1
|
Chen X, Yao Y, Gong G, He T, Ma C, Yu J. The potential role of AhR/NR4A1 in androgen-dependent prostate cancer: focus on TCDD-induced ferroptosis. Biochem Cell Biol 2025; 103:1-11. [PMID: 39566035 DOI: 10.1139/bcb-2024-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Prostate cancer (PCa) is a complex disease with diverse molecular alterations. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exhibits pleiotropic roles in PCa, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR. While targeting ferroptosis is an innovative PCa therapeutic strategy, the impact of AhR on this process remains unclear. This study aimed to investigate the influence of AhR on lipid peroxidation and ferroptosis. Results showed that TCDD activated AhR, as evidenced by increased CYP1A1 expression, leading to reduced cell viability. TCDD caused mitochondria shrinkage, decreased the GSH/GSSG ratio, and elevated the MDA levels and lipid peroxidation. Interestingly, AhR knockdown reversed these effects, similar to the action of ferroptosis inhibitors. Mechanistically, TCDD suppressed nuclear receptor subfamily 4 group A member 1 (NR4A1) expression, in part due to AhR activation. This suppression subsequently led to a reduction in the expression of the NR4A1 downstream target stearoyl-CoA desaturase 1 (SCD1). NR4A1 overexpression counteracted the effects of TCDD. In vivo, TCDD activated AhR, downregulated NR4A1 and SCD1 expression, induced mitochondria shrinkage, and increased the MDA and 4-hydroxynonenal (4-HNE) levels. In summary, TCDD promotes ferroptosis in androgen-dependent PCa via inhibiting the NR4A1/SCD1 axis, in part dependent on AhR activation.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Urology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yuan Yao
- Department of Urology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Guotong Gong
- Department of Urology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Tianji He
- Department of Urology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Chenjun Ma
- Department of Urology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jingsong Yu
- Department of Urology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| |
Collapse
|
2
|
Duan X, Wan JMF, Yu ACH. The molecular impact of sonoporation: A transcriptomic analysis of gene regulation profile. ULTRASONICS SONOCHEMISTRY 2024; 111:107077. [PMID: 39368882 PMCID: PMC11600025 DOI: 10.1016/j.ultsonch.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Sonoporation has long been known to disrupt intracellular signaling, yet the involved molecules and pathways have not been identified with clarity. In this study, we employed whole transcriptome shotgun sequencing (RNA-seq) to profile sonoporation-induced gene responses after membrane resealing has taken place. Sonoporation was achieved by microbubble-mediated ultrasound (MB-US) exposure in the form of 1 MHz ultrasound pulsing (0.50 MPa peak negative pressure, 10 % duty cycle, 30 s exposure period) in the presence of microbubbles (1:1 cell-to-bubble ratio). Using propidium iodide (PI) and calcein respectively as cell viability and cytoplasmic uptake labels, post-exposure flow cytometry was performed to identify three viable cell populations: 1) unsonoporated cells, 2) sonoporated cells with low uptake, and 3) sonoporated cells with high uptake. Fluorescence-activated cell sorting was then conducted to separate the different groups followed by RNA-seq analysis of the gene expressions in each group of cells. We found that sonoporated cells with low or high calcein uptake showed high similarity in the gene responses, including the activation of multiple heat shock protein (HSP) genes and immediate early response genes mediating apoptosis and transcriptional regulation. In contrast, unsonoporated cells exhibited a more extensive gene expression alteration that included the activation of more HSP genes and the upregulation of diverse apoptotic mediators. Four oxidative stress-related and three immune-related genes were also differentially expressed in unsonoporated cells. Our results provided new information for understanding the intracellular mobilization in response to sonoporation at the molecular level, including the identification of new molecules in the sonoporation-induced apoptosis regulatory network. Our data also shed light on the innovative therapeutic strategy which could potentially leverage the responses of viable unsonoporated cells as a synergistic effector in the microenvironment to favor tumor treatment.
