1
|
Saikh KU, Anam K, Sultana H, Ahmed R, Kumar S, Srinivasan S, Ahmed H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int J Mol Sci 2024; 25:8421. [PMID: 39125989 PMCID: PMC11313481 DOI: 10.3390/ijms25158421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called "cytokine storm". These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kamal U. Saikh
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| | | | | | | | | | | | - Hafiz Ahmed
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| |
Collapse
|
2
|
Zhao J, Sun Y, Sui P, Pan H, Shi Y, Chen J, Zhang H, Wang X, Tao R, Liu M, Sun D, Zheng J. DNA Vaccine Co-Expressing Hemagglutinin and IFN-γ Provides Partial Protection to Ferrets against Lethal Challenge with Canine Distemper Virus. Viruses 2023; 15:1873. [PMID: 37766279 PMCID: PMC10537869 DOI: 10.3390/v15091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Canine distemper (CD), caused by canine distemper virus (CDV), is a highly contagious and lethal disease in domestic and wild carnivores. Although CDV live-attenuated vaccines have reduced the incidence of CD worldwide, low levels of protection are achieved in the presence of maternal antibodies in juvenile animals. Moreover, live-attenuated CDV vaccines may retain residual virulence in highly susceptible species and cause disease. Here, we generated several CDV DNA vaccine candidates based on the biscistronic vector (pIRES) co-expressing virus wild-type or codon-optimized hemagglutinin (H) and nucleocapsid (N) or ferret interferon (IFN)-γ, as a molecular adjuvant, respectively. Apparently, ferret (Mustela putorius furo)-specific codon optimization increased the expression of CDV H and N proteins. A ferret model of CDV was used to evaluate the protective immune response of the DNA vaccines. The results of the vaccinated ferrets showed that the DNA vaccine co-expressing the genes of codon-optimized H and ferret IFN-γ (poptiH-IRES-IFN) elicited the highest anti-CDV serum-neutralizing antibodies titer (1:14) and cytokine responses (upregulated TNF-α, IL-4, IL-2, and IFN-γ expression) after the third immunization. Following vaccination, the animals were challenged with a lethal CDV 5804Pe/H strain with a dose of 105.0 TCID50. Protective immune responses induced by the DNA vaccine alleviated clinical symptoms and pathological changes in CDV-infected ferrets. However, it cannot completely prevent virus replication and viremia in vivo as well as virus shedding due to the limited neutralizing antibody level, which eventually contributed to a survival rate of 75% (3/4) against CDV infection. Therefore, the improved strategies for the present DNA vaccines should be taken into consideration to develop more protective immunity, which includes increasing antigen expression or alternative delivery routes, such as gene gun injection.
Collapse
Affiliation(s)
- Jianjun Zhao
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China (D.S.)
| | - Yiyang Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China (D.S.)
| | - Ping Sui
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China (D.S.)
| | - Hongjun Pan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun 130112, China (J.C.)
| | - Yijun Shi
- Yantai Animal Disease Control Center of Shandong Province, Yantai 264000, China
| | - Jie Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun 130112, China (J.C.)
| | - Hailing Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), Changchun 130112, China (J.C.)
| | - Xiaolong Wang
- Agricultural Bureau of Shanyang Country, Shangluo 726400, China
| | - Rongshan Tao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Mengjia Liu
- Jinan Customs in Shandong Province of the P.R. of China, Jinan 250000, China
| | - Dongbo Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China (D.S.)
| | - Jiasan Zheng
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China (D.S.)
