1
|
Dhiman A, Rana D, Benival D, Garkhal K. Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies. Ther Deliv 2024:1-29. [PMID: 39445563 DOI: 10.1080/20415990.2024.2415281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
Collapse
Affiliation(s)
- Ashish Dhiman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| |
Collapse
|
2
|
de Weerd S, Ruiter EA, Calicchia E, Portale G, Schuringa JJ, Roos WH, Salvati A. Optimization of Cell Membrane Purification for the Preparation and Characterization of Cell Membrane Liposomes. SMALL METHODS 2024:e2400498. [PMID: 39431332 DOI: 10.1002/smtd.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Cell membrane nanoparticles have attracted increasing interest in nanomedicine because they allow to exploit the complexity of cell membrane interactions for drug delivery. Several methods are used to obtain plasma membrane to generate cell membrane nanoparticles. Here, an optimized method combining nitrogen cavitation in isotonic buffer and sucrose gradient fractionation is presented. The method allows to obtain cell membrane fractions of high purity from both suspension and adherent cells. Comparison with other common methods for membrane extraction, where mechanical lysis using cell homogenizers is performed in isotonic or hypotonic buffers, shows that the optimized procedure yields high purity membrane in a robust and reproducible way. Procedures to mix the purified membrane with synthetic lipids to obtain cell membrane liposomes (CMLs) are presented and indications on how to optimize these steps are provided. CMLs made using crude membrane isolates or the purified membrane fractions show different uptake by cells. The CMLs made with the optimized procedure and liposomes of the same composition but without cell membrane components are thoroughly characterized and compared for their size, zeta potential, bilayer and mechanical properties to confirm membrane protein inclusion in the CMLs. Cell uptake studies confirm that the inclusion of membrane components modifies liposome interactions with cells.
Collapse
Affiliation(s)
- Sander de Weerd
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Molecular Biophysics, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Emma A Ruiter
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Eleonora Calicchia
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Macromolecular Chemistry & New Polymer Materials, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Giuseppe Portale
- Macromolecular Chemistry & New Polymer Materials, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Anna Salvati
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
3
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
4
|
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int J Nanomedicine 2024; 19:7137-7164. [PMID: 39050874 PMCID: PMC11268655 DOI: 10.2147/ijn.s464249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Exosomes emerge from endosomal invagination and range in size from 30 to 200 nm. Exosomes contain diverse proteins, lipids, and nucleic acids, which can indicate the state of various physiological and pathological processes. Studies have revealed the remarkable clinical potential of exosomes in diagnosing and prognosing multiple diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Exosomes also have the potential to be engineered and deliver their cargo to a specific target. However, further advancements are imperative to optimize exosomes' diagnostic and therapeutic capabilities for practical implementation in clinical settings. This review highlights exosomes' diagnostic and therapeutic applications, emphasizing their engineering through simple incubation, biological, and click chemistry techniques. Additionally, the loading of therapeutic agents onto exosomes, utilizing passive and active strategies, and exploring hybrid and artificial exosomes are discussed.
Collapse
Affiliation(s)
- Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| |
Collapse
|
5
|
Zu-Man D, Yu-Long Z, Chun-Yang T, Chuang L, Jia-Qin F, Qiang H, Chun C, Li-Jun Y, Chin-Ping T, Hui N, Xiong F. Construction of blackberry polysaccharide nano-selenium particles: Structure features and regulation effects of glucose/lipid metabolism in HepG2 cells. Food Res Int 2024; 187:114428. [PMID: 38763678 DOI: 10.1016/j.foodres.2024.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 μg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Dou Zu-Man
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhang Yu-Long
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tang Chun-Yang
- Likofu Food Co Ltd, Guangzhou Restaurant Grp, Guangzhou 511445, China
| | - Liu Chuang
- Likofu Food Co Ltd, Guangzhou Restaurant Grp, Guangzhou 511445, China
| | - Fang Jia-Qin
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huang Qiang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - You Li-Jun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Niu Hui
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
6
|
Siddique AR, Bhagwat GS. Erythrocytes Nanoparticle Delivery: A Boon for Targeting Tumor. Adv Pharm Bull 2024; 14:132-146. [PMID: 38585450 PMCID: PMC10997934 DOI: 10.34172/apb.2023.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/14/2023] [Accepted: 04/24/2023] [Indexed: 04/09/2024] Open
Abstract
Although nanoparticles (NPs) have many advantages as drug delivery systems, their poor stability in circulation, premature drug release, and nonspecific uptake in non-target organs have prompted biomimetic approaches to camouflage nano vehicles using natural cell membranes. Among them, which are extensively studied in erythrocytes, are the most abundant circulating blood cells. They are specially used for biomimetic coating on artificial NPs due to their excellent properties of good biocompatibility, biodegradability, non-immunogenicity, and long-term blood circulation. Erythrocyte-mimicking nanoparticles (EM-NPs) are prepared by combining nanoparticle cores with naturally derived erythrocyte (red blood cell or RBC) membranes. Compared with conventional nanosystems, EM-NPs hold the preferable characteristics of prolonged blood circulation time and immune evasion. In this review, the biomimetic platform of erythrocyte membrane-coated NPs is described in various aspects, with particular focus placed on the coating mechanism, preparation methods, characterization method, and recent advances in the biomedical applications of EM-NPs concerning cancer and targeted delivery.
Collapse
Affiliation(s)
| | - Geeta Sameer Bhagwat
- Pharmaceutics Department, DY Patil University School of Pharmacy, Sector-7, Nerul, Navi Mumbai 400706, India
| |
Collapse
|
7
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
8
|
Marquez CA, Oh CI, Ahn G, Shin WR, Kim YH, Ahn JY. Synergistic vesicle-vector systems for targeted delivery. J Nanobiotechnology 2024; 22:6. [PMID: 38167116 PMCID: PMC10763086 DOI: 10.1186/s12951-023-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
With the immense progress in drug delivery systems (DDS) and the rise of nanotechnology, challenges such as target specificity remain. The vesicle-vector system (VVS) is a delivery system that uses lipid-based vesicles as vectors for a targeted drug delivery. When modified with target-probing materials, these vesicles become powerful vectors for drug delivery with high target specificity. In this review, we discuss three general types of VVS based on different modification strategies: (1) vesicle-probes; (2) vesicle-vesicles; and (3) genetically engineered vesicles. The synthesis of each VVS type and their corresponding properties that are advantageous for targeted drug delivery, are also highlighted. The applications, challenges, and limitations of VVS are briefly examined. Finally, we share a number of insights and perspectives regarding the future of VVS as a targeted drug delivery system at the nanoscale.