Collapse
Affiliation(s)
- Xinxing Duan
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada; School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jennifer M F Wan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada.
| |
Collapse
|
3
|
Zhang C, Wang X, Cai G, Wang H, Liu Q, Ma S, Sun H, An Y, Miao M, Yin S, Liu P, Wang X, Wang J. Targeting KPNB1 with genkwadaphnin suppresses gastric cancer progression through the Nur77-mediated signaling pathway. Eur J Pharmacol 2024; 977:176697. [PMID: 38823760 DOI: 10.1016/j.ejphar.2024.176697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Gastric cancer (GC) remains a global challenge due to the lack of early detection and precision therapies. Genkwadaphnin (DD1), a natural diterpene isolated from the bud of Flos GenkWa (Thymelaeaceae), serves as a Karyopherin β1 (KPNB1) inhibitor. In this study, we investigated the anti-tumor effect of DD1 in both cell culture and animal models. Our findings reveal that KPNB1, a protein involved in nuclear import, was highly expressed in GC tissues and associated with a poor prognosis in patients. We demonstrated that DD1, alongside the established KPNB1 inhibitor importazole (IPZ), inhibited GC cell proliferation and tumor growth by enhancing both genomic and non-genomic activity of Nur77. DD1 and IPZ reduced the interaction between KPNB1 and Nur77, resulting in Nur77 cytoplasmic accumulation and triggering mitochondrial apoptosis. The inhibitors also increased the expression of the Nur77 target apoptotic genes ATF3, RB1CC1 and PMAIP1, inducing apoptosis in GC cell. More importantly, loss of Nur77 effectively rescued the inhibitory effect of DD1 and IPZ on GC cells in both in vitro and in vivo experiments. In this study, we for the first time explored the relationship between KPNB1 and Nur77, and found KPNB1 inhibition could significantly increase the expression of Nur77. Moreover, we investigated the function of KPNB1 in GC for the first time, and the results suggested that KPNB1 could be a potential target for cancer therapy, and DD1 might be a prospective therapeutic candidate.
Collapse
Affiliation(s)
- Chenxi Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Xiaojuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education), School of Clinical Medicine, Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, 102218, China
| | - Guodi Cai
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Hong Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Qianqian Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Shuai Ma
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Huizi Sun
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Yana An
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Miaomiao Miao
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Sheng Yin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Peiqing Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Xiaolu Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China.
| | - Junjian Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China; National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
4
|
Qin J, Niu B, Chen X, Hu C, Lu S, Li H, Liu W, Li J, Teng Z, Yang Y, Hu H, Xu Y, Huo S, Wu Z, Qiu Y, Zhou H, Fang M. Discovery of 5-(Pyrimidin-2-ylamino)-1 H-indole-2-carboxamide Derivatives as Nur77 Modulators with Selective and Potent Activity Against Triple-Negative Breast Cancer. J Med Chem 2023; 66:15847-15866. [PMID: 37983615 DOI: 10.1021/acs.jmedchem.3c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The orphan nuclear receptor Nur77 has been validated as a potential drug target for treating breast cancer. Therefore, focusing on the SAR study of the lead 8b (KDSPR(Nur77) = 354 nM), we found the active compound ja which exhibited improved Nur77-binding capability (KDSPR(Nur77) = 91 nM) and excellent antiproliferative activities against breast cancer cell lines. Interestingly, ja acted as a potent and selective Nur77 antagonist, displaying good potency against triple-negative breast cancer (TNBC) cell lines but did not inhibit human normal breast cancer cell line MCF-10A (SI > 20). Exceptionally, ja Nur77-dependently caused mitochondria dysfunction and induced the caspase-dependent apoptosis by mediating the TP53 phosphorylation pathway. Moreover, ja significantly suppressed MDA-MB-231 xenograft tumor growth but had no apparent side effects in mice and zebrafish. Overall, ja demonstrated to be the first Nur77 modulator mediating the TP53 phosphorylation pathway that has the potential as a novel anticancer agent for TNBC.