| |
Collapse
|
3
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
4
|
Verma G, Dhawan M, Saied AA, Kaur G, Kumar R, Emran TB. Immunomodulatory approaches in managing lung inflammation in COVID-19: A double-edge sword. Immun Inflamm Dis 2023; 11:e1020. [PMID: 37773723 PMCID: PMC10521379 DOI: 10.1002/iid3.1020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/19/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION The novel coronavirus infectious disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a gigantic problem. The lung is the major target organ of SARS-CoV-2 and some of its variants like Delta and Omicron variant adapted in such a way that these variants can significantly damage this vital organ of the body. These variants raised a few eyebrows as the outbreaks have been seen in the vaccinated population. Patients develop severe respiratory illnesses which eventually prove fatal unless treated early. MAIN BODY Studies have shown that SARS-CoV-2 causes the release of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α which are mediators of lung inflammation, lung damage, fever, and fibrosis. Additionally, various chemokines have been found to play an important role in the disease progression. A plethora of pro-inflammatory cytokines "cytokine storm" has been observed in severe cases of SARS-CoV-2 infection leading to acute respiratory distress syndrome (ARDS) and pneumonia that may prove fatal. To counteract cytokine storm-inducing lung inflammation, several promising immunomodulatory approaches are being investigated in numerous clinical trials. However, the benefits of using these strategies should outweigh the risks involved as the use of certain immunosuppressive approaches might lead the host susceptible to secondary bacterial infections. CONCLUSION The present review discusses promising immunomodulatory approaches to manage lung inflammation in COVID-19 cases which may serve as potential therapeutic options in the future and may prove lifesaving.
Collapse
Affiliation(s)
- Geetika Verma
- Department of Experimental Medicine and BiotechnologyPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Manish Dhawan
- Department of MicrobiologyPunjab Agricultural UniversityLudhianaIndia
- Trafford CollegeAltrinchamUK
| | | | - Geetika Kaur
- Department of Opthalmology, Visual and Anatomical SciencesWayne State University School of MedicineDetroitMichiganUSA
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer CenterBrown UniversityProvidenceRhode IslandUnited States
| |
Collapse
|
5
|
Khan A, Nawaz M, Ullah S, Rehman IU, Khan A, Saleem S, Zaman N, Shinwari ZK, Ali M, Wei DQ. Core amino acid substitutions in HCV-3a isolates from Pakistan and opportunities for multi-epitopic vaccines. J Biomol Struct Dyn 2022; 40:3753-3768. [PMID: 33246391 DOI: 10.1080/07391102.2020.1850353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV), which infected 71 million worldwide and about 5%-6% are from Pakistan, is an ssRNA virus, responsible for end-stage liver disease. To date, no effective therapy is available to cure this disease. Hence, it is important to study the most prevalent genotypes infecting human population and design novel vaccine or small molecule inhibitors to control the infections associated with HCV. Therefore, in this study clinical samples (n = 35; HCV-3a) from HCV patients were subjected to Sanger sequencing method. The sequencing of the core gene, which is generally considered as conserved, involved in the detection, quantitation and genotyping of HCV was performed. Multiple mutations, that is, R46C, R70Q, L91C, G60E, N/S105A, P108A, N110I, S116V, G90S, A77G and G145R that could be linked with response to antiviral therapies were detected. Phylogenetic analysis suggests emerging viral isolates are circulating in Pakistan. Using ab initio modelling technique, we predicted the 3D structure of core protein and subjected to molecular dynamics simulation to extract the most stable conformation of the structure for further analysis. Immunoinformatic approaches were used to propose a multi-epitopes vaccine against HCV by using core protein. The vaccine constructs consist of nine CTL and three HTL epitopes joined by different linkers were docked against the two reported Toll-like receptors (TLR-3 and TLR-8). Docking of vaccine construct with TLR-3 and TLR-8 shows proper binding and in silico expression of the vaccine resulted in a CAI value of 0.93. These analyses suggest that specific immune responses may be produced by the proposed vaccine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Mehboob Nawaz
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Saeed Ullah
- Saidu Group of Teaching Hospital, Swat, Pakistan
| | - Irshad Ur Rehman
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Shoaib Saleem
- National Center for Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Nasib Zaman
- Center of Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,Peng Cheng Laboratory, Shenzhen, Guangdong, P.R China