Collapse
Affiliation(s)
- Christine Ardelle Marquez
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Cho-Im Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Gna Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
9
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
10
|
Yin T, Liu Y, He B, Gong B, Chu J, Gao C, Liang W, Hao M, Sun W, Zhuang J, Gao J, Yin Y. Cell primitive-based biomimetic nanomaterials for Alzheimer's disease targeting and therapy. Mater Today Bio 2023; 22:100789. [PMID: 37706205 PMCID: PMC10495673 DOI: 10.1016/j.mtbio.2023.100789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which is not just confined to the older population. Although developments have been made in AD treatment, various limitations remain to be addressed. These are partly contributed by biological hurdles, such as the blood-brain barrier and peripheral side effects, as well as by lack of carriers that can efficiently deliver the therapeutics to the brain while preserving their therapeutic efficacy. The increasing AD prevalence and the unavailability of effective treatments have encouraged researchers to develop improved, convenient, and affordable therapies. Functional materials based on primitive cells and nanotechnology are emerging as attractive therapeutics in AD treatment. Cell primitives possess distinct biological functions, including long-term circulation, lesion site targeting, and immune suppression. This review summarizes the challenges in the delivery of AD drugs and recent advances in cell primitive-based materials for AD treatment. Various cell primitives, such as cells, extracellular vesicles, and cell membranes, are presented together with their distinctive biological functions and construction strategies. Moreover, future research directions are discussed on the basis of foreseeable challenges and perspectives.
Collapse
Affiliation(s)
- Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Clinical pharmacy innovation institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200000, China
| | - Bin He
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Wenjing Sun
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| |
Collapse
|
11
|
Li W, Cheng J, He F, Zhang P, Zhang N, Wang J, Song Q, Hou Y, Gan Z. Cell membrane-based nanomaterials for theranostics of central nervous system diseases. J Nanobiotechnology 2023; 21:276. [PMID: 37596631 PMCID: PMC10439658 DOI: 10.1186/s12951-023-02004-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/20/2023] Open
Abstract
Central nervous system (CNS) diseases have been widely acknowledged as one of the major healthy concerns globally, which lead to serious impacts on human health. There will be about 135 million CNS diseases cases worldwide by mid-century, and CNS diseases will become the second leading cause of death after the cardiovascular disease by 2040. Most CNS diseases lack of effective diagnostic and therapeutic strategies with one of the reasons that the biological barrier extremely hampers the delivery of theranostic agents. In recent years, nanotechnology-based drug delivery is a quite promising way for CNS diseases due to excellent properties. Among them, cell membrane-based nanomaterials with natural bio-surface, high biocompatibility and biosafety, are of great significance in both the diagnosis and treatment of different CNS diseases. In this review, the state of art of the fabrication of cell membranes-based nanomaterials is introduced. The characteristics of different CNS diseases, and the application of cell membranes-based nanomaterials in the theranostics are summarized. In addition, the future prospects and limitations of cell membrane nanotechnology are anticipated. Through summarizing the state of art of the fabrication, giving examples of CNS diseases, and highlighting the applications in theranostics, the current review provides designing methods and ideas for subsequent cell membrane nanomaterials.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junwei Cheng
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fangfei He
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peisen Zhang
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| | - Qiliang Song
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China.
| | - Yi Hou
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Fondaj D, Arduino I, Lopedota AA, Denora N, Iacobazzi RM. Exploring the Microfluidic Production of Biomimetic Hybrid Nanoparticles and Their Pharmaceutical Applications. Pharmaceutics 2023; 15:1953. [PMID: 37514139 PMCID: PMC10386337 DOI: 10.3390/pharmaceutics15071953] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Nanomedicines have made remarkable advances in recent years, addressing the limitations of traditional therapy and treatment methods. Due to their improved drug solubility, stability, precise delivery, and ability to target specific sites, nanoparticle-based drug delivery systems have emerged as highly promising solutions. The successful interaction of nanoparticles with biological systems, on the other hand, is dependent on their intentional surface engineering. As a result, biomimetic nanoparticles have been developed as novel drug carriers. In-depth knowledge of various biomimetic nanoparticles, their applications, and the methods used for their formulation, with emphasis on the microfluidic production technique, is provided in this review. Microfluidics has emerged as one of the most promising approaches for precise control, high reproducibility, scalability, waste reduction, and faster production times in the preparation of biomimetic nanoparticles. Significant advancements in personalized medicine can be achieved by harnessing the benefits of biomimetic nanoparticles and leveraging microfluidic technology, offering enhanced functionality and biocompatibility.
Collapse
Affiliation(s)
- Dafina Fondaj
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | | | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| |
Collapse
|
13
|
Ren Y, Yan C, Yang H. Erythrocytes: Member of the Immune System that Should Not Be Ignored. Crit Rev Oncol Hematol 2023; 187:104039. [PMID: 37236411 DOI: 10.1016/j.critrevonc.2023.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Erythrocytes are the most abundant type of cells in the blood and have a relatively simple structure when mature; they have a long life-span in the circulatory system. The primary function of erythrocytes is as oxygen carriers; however, they also play an important role in the immune system. Erythrocytes recognize and adhere to antigens and promote phagocytosis. The abnormal morphology and function of erythrocytes are also involved in the pathological processes of some diseases. Owing to the large number and immune properties of erythrocytes, their immune functions should not be ignored. Currently, research on immunity is focused on immune cells other than erythrocytes. However, research on the immune function of erythrocytes and the development of erythrocyte-mediated applications is of great significance. Therefore, we aimed to review the relevant literature and summarize the immune functions of erythrocytes.
Collapse
Affiliation(s)
- Yijun Ren
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Chengkai Yan
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| |
Collapse
|
14
|
Wei X, Liu S, Cao Y, Wang Z, Chen S. Polymers in Engineering Extracellular Vesicle Mimetics: Current Status and Prospective. Pharmaceutics 2023; 15:pharmaceutics15051496. [PMID: 37242738 DOI: 10.3390/pharmaceutics15051496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of a high delivery efficiency by traditional nanomedicines during cancer treatment is a challenging task. As a natural mediator for short-distance intercellular communication, extracellular vesicles (EVs) have garnered significant attention owing to their low immunogenicity and high targeting ability. They can load a variety of major drugs, thus offering immense potential. In order to overcome the limitations of EVs and establish them as an ideal drug delivery system, polymer-engineered extracellular vesicle mimics (EVMs) have been developed and applied in cancer therapy. In this review, we discuss the current status of polymer-based extracellular vesicle mimics in drug delivery, and analyze their structural and functional properties based on the design of an ideal drug carrier. We anticipate that this review will facilitate a deeper understanding of the extracellular vesicular mimetic drug delivery system, and stimulate the progress and advancement of this field.
