-44. Igawa, Y.; Satoh, T.; Mizusawa, H.; Seki, S.; Kato, H.; Ishizuka, O.; Nishizawa, O. BJU Int. 2003, 91, 637-641.) Instillation of DNA via this route using different vectors has been able to restrict the transgene expression in organs other than bladder. The present review article will discuss the shortcomings of the current options available for intravesical drug delivery (IDD) and lay a perspective for future developments in this field.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, at Chapel Hill
| | - Pao-Chu Wu
- School of Pharmacy, University of North Carolina at Chapel Hill
| | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, at Chapel Hill
| | - Leaf Huang
- School of Pharmacy, University of North Carolina at Chapel Hill
| |
Collapse
|
43
|
des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006; 116:1-27. [PMID: 17050027 DOI: 10.1016/j.jconrel.2006.08.013] [Citation(s) in RCA: 813] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/08/2006] [Indexed: 12/15/2022]
Abstract
Peptides and proteins remain poorly bioavailable upon oral administration. One of the most promising strategies to improve their oral delivery relies on their association with colloidal carriers, e.g. polymeric nanoparticles, stable in gastrointestinal tract, protective for encapsulated substances and able to modulate physicochemical characteristics, drug release and biological behavior. The mechanisms of transport of these nanoparticles across intestinal mucosa are reviewed. In particular, the influence of size and surface properties on their non-specific uptake or their targeted uptake by enterocytes and/or M cells is discussed. Enhancement of their uptake by appropriate cells, i.e. M cells by (i) modeling surface properties to optimize access to and transport by M cells (ii) identifying surface markers specific to human M cell allowing targeting to M cells and nanoparticles transcytosis is illustrated. Encouraging results upon in vivo testing are reported but low bioavailability and lack of control on absorbed dose slow down products development. Vaccines are certainly the most promising applications for orally delivered nanoparticles.
Collapse
Affiliation(s)
- Anne des Rieux
- Université Catholique de Louvain, Unité de Pharmacie Galénique, Avenue E. Mounier, 73-20, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
44
|
Venkatesh S, Byrne ME, Peppas NA, Hilt JZ. Applications of biomimetic systems in drug delivery. Expert Opin Drug Deliv 2005; 2:1085-96. [PMID: 16296811 DOI: 10.1517/17425247.2.6.1085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review article highlights recent activities in the field of biomimetic systems and their application in controlled drug delivery. A definition and overview of biomimetic processes is given, with a focus on synthesis and assembly for the creation of novel biomaterials. In particular, systems are classified on the basis of three subsets, which include biological, biohybrid and synthetic structures. Examples focus on the current and proposed clinical significance for systems that mimic processes where the underlying molecular principles are well understood. Biomimetic materials and systems are presented as exceptional candidates for various controlled drug delivery applications and have enormous potential in medicine for the treatment of disease.
Collapse
Affiliation(s)
- Siddarth Venkatesh
- Biomedical Devices and Drug Delivery Laboratories, Department of Chemical Engineering, Auburn University, Auburn, AL 36849-5127, USA
| | | | | | | |
Collapse
|
45
|
Accili D, Menghi G, Bonacucina G, Martino PD, Palmieri GF. Mucoadhesion dependence of pharmaceutical polymers on mucosa characteristics. Eur J Pharm Sci 2005; 22:225-34. [PMID: 15196578 DOI: 10.1016/j.ejps.2003.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 10/02/2003] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
Well known mucoadhesive polymers such as Carbopol 974P and Pharmacoat 606 and three different mucosas (sublingual, oesophageal and duodenal bovine) were used to verify how the mucoadhesive properties of materials may depend on the mucosa characteristics and if a polymer may reveal more mucoadhesive than another and vice versa by changing the type of interacting mucosa. So, tablets of Carbopol 974P and Pharmacoat 606 were prepared and their mucoadhesion on the three mucosas was set in terms of maximum load and work of detachment, using a texture analyzer. At the same time, mucosas were characterized by immunohistochemical techniques and lectin histochemistry. Results obtained from the Tensile test analyses show that the adhesive power of the two polymers is different in the three mucosas. Particularly, in the sublingual mucosa, Carbopol was more mucoadhesive than Pharmacoat. On the contrary, Pharmacoat was more mucoadhesive than Carbopol in duodenal mucosa. The significantly different behavior of polymers was correlated with the desquamation layer thickness and the differential sialic acid and fucose exposition in the targeted mucosas.
Collapse
Affiliation(s)
- Daniela Accili
- Department of Comparative Morphology and Biochemistry, University of Camerino, Via Gentile III da Varano, I-62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|
46
|
Abstract
Mucoadhesion is a topic of current interest in the design of drug delivery systems. Mucoadhesive micro-spheres exhibit a prolonged residence time at the site of application or absorption and facilitate an intimate contact with the underlying absorption surface and thus contribute to improved and/or better therapeutic performance of drugs. In recent years such mucoadhesive microspheres have been developed for oral, buccal, nasal, ocular, rectal and vaginal routes for either systemic or local effects. The objective of this article is review the principles underlying the development and evaluation of mucoadhesive microspheres and the research work carried out on these systems.