| |
Collapse
|
6
|
Saikh KU. MyD88 and beyond: a perspective on MyD88-targeted therapeutic approach for modulation of host immunity. Immunol Res 2021; 69:117-128. [PMID: 33834387 PMCID: PMC8031343 DOI: 10.1007/s12026-021-09188-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
The continuous emergence of infectious pathogens along with antimicrobial resistance creates a need for an alternative approach to treat infectious diseases. Targeting host factor(s) which are critically involved in immune signaling pathways for modulation of host immunity offers to treat a broad range of infectious diseases. Upon pathogen-associated ligands binding to the Toll-like/ IL-1R family, and other cellular receptors, followed by recruitment of intracellular signaling adaptor proteins, primarily MyD88, trigger the innate immune responses. But activation of host innate immunity strongly depends on the correct function of MyD88 which is tightly regulated. Dysregulation of MyD88 may cause an imbalance that culminates to a wide range of inflammation-associated syndromes and diseases. Furthermore, recent reports also describe that MyD88 upregulation with many viral infections is linked to decreased antiviral type I IFN response, and MyD88-deficient mice showed an increase in survivability. These reports suggest that MyD88 is also negatively involved via MyD88-independent pathways of immune signaling for antiviral type I IFN response. Because of its expanding role in controlling host immune signaling pathways, MyD88 has been recognized as a potential drug target in a broader drug discovery paradigm. Targeting BB-loop of MyD88, small molecule inhibitors were designed by structure-based approach which by blocking TIR-TIR domain homo-dimerization have shown promising therapeutic efficacy in attenuating MyD88-mediated inflammatory impact, and increased antiviral type I IFN response in experimental mouse model of diseases. In this review, we highlight the reports on MyD88-linked immune response and MyD88-targeted therapeutic approach with underlying mechanisms for controlling inflammation and antiviral type I IFN response. HIGHLIGHTS: • Host innate immunity is activated upon PAMPs binding to PRRs followed by immune signaling through TIR domain-containing adaptor proteins mainly MyD88. • Structure-based approach led to develop small-molecule inhibitors which block TIR domain homodimerization of MyD88 and showed therapeutic efficacy in limiting severe inflammation-associated impact in mice. • Therapeutic intervention of MyD88 also showed an increase in antiviral effect with strong type I IFN signaling linked to increased phosphorylation of IRFs via MyD88-independent pathway. • MyD88 inhibitors might be potentially useful as a small-molecule therapeutics for modulation of host immunity against inflammatory diseases and antiviral therapy. • However, prior clinical use of more in-depth efforts should be focused for suitability of the approach in deploying to complex diseases including COPD and COVID-19 in limiting inflammation-associated syndrome to infection.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacterial Immunology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| |
Collapse
|
7
|
|
8
|
Khan S, Khan A, Rehman AU, Ahmad I, Ullah S, Khan AA, Ali SS, Afridi SG, Wei DQ. Immunoinformatics and structural vaccinology driven prediction of multi-epitope vaccine against Mayaro virus and validation through in-silico expression. INFECTION GENETICS AND EVOLUTION 2019; 73:390-400. [PMID: 31173935 DOI: 10.1016/j.meegid.2019.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
The Mayaro virus (MAYV) belongs to genus "Alphavirus" and family "Togaviridae". MAYV has distribution in the Amazonia, Central and Northeastern regions of Brazil. The abundance of mosquito vector Haemagogus janthinomys has major role in the outbreaks of arthralgia disease in Brazil. Vaccination or immunization is an alternative approach for the protection against this disease. To search the effective candidate for vaccine against Mayaro virus, various immunoinformatics tools were used to predict both the B and T cell epitopes from five structural polyproteins (capsid, E2, 6K, E3and E1). A multi subunit vaccine was designed and the final sequence was modeled for docking with TLR-3. Human b defensin based on previous studies was used as linker. The docked complexes of vaccine-TLR-3 were then subjected to dynamics stability and RMSD and RMSF results suggested that the complexes are stable. Further, to validate our final vaccine construct, in silico cloning was carried out using E. coli as host. The CAI value of 0.96 suggests that the vaccine construct properly expresses in the host. The current findings will be useful for the future experimental validations to ratify the immunogenicity and safety of the supposed structure of vaccine, and ultimately to treat the Mayaro virus, associated infections.