Collapse
Affiliation(s)
- Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifeng Cao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhen Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd., Hangzhou 310051, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023; 296:122065. [PMID: 36841215 PMCID: PMC10542936 DOI: 10.1016/j.biomaterials.2023.122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
In recent years, nanoparticles derived from cellular membranes have been increasingly explored for the prevention and treatment of human disease. With their flexible design and ability to interface effectively with the surrounding environment, these biomimetic nanoparticles can outperform their traditional synthetic counterparts. As their popularity has increased, researchers have developed novel ways to modify the nanoparticle surface to introduce new or enhanced capabilities. Moving beyond naturally occurring materials derived from wild-type cells, genetic manipulation has proven to be a robust and flexible method by which nanoformulations with augmented functionalities can be generated. In this review, an overview of genetic engineering approaches to express novel surface proteins is provided, followed by a discussion on the various biomedical applications of genetically modified cellular nanoparticles.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Fei-Xing Peng
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Xu J, Li D, Kang L, Liu T, Huang J, Li J, Lv J, Wang J, Gao S, Li Y, Yuan B, Zhao B, Wang J, Xin W. Systematic evaluation of membrane-camouflaged nanoparticles in neutralizing Clostridium perfringens ε-toxin. J Nanobiotechnology 2023; 21:95. [PMID: 36932366 PMCID: PMC10021051 DOI: 10.1186/s12951-023-01852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Clostridium perfringens ε-toxin (ETX) is the main toxin leading to enterotoxemia of sheep and goats and is classified as a potential biological weapon. In addition, no effective treatment drug is currently available in clinical practice for this toxin. We developed membrane-camouflaged nanoparticles (MNPs) with different membrane origins to neutralize ETX and protect the host from fatal ETX intoxication. We evaluated the safety and therapeutic efficacy of these MNPs in vitro and in vivo. Compared with membranes from karyocytes, such as Madin-Darby canine kidney (MDCK) cells and mouse neuroblastoma N2a cells (N2a cells), membrane from erythrocytes, which do not induce any immune response, are superior in safety. The protective ability of MNPs was evaluated by intravenous injection and lung delivery. We demonstrate that nebulized inhalation is as safe as intravenous injection and that both modalities can effectively protect mice against ETX. In particular, pulmonary delivery of nanoparticles more effectively treated the challenge of inhaled toxins than intravenously injected nanoparticles. Moreover, MNPs can alter the biological distribution of ETX among different organs in the body, and ETX was captured, neutralized and slowly delivered to the liver and spleen, where nanoparticles with ETX could be phagocytized and metabolized. This demonstrates how MNPs treat toxin infections in vivo. Finally, we injected the MNPs into mice in advance to find out whether MNPs can provide preventive protection, and the results showed that the long-cycle MNPs could provide at least a 3-day protection in mice. These findings demonstrate that MNPs provide safe and effective protection against ETX intoxication, provide new insights into membrane choices and delivery routes of nanoparticles, and new evidence of the ability of nanoparticles to provide preventive protection against infections.
Collapse
Affiliation(s)
- Jinglin Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Dongxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Huang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Baohua Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China.
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China.
| |
Collapse
|
17
|
Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res 2023; 13:716-737. [PMID: 36417162 PMCID: PMC9684886 DOI: 10.1007/s13346-022-01252-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 11/24/2022]
Abstract
Recently, nanoparticle-based drug delivery systems have been widely used for the treatment, prevention, and detection of diseases. Improving the targeted delivery ability of nanoparticles has emerged as a critical issue that must be addressed as soon as possible. The bionic cell membrane coating technology has become a novel concept for the design of nanoparticles. The diverse biological roles of cell membrane surface proteins endow nanoparticles with several functions, such as immune escape, long circulation time, and targeted delivery; therefore, these proteins are being extensively studied in the fields of drug delivery, detoxification, and cancer treatment. Furthermore, hybrid cell membrane-coated nanoparticles enhance the beneficial effects of monotypic cell membranes, resulting in multifunctional and efficient delivery carriers. This review focuses on the synthesis, development, and application of the cell membrane coating technology and discusses the function and mechanism of monotypic/hybrid cell membrane-modified nanoparticles in detail. Moreover, it summarizes the applications of cell membranes from different sources and discusses the challenges that may be faced during the clinical application of bionic carriers, including their production, mechanism, and quality control. We hope this review will attract more scholars toward bionic cell membrane carriers and provide certain ideas and directions for solving the existing problems.
Collapse
Affiliation(s)
- Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Yu-Yan Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xin-Chi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
| | - Jian-Qing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People's Republic of China.
| |
Collapse
|
18
|
Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN. Biomimetic cell membrane-coated poly(lactic- co-glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med 2023; 8:e10441. [PMID: 36925703 PMCID: PMC10013795 DOI: 10.1002/btm2.10441] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are commonly used for drug delivery because of their favored biocompatibility and suitability for sustained and controlled drug release. To prolong NP circulation time, enable target-specific drug delivery and overcome physiological barriers, NPs camouflaged in cell membranes have been developed and evaluated to improve drug delivery. Here, we discuss recent advances in cell membrane-coated PLGA NPs, their preparation methods, and their application to cancer therapy, management of inflammation, treatment of cardiovascular disease and control of infection. We address the current challenges and highlight future research directions needed for effective use of cell membrane-camouflaged NPs.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of PharmacyMirpur University of Science and Technology (MUST)MirpurPakistan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Faizan Akram
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Derya Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
| | - Mohammad F. Bostanudin
- College of PharmacyAl Ain UniversityAbu DhabiUnited Arab Emirates
- AAU Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUnited Arab Emirates
| | - Christopher H. Contag
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM–Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM–National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
19
|
Chen X, Yu W, Zhang J, Fan X, Liu X, Liu Q, Pan S, Dixon RAF, Li P, Yu P, Shi A. Therapeutic angiogenesis and tissue revascularization in ischemic vascular disease. J Biol Eng 2023; 17:13. [PMID: 36797776 PMCID: PMC9936669 DOI: 10.1186/s13036-023-00330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Ischemic vascular disease is a major healthcare problem. The keys to treatment lie in vascular regeneration and restoration of perfusion. However, current treatments cannot satisfy the need for vascular regeneration to restore blood circulation. As biomedical research has evolved rapidly, a variety of potential alternative therapeutics has been explored widely, such as growth factor-based therapy, cell-based therapy, and material-based therapy including nanomedicine and biomaterials. This review will comprehensively describe the main pathogenesis of vascular injury in ischemic vascular disease, the therapeutic function of the above three treatment strategies, the corresponding potential challenges, and future research directions.