Collapse
|
47
|
Zhang N, Ping QN, Huang GH, Xu WF. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm 2005; 294:247-59. [PMID: 15814248 DOI: 10.1016/j.ijpharm.2005.01.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 01/10/2005] [Accepted: 01/17/2005] [Indexed: 01/03/2023]
Abstract
The aim of this study was to design and characterize lectin-modified liposomes containing insulin and to evaluate the potential of these modified colloidal carriers for oral administration of peptide and protein drugs. Wheat germ agglutinin (WGA), tomato lectin (TL), or Ulex europaeus agglutinin 1 (UEA1) were conjugated by coupling their amino groups to carbodiimide-activated carboxylic groups of N-glutaryl-phosphatidylethanolamine (N-glut-PE). Insulin liposomes dispersions were prepared by the reverse-phase evaporation technique and modified with the lectin-N-glut-PE conjugates. Lectin-modified liposomes were characterized according to particles size, zeta potential and entrapment efficiency. The hypoglycemic effect indicated by pharmacological bioavailability of insulin liposomes modified with WGA, TL and UEA1 were 21.40, 16.71 and 8.38% in diabetic mice as comparison with abdominal cavity injection of insulin, respectively. After oral administration of the insulin liposomes modified with WGA, TL and UEA1 to rats, the relative pharmacological bioavailabilities were 8.47, 7.29 and 4.85%, the relative bioavailability were 9.12, 7.89 and 5.37% in comparison with subcutaneous injection of insulin, respectively. In the two cases, no remarkable hypoglycemic effects were observed with the conventional insulin liposomes. These results confirmed that lectin-modified liposomes promote the oral absorption of insulin due to the specific-site combination on GI cell membrane.
Collapse
Affiliation(s)
- Na Zhang
- The Pharmaceutical College, Shandong University, 44 Wen Hua Xi Lu, Ji'nan, Shandong Province, China
| | | | | | | |
Collapse
|
48
|
Salamat-Miller N, Johnston TP. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int J Pharm 2005; 294:201-16. [PMID: 15814245 DOI: 10.1016/j.ijpharm.2005.01.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/12/2005] [Accepted: 01/27/2005] [Indexed: 11/26/2022]
Abstract
The intent of this paper is to update the reader on various strategies which have been utilized to increase the paracellular permeability of protein and polypeptide drugs across the intestinal epithelium. Structural features of protein and polypeptide drugs, together with the natural anatomical and physiological features of the gastrointestinal (GI) tract, have made oral delivery of this class of compounds extremely challenging. Interest in the paracellular route for the transport of therapeutic proteins and polypeptides following oral administration has recently intensified and continues to be explored. The assumption that molecules with a large molecular weight are not able to diffuse through the tight junctions of the intestinal membrane has been challenged by current research, along with an increased understanding of tight junction physiology.
Collapse
Affiliation(s)
- Nazila Salamat-Miller
- Division of Pharmaceutical Sciences, Room 211A, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | |
Collapse
|
49
|
Daugherty AL, Mrsny RJ. Emerging technologies that overcome biological barriers for therapeutic protein delivery. Expert Opin Biol Ther 2004; 3:1071-81. [PMID: 14519072 DOI: 10.1517/14712598.3.7.1071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the past decade, genomic research and the nascent field of proteomics have exponentially increased the number of potential protein therapeutic molecules for treating medical needs that were previously unmet. To realise the full clinical potential of many of the novel protein drug entities arising from these intense research efforts, emerging protein delivery technologies may be required. Advanced delivery technologies may offer the ability to overcome biochemical and anatomical barriers to protein drug transport, without incurring adverse events, to deliver the agent(s) at a certain desired rate and duration, to protect therapeutic macromolecules from in situ or systemic degradation, as well as increase their therapeutic index by targeting the drug action to a specific site. This review will cover a myriad of novel and emerging technologies that are directed at bypassing biological barriers and that have shown promise in advancing the therapeutic potential of protein drugs.
Collapse
Affiliation(s)
- Ann L Daugherty
- Department of Pharmaceutical Research and Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|
50
|
Varma M, Singla AK, Dhawan S. Release of Diltiazem Hydrochloride from Hydrophilic Matrices of Polyethylene Oxide and Carbopol. Drug Dev Ind Pharm 2004; 30:545-53. [PMID: 15244090 DOI: 10.1081/ddc-120037485] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mucoadhesion, swelling, and drug release behavior of polyethylene oxide (PEO) and carbopol (CP) matrices were studied using a water soluble model drug diltiazem hydrochloride. The mucoadhesive strength of the matrices increased with increase in polymer content. The results showed that PEO was more mucoadhesive than CP. Mucoadhesion of the tablets was dependent upon the swelling. Swelling was ascertained by measuring the axial and radial expansion of matrix tablets following exposure to media of physiological ionic strength. There was a marked increase in the swelling index of matrices containing high polymer content of PEO as compared to CP. Drug release kinetics were found to be closely related to dissolution and swelling properties of the matrices. The release was found to be non-Fickian with n (release exponent) values ranging from 0.45-0.58. At a constant polymer content (15.84% w/w), the main contributing factor for the mucoadhesion, swelling, and release was the amount of PEO.
Collapse
Affiliation(s)
- M Varma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | | |
Collapse
|