Collapse
Affiliation(s)
- Shahzeb Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Ashfaq Ur Rehman
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Irfan Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Saif Ullah
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Aziz Khan
- Laboratory of Animal and Human Physiology, Department of Animal Sciences, Quiad-i-Azam University, 45320 Islamabad, Pakistan.
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan.
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
9
|
Martinez-Gil L, Goff PH, Tan GS. The Role of Self-Assembling Lipid Molecules in Vaccination. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2018. [PMCID: PMC7147077 DOI: 10.1016/bs.abl.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The advent of vaccines represents one of the most significant advances in medical history. The protection provided by vaccines has greatly contributed in reducing the number of cases of infections and most notably to the eradication of small pox. A large number of new technologies and approaches in vaccine development are currently being investigated with the goal of providing the basis for the next generation of prophylactics against an ever-expanding list of emerging and reemerging pathogens. In this chapter, we will focus on the role of lipids and lipid self-assembling vesicles in new and promising vaccination approaches. We will start by describing how lipids can induce activation of the innate immune system and focus on some lipid-derived vaccine adjuvants. Next, we will review current lipid-based self-assembling particles used as vaccine platforms, specifically liposomes and virus-like particles, and how virus-like particles have facilitated research of highly pathogenic viruses such as Ebola.
Collapse
|
10
|
Abstract
An important role of the immune system is in the surveillance for abnormal or transformed cells, which is known as cancer immunosurveillance. Through this process, the first changes to normal tissue homeostasis caused by infectious or other inflammatory insults can be detected by the immune system through the recognition of antigenic molecules (including tumour antigens) expressed by abnormal cells. However, as they develop, tumour cells can acquire antigenic and other changes that allow them to escape elimination by the immune system. To bias this process towards elimination, immunosurveillance can be improved by the administration of vaccines based on tumour antigens. Therapeutic cancer vaccines have been extensively tested in patients with advanced cancer but have had little clinical success, which has been attributed to the immunosuppressive tumour microenvironment. Thus, the administration of preventive vaccines at pre-malignant stages of the disease holds promise, as they function before tumour-associated immune suppression is established. Accordingly, immunological and clinical studies are yielding impressive results.
Collapse
|
11
|
Gilli F, Royce DB, DiSano KD, Pachner AR. Pegylated interferon beta in the treatment of the Theiler's murine encephalomyelitis virus mouse model of multiple sclerosis. J Neuroimmunol 2017; 313:34-40. [DOI: 10.1016/j.jneuroim.2017.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/19/2023]
|
12
|
Morowvat MH, Babaeipour V, Rajabi Memari H, Vahidi H. Optimization of Fermentation Conditions for Recombinant Human Interferon Beta Production by Escherichia coli Using the Response Surface Methodology. Jundishapur J Microbiol 2015; 8:e16236. [PMID: 26034535 PMCID: PMC4449858 DOI: 10.5812/jjm.8(4)2015.16236] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 07/20/2014] [Accepted: 08/06/2014] [Indexed: 02/03/2023] Open
Abstract
Background: The periplasmic overexpression of recombinant human interferon beta (rhIFN-β)-1b using a synthetic gene in Escherichia coli BL21 (DE3) was optimized in shake flasks using Response Surface Methodology (RSM) based on the Box-Behnken Design (BBD). Objectives: This study aimed to predict and develop the optimal fermentation conditions for periplasmic expression of rhIFN-β-1b in shake flasks whilst keeping the acetate excretion as the lowest amount and exploit the best results condition for rhIFN-β in a bench top bioreactor. Materials and Methods: The process variables studied were the concentration of glucose as carbon source, cell density prior the induction (OD 600 nm) and induction temperature. Ultimately, a three-factor three-level BBD was employed during the optimization process. The rhIFN-β production and the acetate excretion served as the evaluated responses. Results: The proposed optimum fermentation condition consisted of 7.81 g L-1 glucose, OD 600 nm prior induction 1.66 and induction temperature of 30.27°C. The model prediction of 0.267 g L-1 of rhIFN-β and 0.961 g L-1 of acetate at the optimum conditions was verified experimentally as 0.255 g L-1 and 0.981 g L-1 of acetate. This agreement between the predicted and observed values confirmed the precision of the applied method to predict the optimum conditions. Conclusions: It can be concluded that the RSM is an effective method for the optimization of recombinant protein expression using synthetic genes in E. coli.