Collapse
Affiliation(s)
- Xinyue Chen
- grid.412455.30000 0004 1756 5980The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Wenlu Yu
- grid.260463.50000 0001 2182 8825School of Ophthalmology and Optometry of Nanchang University, Nanchang, 330006 China
| | - Jing Zhang
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Xiao Fan
- grid.412455.30000 0004 1756 5980Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Xiao Liu
- grid.412536.70000 0004 1791 7851Department of Cardiovascular Medicine, The Second Affiliated Hospital of Sun Yat Sen University, Guangzhou, 51000 Guangdong China
| | - Qi Liu
- grid.416470.00000 0004 4656 4290Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX USA
| | - Su Pan
- grid.416470.00000 0004 4656 4290Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX USA
| | - Richard A. F. Dixon
- grid.416470.00000 0004 4656 4290Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX USA
| | - Pengyang Li
- grid.224260.00000 0004 0458 8737Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA USA
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. .,Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK. .,School of Medicine, University of Nicosia, Nicosia, Cyprus.
| |
Collapse
|
20
|
Luo Z, Sun L, Bian F, Wang Y, Yu Y, Gu Z, Zhao Y. Erythrocyte-Inspired Functional Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206150. [PMID: 36581585 PMCID: PMC9951328 DOI: 10.1002/advs.202206150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Indexed: 05/30/2023]
Abstract
Erythrocytes are the most abundant cells in the blood. As the results of long-term natural selection, their specific biconcave discoid morphology and cellular composition are responsible for gaining excellent biological performance. Inspired by the intrinsic features of erythrocytes, various artificial biomaterials emerge and find broad prospects in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering. Here, a comprehensive review from the fabrication to the applications of erythrocyte-inspired functional materials is given. After summarizing the biomaterials mimicking the biological functions of erythrocytes, the synthesis strategies of particles with erythrocyte-inspired morphologies are presented. The emphasis is on practical biomedical applications of these bioinspired functional materials. The perspectives for the future possibilities of the advanced erythrocyte-inspired biomaterials are also discussed. It is hoped that the summary of existing studies can inspire researchers to develop novel biomaterials; thus, accelerating the progress of these biomaterials toward clinical biomedical applications.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Zhuxiao Gu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
21
|
Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol 2023; 20:33-48. [PMID: 36307534 DOI: 10.1038/s41571-022-00699-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 240.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
Traditional cancer therapeutics, such as chemotherapies, are often limited by their non-specific nature, causing harm to non-malignant tissues. Over the past several decades, nanomedicine researchers have sought to address this challenge by developing nanoscale platforms capable of more precisely delivering drug payloads. Cell membrane-coated nanoparticles (CNPs) are an emerging class of nanocarriers that have demonstrated considerable promise for biomedical applications. Consisting of a synthetic nanoparticulate core camouflaged by a layer of naturally derived cell membranes, CNPs are adept at operating within complex biological environments; depending on the type of cell membrane utilized, the resulting biomimetic nanoformulation is conferred with several properties typically associated with the source cell, including improved biocompatibility, immune evasion and tumour targeting. In comparison with traditional functionalization approaches, cell membrane coating provides a streamlined method for creating multifunctional and multi-antigenic nanoparticles. In this Review, we discuss the history and development of CNPs as well as how these platforms have been used for cancer therapy. The application of CNPs for drug delivery, phototherapy and immunotherapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CNPs.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA. .,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
El-Baz N, Nunn BM, Bates PJ, O’Toole MG. The Impact of PEGylation on Cellular Uptake and In Vivo Biodistribution of Gold Nanoparticle MRI Contrast Agents. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120766. [PMID: 36550972 PMCID: PMC9774698 DOI: 10.3390/bioengineering9120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Gold nanoparticles (GNPs) have immense potential in biomedicine, but understanding their interactions with serum proteins is crucial as it could change their biological profile due to the formation of a protein corona, which could then affect their ultimate biodistribution in the body. Grafting GNPs with polyethylene glycol (PEG) is a widely used practice in research in order to decrease opsonization of the particles by serum proteins and to decrease particle uptake by the mononuclear phagocyte system. We investigated the impact of PEGylation on the formation of protein coronae and the subsequent uptake by macrophages and MDA-MB-231 cancer cells. Furthermore, we investigated the in vivo biodistribution in xenograft tumor-bearing mice using a library of 4 and 10 nm GNPs conjugated with a gadolinium chelate as MRI contrast agent, cancer-targeting aptamer AS1411 (or CRO control oligonucleotide), and with or without PEG molecules of different molecular weight (Mw: 1, 2, and 5 kDa). In vitro results showed that PEG failed to decrease the adsorption of proteins; moreover, the cellular uptake by macrophage cells was contingent on the different configurations of the aptamers and the length of the PEG chain. In vivo biodistribution studies showed that PEG increased the uptake by tumor cells for some GNPs, albeit it did not decrease the uptake of GNPs by macrophage-rich organs.
Collapse
Affiliation(s)
- Nagwa El-Baz
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Betty M. Nunn
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Paula J. Bates
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Martin G. O’Toole
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
23
|
Krivić H, Himbert S, Rheinstädter MC. Perspective on the Application of Erythrocyte Liposome-Based Drug Delivery for Infectious Diseases. MEMBRANES 2022; 12:1226. [PMID: 36557133 PMCID: PMC9785899 DOI: 10.3390/membranes12121226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticles are explored as drug carriers with the promise for the treatment of diseases to increase the efficacy and also reduce side effects sometimes seen with conventional drugs. To accomplish this goal, drugs are encapsulated in or conjugated to the nanocarriers and selectively delivered to their targets. Potential applications include immunization, the delivery of anti-cancer drugs to tumours, antibiotics to infections, targeting resistant bacteria, and delivery of therapeutic agents to the brain. Despite this great promise and potential, drug delivery systems have yet to be established, mainly due to their limitations in physical instability and rapid clearance by the host's immune response. Recent interest has been taken in using red blood cells (RBC) as drug carriers due to their naturally long circulation time, flexible structure, and direct access to many target sites. This includes coating of nanoparticles with the membrane of red blood cells, and the fabrication and manipulation of liposomes made of the red blood cells' cytoplasmic membrane. The properties of these erythrocyte liposomes, such as charge and elastic properties, can be tuned through the incorporation of synthetic lipids to optimize physical properties and the loading efficiency and retention of different drugs. Specificity can be established through the anchorage of antigens and antibodies in the liposomal membrane to achieve targeted delivery. Although still at an early stage, this erythrocyte-based platform shows first promising results in vitro and in animal studies. However, their full potential in terms of increased efficacy and side effect minimization still needs to be explored in vivo.