Collapse
Affiliation(s)
- Mohammad Hossein Morowvat
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Valiollah Babaeipour
- Biochemical Engineering Group, Biotechnology Research Center, Malek-Ashtar University of Technology, Tehran, IR Iran
- Department of Bioscience Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, IR Iran
- Corresponding author: Valiollah Babaeipour, Department of Bioscience Engineering, Faculty of New Sciences and Technologies, University of Tehran, P. O. Box 14395-1374, Tehran, IR Iran. Tel/Fax: +98-2122974614, E-mail: .
| | - Hamid Rajabi Memari
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
13
|
Egli A, Santer DM, O'Shea D, Barakat K, Syedbasha M, Vollmer M, Baluch A, Bhat R, Groenendyk J, Joyce MA, Lisboa LF, Thomas BS, Battegay M, Khanna N, Mueller T, Tyrrell DLJ, Houghton M, Humar A, Kumar D. IL-28B is a key regulator of B- and T-cell vaccine responses against influenza. PLoS Pathog 2014; 10:e1004556. [PMID: 25503988 PMCID: PMC4263767 DOI: 10.1371/journal.ppat.1004556] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022] Open
Abstract
Influenza is a major cause of morbidity and mortality in immunosuppressed persons, and vaccination often confers insufficient protection. IL-28B, a member of the interferon (IFN)-λ family, has variable expression due to single nucleotide polymorphisms (SNPs). While type-I IFNs are well known to modulate adaptive immunity, the impact of IL-28B on B- and T-cell vaccine responses is unclear. Here we demonstrate that the presence of the IL-28B TG/GG genotype (rs8099917, minor-allele) was associated with increased seroconversion following influenza vaccination (OR 1.99 p = 0.038). Also, influenza A (H1N1)-stimulated T- and B-cells from minor-allele carriers showed increased IL-4 production (4-fold) and HLA-DR expression, respectively. In vitro, recombinant IL-28B increased Th1-cytokines (e.g. IFN-γ), and suppressed Th2-cytokines (e.g. IL-4, IL-5, and IL-13), H1N1-stimulated B-cell proliferation (reduced 70%), and IgG-production (reduced>70%). Since IL-28B inhibited B-cell responses, we designed antagonistic peptides to block the IL-28 receptor α-subunit (IL28RA). In vitro, these peptides significantly suppressed binding of IFN-λs to IL28RA, increased H1N1-stimulated B-cell activation and IgG-production in samples from healthy volunteers (2-fold) and from transplant patients previously unresponsive to vaccination (1.4-fold). Together, these findings identify IL-28B as a key regulator of the Th1/Th2 balance during influenza vaccination. Blockade of IL28RA offers a novel strategy to augment vaccine responses.