Collapse
Affiliation(s)
- Hannah Krivić
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
24
|
Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy. Colloids Surf B Biointerfaces 2022; 220:112895. [PMID: 36242941 DOI: 10.1016/j.colsurfb.2022.112895] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Non-invasive phototherapy includes photodynamic therapy (PDT) and photothermal therapy (PTT), and has garnered special interest in anti-tumor therapy. However, traditional photosensitizers or photothermal agents are faced with major challenges, including easy recognition by immune system, rapid clearance from blood circulation, and low accumulation in target sites. Combining the characteristics of natural cell membrane with the characteristics of photosensitizer or photothermal agent is an important technology to achieve the ideal therapeutic effect of cancer. Red cell membrane (RBMs) coated can disguise phototherapy agents as endogenous substances, thus constructing a new nano bionic therapeutic platform, resisting blood clearance and prolonging circulation time. At present, a variety of phototherapy agents based on Nano-RBMs have been isolated or designed. In this review, firstly, the basic principles of Nano-RBMs and phototherapy are expounded respectively. Then, the latest progress of Nano-RBMs for PDT, PTT and PDT/PTT applications in recent five years has been introduced respectively. Finally, the problems and challenges of Nano-RBMs in the field of phototherapy are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
25
|
Chen S, Tian D, Yang X, Yin Q, Li L, Lin Y, Liu S, Chen H, Zhang M, Lin J, Lu X, Duan P, Chen Y. Biocompatible Assessment of Erythrocyte Membrane-Camouflaged Polymeric PLGA Nanoparticles in Pregnant Mice: Both on Maternal and Fetal/Juvenile Mice. Int J Nanomedicine 2022; 17:5899-5913. [DOI: 10.2147/ijn.s384906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
|
26
|
Li C, Zheng X, Hu M, Jia M, Jin R, Nie Y. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Deliv 2022; 19:883-898. [PMID: 35760767 DOI: 10.1080/17425247.2022.2094364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune systemic disease in which inflammatory and immune cells accumulate in inflamed joints. Researchers aimed at the characteristics of RA to achieve the effect of treating RA through different therapeutic strategies, and have used various endogenous materials to design drug-loaded nanoparticles that can target RA by binding to cell adhesion molecules or chemokines. In some cases, the nanoparticles can respond to the characteristics of the microenvironment. AREAS COVERED This article reviews the recent advances in the treatment of RA from two aspects of therapeutic strategies and delivery strategies. Therapeutic strategies mainly include neutralization of inflammatory factors, promotion of inflammatory cell apoptosis, ROS scavenger, immunosuppression, and bone tissue repair. The drug delivery strategy is mainly described from two aspects: chemically functionalized biomimetic nanoparticles and endogenous nanoparticles. EXPERT OPINION Biomimetic NPs may be effective drug carriers for targeted RA treatment. NPs can reduce the clearance of mononuclear phagocytes, prolong the blood circulation time, and improve the targeting ability. With the deepening of research, more and more biomimetic NPs have entered the clinical trial stage. However, safe and scalable preparation methods are needed to improve their clinical applicability.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiu Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Mei Hu
- Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
27
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:cells11131989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence:
| |
Collapse
|
28
|
Zou S, Wang Q, Zhang P, Wang B, Liu G, Zhang F, Li J, Wang F, Wang B, Zhang L. Biomimetic Nanosponges Enable the Detoxification of Vibrio vulnificus Hemolysin. Int J Mol Sci 2022; 23:ijms23126821. [PMID: 35743264 PMCID: PMC9224624 DOI: 10.3390/ijms23126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus) infection-associated multiple antibiotic resistance has raised serious public health concerns. Recently, nanosponges (NSs) have been expected to provide innovative platforms for addressing antibacterial and drug-resistant challenges by targeting various pore-forming toxins (PFTs). In the present study, we constructed NSs to explore the effects and possible mechanism of recombinant V. vulnificus hemolysin (rVvhA)-induced injuries. In vitro, NSs significantly reversed rVvhA-induced apoptosis and necrosis, and improved toxin-induced intracellular reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, and apoptosis signaling pathway disruption. To explore the clinical translation potential of NSs, we established VvhA-induced septicemia and wound infection mouse models, respectively, and further found NSs could notably attenuate rVvhA-induced acute toxicity and septicemia-associated inflammation, as well as local tissue damage. In a conclusion, NSs showed excellent protective effects against rVvhA-induced toxicity, thus providing useful insights into addressing the rising threats of severe V. vulnificus infections.
Collapse
Affiliation(s)
- Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Peipei Zhang
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China;
| | - Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
- Correspondence: (B.W.); (L.Z.); Tel.: +86-021-81871128 (B.W.); +86-021-81871129 (L.Z.)
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
- Correspondence: (B.W.); (L.Z.); Tel.: +86-021-81871128 (B.W.); +86-021-81871129 (L.Z.)
| |
Collapse
|
29
|
Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346:71-97. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, 400056, India
| | - Chandrakantsing Pardeshi
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
30
|
Li M, Xu X, Shi R, Li Y, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Smart erythrocyte-hitchhiking insulin delivery system for prolonged automatic blood glucose control. Biomater Sci 2022; 10:2638-2649. [PMID: 35416806 DOI: 10.1039/d2bm00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long and automatic control of blood glucose levels in diabetic patients could solve the problems caused by frequent insulin injections. Herein, we exploited the protection potential of erythrocytes by a "hitchhiking" strategy to significantly prolong the blood circulation time of a specifically-designed smart hitchhiking insulin delivery system (SHIDS). In the SHIDS, insulin, glucose oxidase, and catalase were co-loaded into nanoparticles formed by modified chitosan. The free glucosamines in chitosan anchor glucose transporters on the surface of erythrocytes, allowing erythrocyte-hitchhiking in the blood flow. A high glucose level triggers quick insulin release from the SHIDS to reduce the glucose level, which then slows the insulin release. This closed-loop glucose regulation by the SHIDS effectively controlled blood glucose within the normal range for at least 24 h and under 250 mg dL-1 for ∼48 h with one injection. This injectable erythrocyte-hitchhiking nanoplatform, which achieves long-term and automatic blood glucose control, thus has potential for further development. As the carrier could be used for delivering other drugs/agents or interacting with other substances, the hitchhiking strategy is versatile and may be applied in other medical applications too.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaomin Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuai Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ling Zhang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
31
|
Phua VJX, Yang CT, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:582. [PMID: 35214911 PMCID: PMC8875160 DOI: 10.3390/nano12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Nuclear imaging is a powerful non-invasive imaging technique that is rapidly developing in medical theranostics. Nuclear imaging requires radiolabeling isotopes for non-invasive imaging through the radioactive decay emission of the radionuclide. Nuclear imaging probes, commonly known as radiotracers, are radioisotope-labeled small molecules. Nanomaterials have shown potential as nuclear imaging probes for theranostic applications. By modifying the surface of nanomaterials, multifunctional radio-labeled nanomaterials can be obtained for in vivo biodistribution and targeting in initial animal imaging studies. Various surface modification strategies have been developed, and targeting moieties have been attached to the nanomaterials to render biocompatibility and enable specific targeting. Through integration of complementary imaging probes to a single nanoparticulate, multimodal molecular imaging can be performed as images with high sensitivity, resolution, and specificity. In this review, nanomaterial nuclear imaging probes including inorganic nanomaterials such as quantum dots (QDs), organic nanomaterials such as liposomes, and exosomes are summarized. These new developments in nanomaterials are expected to introduce a paradigm shift in nuclear imaging, thereby creating new opportunities for theranostic medical imaging tools.