Collapse
Affiliation(s)
- Adrian Egli
- Infection Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna M. Santer
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Daire O'Shea
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Division of Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy, University of Alberta, Canada
| | | | - Madeleine Vollmer
- Infection Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Aliyah Baluch
- Division of Infectious Diseases, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Rakesh Bhat
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Jody Groenendyk
- Department of Biochemistry, School of Translational Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A. Joyce
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Luiz F. Lisboa
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Brad S. Thomas
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Manuel Battegay
- Infection Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Switzerland
| | - Nina Khanna
- Infection Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Switzerland
| | - Thomas Mueller
- Division of Nephrology, University Hospital of Zurich, Zurich, Switzerland
| | - D. Lorne J. Tyrrell
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Atul Humar
- Department of Medicine and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Deepali Kumar
- Department of Medicine and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Margine I, Martinez-Gil L, Chou YY, Krammer F. Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity. PLoS One 2012; 7:e51559. [PMID: 23236516 PMCID: PMC3517492 DOI: 10.1371/journal.pone.0051559] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/05/2012] [Indexed: 12/22/2022] Open
Abstract
Influenza virus-like particles are currently evaluated in clinical trials as vaccine candidates for influenza viruses. Most commonly they are produced in baculovirus- or mammalian- expression systems. Here we used different vaccination schemes in order to systematically compare virus-like particle preparations generated in the two systems. Our work shows significant differences in immunogenicity between the two, and indicates superior and broader immune responses induced by the baculovirus-derived constructs. We demonstrate that these differences critically influence protection and survival in a mouse model of influenza virus infection. Finally, we show that the enhanced immunogenicity of the baculovirus-derived virus-like particles is caused by contamination with residual baculovirus which activates the innate immune response at the site of inoculation.
Collapse
Affiliation(s)
- Irina Margine
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Graduate School of Biological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Luis Martinez-Gil
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yi-ying Chou
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Graduate School of Biological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Florian Krammer
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
The innate immune system is responsible for recognizing invading pathogens and initiating a protective response. In particular, the retinoic acid-inducible gene 1 protein (RIG-I) participates in the recognition of single- and double-stranded RNA viruses. RIG-I activation leads to the production of an appropriate cytokine and chemokine cocktail that stimulates an antiviral state and drives the adaptive immune system toward an efficient and specific response against the ongoing infection. One of the best-characterized natural RIG-I agonists is the defective interfering (DI) RNA produced by Sendai virus strain Cantell. This 546-nucleotide RNA is a well-known activator of the innate immune system and an extremely potent inducer of type I interferon. We designed an in vitro-transcribed RNA that retains the type I interferon stimulatory properties, and the RIG-I affinity of the Sendai virus produced DI RNA both in vitro and in vivo. This in vitro-synthesized RNA is capable of enhancing the production of anti-influenza virus hemagglutinin (HA)-specific IgG after intramuscular or intranasal coadministration with inactivated H1N1 2009 pandemic vaccine. Furthermore, our adjuvant is equally effective at increasing the efficiency of an influenza A/Puerto Rico/8/34 virus inactivated vaccine as a poly(I·C)- or a squalene-based adjuvant. Our in vitro-transcribed DI RNA represents an excellent tool for the study of RIG-I agonists as vaccine adjuvants and a starting point in the development of such a vaccine.
Collapse
|
16
|
Martínez-Gil L, Ayllon J, Ortigoza MB, García-Sastre A, Shaw ML, Palese P. Identification of small molecules with type I interferon inducing properties by high-throughput screening. PLoS One 2012; 7:e49049. [PMID: 23145065 PMCID: PMC3492183 DOI: 10.1371/journal.pone.0049049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/03/2012] [Indexed: 02/07/2023] Open
Abstract
The continuous emergence of virus that are resistant to current anti-viral drugs, combined with the introduction of new viral pathogens for which no therapeutics are available, creates an urgent need for the development of novel broad spectrum antivirals. Type I interferon (IFN) can, by modulating the cellular expression profile, stimulate a non-specific antiviral state. The antiviral and adjuvant properties of IFN have been extensively demonstrated; however, its clinical application has been so far limited. We have developed a human cell-based assay that monitors IFN-β production for use in a high throughput screen. Using this assay we screened 94,398 small molecules and identified 18 compounds with IFN-inducing properties. Among these, 3 small molecules (C3, E51 and L56) showed activity not only in human but also in murine and canine derived cells. We further characterized C3 and showed that this molecule is capable of stimulating an anti-viral state in human-derived lung epithelial cells. Furthermore, the IFN-induction by C3 is not diminished by the presence of influenza A virus NS1 protein or hepatitis C virus NS3/4A protease, which make this molecule an interesting candidate for the development of a new type of broad-spectrum antiviral. In addition, the IFN-inducing properties of C3 also suggest its potential use as vaccine adjuvant.