Collapse
Affiliation(s)
- Vanessa Jing Xin Phua
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
32
|
Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release 2021; 341:314-328. [PMID: 34838929 DOI: 10.1016/j.jconrel.2021.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Erythrocytes capture pathogens in circulation and present them to antigen-presenting cells (APCs) in the spleen. Senescent or apoptotic erythrocytes are physiologically eliminated by splenic APCs in a non-inflammatory manner as to not induce an immune reaction, while damaged erythrocytes tend to induce immune activation. The distinct characteristics of erythrocytes in their lifespan or different states inspire the design of targeting splenic APCs for vaccine delivery. Specifically, normal or damaged erythrocyte-driven immune targeting can induce antigen-specific immune activation, whereas senescent or apoptotic erythrocytes can be tailored to achieve antigen-specific immune tolerance. Recent studies have revealed the potential of erythrocyte-based vaccine delivery; however, there is still no in-depth review to describe the latest progress. This review summarizes the characteristics, different immune functions, and diverse vaccine delivery behaviors and biomedical applications of erythrocytes in different states. This review aims to contribute to the rational design and development of erythrocyte-based vaccine delivery systems for treating various infections, tumors, inflammatory diseases, and autoimmune diseases.
Collapse
|
33
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021; 341:227-246. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Nanocarriers have been widely employed in preclinical studies and clinical trials for the delivery of anticancer drugs. The most important causes of failure in clinical translation of nanocarriers is their inefficient accumulation and penetration which arises from special characteristics of tumor microenvironment such as insufficient blood supply, dense extracellular matrix, and elevated interstitial fluid pressure. Various strategies such as engineering extracellular matrix, optimizing the physicochemical properties of nanocarriers have been proposed to increase the depth of tumor penetration; however, these strategies have not been very successful so far. Novel strategies such as transformable nanocarriers, transcellular transport of peptide-modified nanocarriers, and bio-inspired carriers have recently been emerged as an advanced generation of drug carriers. In this study, the latest developments of nanocarrier-based drug delivery to solid tumor are presented with their possible limitations. Then, the prospects of advanced drug delivery systems are discussed in detail.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
34
|
Mao J, Bian Y, Zhang Q, Kong L, Shi X, Hu J, Yang M, Li L, Qian H, Liu B, Qian X. Antitumor activity of iRGD-modified red blood cell membrane nanoparticles loaded with Juglone and Oxaliplatin against colorectal cancer. J Biomater Appl 2021; 36:1301-1316. [PMID: 34802305 DOI: 10.1177/08853282211052386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jialei Mao
- 66478The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Oncology, Kunshan Traditional Chinese Medicine Hospital, Kunshan, Jiangsu, China
| | - Yinzhu Bian
- 66506Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Qun Zhang
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Linghui Kong
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xiao Shi
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Hu
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Mi Yang
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Li Li
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Hanqing Qian
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoping Qian
- 12581The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Dong Z, Ke X, Tang S, Wu S, Wu W, Chen X, Yang J, Xie J, Luo J, Li J. A Stable Cell Membrane-Based Coating with Antibiofouling and Macrophage Immunoregulatory Properties for Implants at the Macroscopic Level. CHEMISTRY OF MATERIALS 2021. [DOI: 10.1021/acs.chemmater.1c01957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Zhang Y, Xia Q, Wu T, He Z, Li Y, Li Z, Hou X, He Y, Ruan S, Wang Z, Sun J, Feng N. A novel multi-functionalized multicellular nanodelivery system for non-small cell lung cancer photochemotherapy. J Nanobiotechnology 2021; 19:245. [PMID: 34391438 PMCID: PMC8364713 DOI: 10.1186/s12951-021-00977-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A red blood cell membrane (RBCm)-derived drug delivery system allows prolonged circulation of an antitumor treatment and overcomes the issue of accelerated blood clearance induced by PEGylation. However, RBCm-derived drug delivery systems are limited by low drug-loading capacities and the lack of tumor-targeting ability. Thus, new designs of RBCm-based delivery systems are needed. RESULTS Herein, we designed hyaluronic acid (HA)-hybridized RBCm (HA&RBCm)-coated lipid multichambered nanoparticles (HA&RBCm-LCNPs) to remedy the limitations of traditional RBCm drug delivery systems. The inner core co-assembled with phospholipid-regulated glycerol dioleate/water system in HA&RBCm-LCNPs met the required level of blood compatibility for intravenous administration. These newly designed nanocarriers had a honeycomb structure with abundant spaces that efficiently encapsulated paclitaxel and IR780 for photochemotherapy. The HA&RBCm coating allowed the nanocarriers to overcome the reticuloendothelial system barrier and enhanced the nanocarriers specificity to A549 cells with high levels of CD44. These properties enhanced the combinatorial antitumor effects of paclitaxel and IR780 associated with microtubule destruction and the mitochondrial apoptotic pathway. CONCLUSIONS The multifunctional HA&RBCm-LCNPs we designed expanded the functionality of RBCm and resulted in a vehicle for safe and efficient antitumor treatment.