Collapse
Affiliation(s)
- Luis Martínez-Gil
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Juan Ayllon
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Mila Brum Ortigoza
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Institute of Global Health and Emerging Pathogens, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Megan L. Shaw
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Peter Palese
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Aricò E, Belardelli F. Interferon-α as antiviral and antitumor vaccine adjuvants: mechanisms of action and response signature. J Interferon Cytokine Res 2012; 32:235-47. [PMID: 22490303 DOI: 10.1089/jir.2011.0077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferon-α (IFN-α) are cytokines endowed with multiple biologic effects, including activities on cells of the immune system, which are important for inducing protective antiviral and antitumor responses. Studies in mouse models have been instrumental for understanding the immune adjuvant activity of these cytokines and some of their mechanisms of action. In particular, recent studies conducted on both mouse and human models suggest that IFN-α act as effective immune adjuvants for inducing antiviral and antitumor immunity and that the effects of IFN on the differentiation and activation of dendritic cells (DC) play an important role in the induction of protective responses. In spite of the long record of IFN-α clinical use, a few clinical trials have attempted to evaluate the efficacy of these cytokines used as vaccine adjuvants. Recently, studies on the IFN-α signature in cells from patients treated with IFN-α under different modalities and various clinical settings have provided important insights for understanding the in vivo mechanisms of the IFN immune adjuvant activity in humans and may contribute to the identification of molecular markers with a clinical response. These studies further support the interest of evaluating the clinical efficacy of IFN-α when used as a vaccine adjuvant and also suggest that the DC generated in vitro from monocytes in the presence of this cytokine can exhibit a special advantage for the development of effective therapeutic vaccination strategies in cancer patients.
Collapse
Affiliation(s)
- Eleonora Aricò
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
18
|
Bergman SJ, Ferguson MC, Santanello C. Interferons as therapeutic agents for infectious diseases. Infect Dis Clin North Am 2012; 25:819-34. [PMID: 22054758 PMCID: PMC7134994 DOI: 10.1016/j.idc.2011.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Scott J Bergman
- Department of Pharmacy Practice, Southern Illinois University Edwardsville (SIUE) School of Pharmacy, Edwardsville, IL 62026, USA.
| | | | | |
Collapse
|
19
|
Grekova SP, Aprahamian M, Daeffler L, Leuchs B, Angelova A, Giese T, Galabov A, Heller A, Giese NA, Rommelaere J, Raykov Z. Interferon γ improves the vaccination potential of oncolytic parvovirus H-1PV for the treatment of peritoneal carcinomatosis in pancreatic cancer. Cancer Biol Ther 2011; 12:888-95. [PMID: 22024742 DOI: 10.4161/cbt.12.10.17678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oncolytic viruses with their capacity to specifically replicate in and kill tumor cells emerged as a novel class of cancer therapeutics. Rat oncolytic parvovirus (H-1PV) was used to treat different types of cancer in preclinical settings and was lately successfully combined with standard gemcitabine chemotherapy in treating pancreatic ductal adenocarcinoma (PDAC) in rats. Our previous work showed that the immune system and particularly the release of interferon-gamma (IFNγ) seem to mediate the anticancer effect of H-1PV in that model. Therefore, we reasoned that the therapeutic properties of H-1PV can be boosted with IFNγ for the treatment of late incurable stages of PDAC like peritoneal carcinomatosis. Rats bearing established orthotopic pancreatic carcinomas with peritoneal metastases were treated with a single intratumoral (i.t.) or intraperitoneal (i.p.) injection of 5 x 10⁸ plaque forming units of H-1PV with or without concomitant IFNγ application. Intratumoral injection proved to be more effective than the intraperitoneal route in controlling the growth of both the primary pancreatic tumors and peritoneal carcinomatosis, accompanied by migration of virus from primary to metastatic deposits. Concomitant i.p. treatment of H-1PV with recIFNγ resulted in improved therapeutic effect yielding an extended animal survival, compared with i.p. treatment with H-1PV alone. IFNγ application enhanced the H-1PV-induced peritoneal macrophage and splenocyte responses against tumor cells while causing a significant reduction in the titers of H1-PV-neutralising antibodies in ascitic fluid. Thus, IFNγ co-application together with H-1PV might be considered as a novel therapeutic option to improve the survival of PDAC patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Svitlana P Grekova
- Applied Tumour Virology Programme, Divisions F00 and INSERM Unit 70, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kostetsky EY, Sanina NM, Mazeika AN, Tsybulsky AV, Vorobyeva NS, Shnyrov VL. Tubular immunostimulating complex based on cucumarioside A2-2 and monogalactosyldiacylglycerol from marine macrophytes. J Nanobiotechnology 2011; 9:35. [PMID: 21888630 PMCID: PMC3175152 DOI: 10.1186/1477-3155-9-35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/02/2011] [Indexed: 11/10/2022] Open
Abstract
Background There is an urgent need to develop safe and effective adjuvants for the new generation of subunit vaccines. We developed the tubular immunostimulating complex (TI-complex) as a new nanoparticulate antigen delivery system. The morphology and composition of TI-complexes principally differ from the known vesicular immunostimulating complexes (ISCOMs). However, methodology for the preparation of TI-complexes has suffered a number of shortcomings. The aim of the present work was to obtain an antigen carrier consisting of triterpene glycosides from Cucumaria japonica, cholesterol, and monogalactosyldiacylglycerol from marine macrophytes with reproducible properties and high adjuvant activity. Results The cucumarioside A2-2 - cholesterol - MGalDG ratio of 6:2:4 (by weight) was found to provide the most effective formation of TI-complexes and the minimum hemolytic activity in vitro. Tubules of TI-complexes have an outer diameter of about 16 nm, an inner diameter of 6 nm, and a length of 500 nm. A significant dilution by the buffer gradually destroyed the tubular nanoparticles. The TI-complex was able to increase the immunogenicity of the protein antigens from Yersinia pseudotuberculosis by three to four times. Conclusions We propose an optimized methodology for the preparation of homogeneous TI-complexes containing only tubular particles, which would achieve reproducible immunization results. We suggest that the elaborated TI-complexes apply as a universal delivery system for different subunit antigens within anti-infectious vaccines and enhance their economic efficacy and safety.
Collapse
Affiliation(s)
- Eduard Y Kostetsky
- Department of Biochemistry and Biotechnology, Far Eastern Federal University, 690650 Vladivostok, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Rizza P, Capone I, Moretti F, Proietti E, Belardelli F. IFN-α as a vaccine adjuvant: recent insights into the mechanisms and perspectives for its clinical use. Expert Rev Vaccines 2011; 10:487-98. [PMID: 21506646 DOI: 10.1586/erv.11.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The IFN-α family are pleiotropic cytokines with the longest record of clinical use. Over the last decade, new biological effects of IFN-α on immune cells, including dendritic cells, have been described, supporting the concept that these cytokines can act as effective vaccine adjuvants. Recently, an important advance in our understanding of the mechanisms of interferon adjuvant activity has been achieved. Some clinical studies have been performed to assess the adjuvant activity in individuals immunized with preventive vaccines, showing variable results depending on interferon/vaccine formulation and vaccinated subjects. In spite of many data in animal models, little information is available on the possible advantage of utilizing IFN-α as an adjuvant for cancer vaccines in humans. Further clinical trials specifically designed to explore vaccine adjuvant activity are needed in order to define the best conditions for using IFN-α or IFN-α-conditioned dendritic cells for the development of therapeutic vaccines.
Collapse
Affiliation(s)
- Paola Rizza
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|