Collapse
Affiliation(s)
- Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanyan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanzhi He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Sun
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
37
|
Alapid AAI, Abd. Majid R, Ibraheem ZO, Mediani A, Ismail IS, Unyah NZ, Alhassan Abdullahi S, Nordin N, Nasiru Wana M, Basir R. Investigation of Andrographolide Effect on Non-Infected Red Blood Cells Using the 1H-NMR-Based Metabolomics Approach. Metabolites 2021; 11:metabo11080486. [PMID: 34436427 PMCID: PMC8400355 DOI: 10.3390/metabo11080486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 01/02/2023] Open
Abstract
Andrographolide (AG) has been shown to have several medicinal and pharmaceutical effects, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, and anti-malarial activities. Moreover, studies to assess the pharmacological effect of AG on the metabolic changes of uninfected red blood cells (uRBCs) have not yet been investigated. This study aims to evaluate the pharmacological effects of AG compared to chloroquine (CQ) on the metabolic variations of uRBCs in vitro using a proton nuclear magnetic resonance (1H-NMR)-based metabolomics approach coupled with multivariate data analysis (MVDA). Forty-one metabolites were successfully identified by 1H-NMR. The results of the unsupervised data analysis principal component analysis (PCA) showed ideal differentiation between AG and CQ. PC1 and PC2 accounted for 71.4% and 17.7% of the explained variation, respectively, with a total variance of 89.10%. Based on S-plot and VIP values, a total of 28 and 32 metabolites were identified as biomarkers in uRBCs-AG and uRBCs-CQ, respectively. In uRBCs treated with AG, ten metabolic pathways were determined to be disturbed, including riboflavin metabolism, d-glutamate and d-glutamine metabolism, phenylalanine metabolism, glutathione metabolism, proline and arginine metabolism, arginine biosynthesis, citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism as well as alanine, aspartate, and glutamate metabolism. In contrast, in CQ-treated uRBCs, nine affected metabolic pathways were determined, which involved the same metabolic pathways for uRBCs-AG, except for glutathione metabolism. These findings suggest an evident relationship between AG and CQ associated with metabolic changes in intact RBCs after being exposed to the treatment. The metabolomics results could allow useful comprehensive insights into the underlying mechanism of the action of AG and CQ on red blood cells. Consequently, the 1H-NMR-based metabolomics approach was successfully utilized to identify the pharmacological effects of AG and CQ on the metabolic variations of uRBCs.
Collapse
Affiliation(s)
- Ashraf Ahmad Issa Alapid
- Medical Parasitology Unit, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.I.A.); (N.Z.U.)
- Department of Zoology, Faculty of Science-Alasaba, University of Gharyan, Gharyan 010101, Libya
| | - Roslaini Abd. Majid
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Zaid O. Ibraheem
- Department of Pharmacy, Al Rafidain University College, Al Mustansyria, Baghdad 10052, Iraq;
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Intan Safinar Ismail
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Ngah Zasmy Unyah
- Medical Parasitology Unit, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.I.A.); (N.Z.U.)
| | - Sharif Alhassan Abdullahi
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University Kano, Kano 700241, Nigeria;
| | - Norshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohammed Nasiru Wana
- Department of Biological Sciences, Faculty of Science, Abubakar Tafawa Balewa University Bauchi, Bauchi 740272, Nigeria;
| | - Rusliza Basir
- Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-124-747-459
| |
Collapse
|
38
|
Xia N, Gao Z, Hu H, Li D, Zhang C, Mei X, Wu C. Nerve growth factor loaded macrophage-derived nanovesicles for inhibiting neuronal apoptosis after spinal cord injury. J Biomater Appl 2021; 36:276-288. [PMID: 34167336 DOI: 10.1177/08853282211025912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is an extremely destructive central nervous system lesion. Studies have shown that NGF can promote nerve regeneration after SCI. However, it cannot produce the desired effect due to its stability in the body and is difficulty in passing through the blood-brain barrier. In this study, we prepared nanovesicles derived from macrophage membrane encapsulating NGF (NGF-NVs) as a drug carrier for the treatment of SCI. Cell experiments showed that NGF-NVs were effectively taken up by PC12 cells and inhibited neuronal apoptosis. In vivo imaging experiments, a large quantity of NGF was delivered to the injured site with the aid of the good targeting of NVs. In animal experiments, NGF-NVs improved the survival of neurons by significantly activating the PI3K/AKT signaling pathway and had good behavioral and histological recovery effects after SCI. Therefore, NVs are a potential drug delivery vector for SCI therapy.
Collapse
Affiliation(s)
- Nan Xia
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Zhanshan Gao
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Hengshuo Hu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Daoyong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Chuanjie Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
39
|
Zhang R, Wu S, Ding Q, Fan Q, Dai Y, Guo S, Ye Y, Li C, Zhou M. Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy. Drug Deliv 2021; 28:1109-1119. [PMID: 34121563 PMCID: PMC8205088 DOI: 10.1080/10717544.2021.1934188] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During inflammation, inflammatory cells are rapidly recruited to sites of infection or injury, where they cross physiological barriers around the infected site and further infiltrate into the tissues. Other cells, such as erythrocytes, endothelial cells and stem cells, also play prominent roles in host defense and tissue repair. In recent years, nanotechnology has been exploited to deliver drugs to sites of inflammation. For example, nanoparticles camouflaged with a cell membrane are a novel drug-delivery platform that can interact with the immune system and that show great potential for treating inflammation. Encapsulating drugs inside plasma membranes derived from various cells involved in inflammatory processes can be effective against inflammation. This review describes the preparation, characterization, and properties of various types of cell membrane-camouflaged biomimetic nanoparticles. It also summarizes preclinical research into their efficacy against inflammation.
Collapse
Affiliation(s)
- Rongtao Zhang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqiong Wu
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qian Ding
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingze Fan
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Dai
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shiwei Guo
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Ye
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Meiling Zhou
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release 2021; 335:130-157. [PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
Collapse
|
41
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Sun L, Xiong Z, Shen F, Wang Z, Liu Z. Biological membrane derived nanomedicines for cancer therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9943-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
He X, Zhou S, Huang WC, Seffouh A, Mabrouk MT, Morgan MT, Ortega J, Abrams SI, Lovell JF. A Potent Cancer Vaccine Adjuvant System for Particleization of Short, Synthetic CD8 + T Cell Epitopes. ACS NANO 2021; 15:4357-4371. [PMID: 33606514 PMCID: PMC10184788 DOI: 10.1021/acsnano.0c07680] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Short major histocompatibility complex (MHC) class I (MHC-I)-restricted peptides contain the minimal biochemical information to induce antigen (Ag)-specific CD8+ cytotoxic T cell responses but are generally ineffective in doing so. To address this, we developed a cobalt-porphyrin (CoPoP) liposome vaccine adjuvant system that induces rapid particleization of conventional, short synthetic MHC-I epitopes, leading to strong cellular immune responses at nanogram dosing. Along with CoPoP (to induce particle formation of peptides), synthetic monophosphoryl lipid A (PHAD) and QS-21 immunostimulatory molecules were included in the liposome bilayer to generate the "CPQ" adjuvant system. In mice, immunization with a short MHC-I-restricted peptide, derived from glycoprotein 70 (gp70), admixed with CPQ safely generated functional, Ag-specific CD8+ T cells, resulting in the rejection of multiple tumor cell lines, with durable immunity. When cobalt was omitted, the otherwise identical peptide and adjuvant components did not result in peptide binding and were incapable of inducing immune responses, demonstrating the importance of stable particle formation. Immunization with the liposomal vaccine was well-tolerated and could control local and metastatic disease in a therapeutic setting. Mechanistic studies showed that particle-based peptides were better taken up by antigen-presenting cells, where they were putatively released within endosomes and phagosomes for display on MHC-I surfaces. On the basis of the potency of the approach, the platform was demonstrated as a tool for in vivo epitope screening of peptide microlibraries comprising a hundred peptides.
Collapse
Affiliation(s)
- Xuedan He
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A0C7, Canada
| | - Moustafa T. Mabrouk
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A0C7, Canada
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- ,
| | - Jonathan F. Lovell
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- ,
| |
Collapse
|
44
|
Castro F, Martins C, Silveira MJ, Moura RP, Pereira CL, Sarmento B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv Drug Deliv Rev 2021; 170:312-339. [PMID: 32946921 DOI: 10.1016/j.addr.2020.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Although nanocarriers offer many advantages as drug delivery systems, their poor stability in circulation, premature drug release and nonspecific uptake in non-target organs have prompted biomimetic approaches using natural cell membranes to camouflage nanovehicles. Among them, erythrocytes, representing the most abundant blood circulating cells, have been extensively investigated for biomimetic coating on artificial nanocarriers due to their upgraded biocompatibility, biodegradability, non-immunogenicity and long-term blood circulation. Due to the cell surface mimetic properties combined with customized core material, erythrocyte-mimicking nanovehicles (EM-NVs) have a wide variety of applications, including drug delivery, imaging, phototherapy, immunomodulation, sensing and detection, that foresee a huge potential for therapeutic and diagnostic applications in several diseases. In this review, we summarize the recent advances in the biomedical applications of EM-NVs in cancer, infection, heart-, autoimmune- and CNS-related disorders and discuss the major challenges and opportunities in this research area.
Collapse
Affiliation(s)
- Flávia Castro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria José Silveira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Pedro Moura
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Leite Pereira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
45
|
|
46
|
Montaseri H, Kruger CA, Abrahamse H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13030296. [PMID: 33668307 PMCID: PMC7996317 DOI: 10.3390/pharmaceutics13030296] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an alternative modality to conventional cancer treatment, whereby a specific wavelength of light is applied to a targeted tumor, which has either a photosensitizer or photochemotherapeutic agent localized within it. This light activates the photosensitizer in the presence of molecular oxygen to produce phototoxic species, which in turn obliterate cancer cells. The incidence rate of breast cancer (BC) is regularly growing among women, which are currently being treated with methods, such as chemotherapy, radiotherapy, and surgery. These conventional treatment methods are invasive and often produce unwanted side effects, whereas PDT is more specific and localized method of cancer treatment. The utilization of nanoparticles in PDT has shown great advantages compared to free photosensitizers in terms of solubility, early degradation, and biodistribution, as well as far more effective intercellular penetration and uptake in targeted cancer cells. This review gives an overview of the use of inorganic nanoparticles (NPs), including: gold, magnetic, carbon-based, ceramic, and up-conversion NPs, as well as quantum dots in PDT over the last 10 years (2009 to 2019), with a particular focus on the active targeting strategies for the PDT treatment of BC.
Collapse
|
47
|
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol Sci 2020; 22:E153. [PMID: 33375718 PMCID: PMC7796437 DOI: 10.3390/ijms22010153] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.
Collapse
Affiliation(s)
- Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
48
|
Ma M, Liu Z, Gao N, Pi Z, Du X, Ren J, Qu X. Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-β in an Alzheimer’s Disease Model. J Am Chem Soc 2020; 142:21702-21711. [DOI: 10.1021/jacs.0c08395] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Anhui 230026, China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Anhui 230026, China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zifeng Pi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
49
|
Muhammad Q, Jang Y, Kang SH, Moon J, Kim WJ, Park H. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci 2020; 8:1490-1501. [PMID: 31994542 DOI: 10.1039/c9bm01643k] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Particles with a size range of 1-100 nm used in various fields of life sciences are called nanoparticles (NPs). Currently, nanotechnology has a wide range of applications in biomedical research, industries and in almost all types of modern technology. The growing applications of nanotechnology in medicine urge scientists to analyze the impact of NPs on human body tissues and the immune system. Easy surface modifications of the NPs enable the modulation of the immune system either by evading the immune system to prevent allergic reactions or by enhancing the immunogenic response. In this review, we discussed the various possible theories and practical implications reported to date for the applications of nanotechnology in immunostimulation and immunosuppression for favorable immune response, such as vaccine delivery and cancer treatments. In the last part of this paper, we also discussed the biocompatibility and unfavorable immunotoxicity of NPs and methods for lowering their toxicity.
Collapse
Affiliation(s)
- Qasim Muhammad
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| | - Shin Hyuk Kang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - James Moon
- Pharmaceutical Sciences and Biomedical Engineering, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
50
|
Tao C, Nie X, Zhu W, Iqbal J, Xu C, Wang DA. Autologous cell membrane coatings on tissue engineering xenografts for suppression and alleviation of acute host immune responses. Biomaterials 2020; 258:120310. [PMID: 32823019 DOI: 10.1016/j.biomaterials.2020.120310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Xenogeneic extracellular matrix (ECM) based tissue engineering graft is one of the most promising products for transplantation therapies, which could alleviate the pain of patients and reduce surgery cost. However, in order to put ECM based xenografts into clinical use, the induced inflammatory and immune responses have yet to be resolved. Cell membrane is embedded with membrane proteins for regulation of cell interactions including self-recognition and potent in reducing foreign body rejections. In this study, a novel and facile method for evasion from immune system was developed by coating autologous red blood cell membrane as a disguise on xenogeneic ECM based tissue engineering graft surface. Porcine source Living Hyaline Cartilage Graft (LhCG) and decellularized LhCG (dLhCG) established by our group for cartilage tissue engineering were chosen as model grafts. The cell membrane coating was quite stable on xenografts with no obvious decrease in amount for 4 weeks. The autologous cell membrane coated xenograft has been proved to be recognized as "self" by immune system on cell, protein and gene levels according to the 14-day lasting in vivo study on rats with less inflammatory cells infiltrated and low inflammation-related cytokines gene expression, showing alleviated acute immune and inflammatory responses.
Collapse
Affiliation(s)
- Chao Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore; Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Xiaolei Nie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Jabed Iqbal
- Department of Pathology, Singapore General Hospital, 20 College Road, Academia, Diagnostics Tower, Level 10, 169856, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|