Collapse
Affiliation(s)
- Jingbo Qin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Boning Niu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohui Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Cheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Sheng Lu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hongsheng Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Weihao Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jiayi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yinghuang Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hu Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Fang H, Li M, Wang X, Chen W, He F, Zhang Y, Guo K, Jin W, Li B, Fang M. Discovery of new DHA ethanolamine derivatives as potential anti-inflammatory agents targeting Nur77. Bioorg Chem 2023; 141:106887. [PMID: 37801784 DOI: 10.1016/j.bioorg.2023.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023]
Abstract
Docosahexaenoic acid (DHA) has a strong anti-inflammatory effect and is reported to bind to the ligand-binding domain (LBD) of the anti-inflammatory modulator Nur77. Recently, we have found that DHA ethanolamine (DHA-EA) exerts anti-inflammatory activity as a Nur77 modulator. Herein, using a fragment splicing-based drug design strategy, nineteen new DHA-EA derivatives were synthesized starting from DHA algae oil and then evaluated for their anti-inflammatory activity. The cell-based cytotoxicity assays showed that compounds J2, J9, and J18 had no noticeable effect on the cell morphology and viability of RAW 264.7, LO2, and MCR-5 cells. Meanwhile, J9 was identified as the most potent anti-inflammatory molecule in LPS-stimulated RAW 264.7 cells. Also, the molecular docking study and SPR assay demonstrated that J9 exhibited in vitro Nur77-binding affinity (KD = 8.58 × 10-6 M). Moreover, the mechanism studies revealed that the anti-inflammatory activity of J9 was associated with its inhibition of NF-κB activation in a Nur77-dependent manner. Notably, J9 could attenuate LPS-induced inflammation in the mouse acute lung injury (ALI) model. Overall, the DHA-EA derivative J9 targeting Nur77 is a potential candidate for developing anti-inflammatory and ALI-treating agents.
Collapse
Affiliation(s)
- Hua Fang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Mengyu Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Weizhu Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fengming He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; College of Arts, Sichuan University, Chengdu 610207, China
| | - Wenhui Jin
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Baicun Li
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Zhang Y, Qian J, Jiang M, Yang S, Zhou L, Zhang Q, Lin L, Yang Y. LTe2 induces cell apoptosis in multiple myeloma by suppressing AKT phosphorylation at Thr308 and Ser473. Front Oncol 2023; 13:1269670. [PMID: 37781194 PMCID: PMC10539572 DOI: 10.3389/fonc.2023.1269670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Multiple myeloma (MM) is a highly heterogeneous hematological malignancy originating from B lymphocytes, with a high recurrence rate primarily due to drug resistance. 2-((1H-indol-3-yl)methyl)-3-((3-((1H-indol-3-yl)methyl)-1H-indol-2-yl)methyl)-1H-indole (LTe2), a tetrameric indole oligomer, possesses a wide range of anticancer activities through various mechanisms. Here, we aim to explore the anti-tumor efficiency and potential downstream targets of LTe2 in MM. Its bioactivity was assessed by employing MTT assays, flow cytometry, and the 5TMM3VT mouse model. Additionally, transcriptomic RNA-seq analysis and molecular dynamics (MD) experiments were conducted to elucidate the mechanism underlying LTe2 induced MM cell apoptosis. The results demonstrated that LTe2 significantly inhibited MM cell proliferation both in vitro and in vivo, and revealed that LTe2 exerts its effect by inhibiting the phosphorylation of AKT at the Thr308 and Ser473 sites. In summary, our findings highlight the potential of LTe2 as a novel candidate drug for MM treatment and provided a solid foundation for future clinical trials involving LTe2.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiacheng Qian
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Yang
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianxin Zhou
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Zhang
- Department of Gynecology, Jiangsu Province Hospital Affiliated Hospital of Nanjing Unviersity of Chinese Medicina, Nanjing, China
| | - Liping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Gutiérrez-Ruíz SC, Hernández-Parra H, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chavez SA, Cortés H, Peña-Corona SI, Kiyekbayeva L, Ateşşahin DA, Goloshvili T, Leyva-Gómez G, Sharifi-Rad J. 3,3'-Diindolylmethane and indole-3-carbinol: potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int 2023; 23:180. [PMID: 37633886 PMCID: PMC10464192 DOI: 10.1186/s12935-023-03031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023] Open
Abstract
Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | | | | | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, Ciudad de México, 14380, Mexico
| | - Sergio Alberto Bernal-Chavez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lashyn Kiyekbayeva
- Pharmaceutical School, Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Public Health and Nursing, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, Elazıg, 23100, Turkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi, 0162, Georgia
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | | |
Collapse
|
8
|
Miftah H, Naji O, Ssi SA, Ghouzlani A, Lakhdar A, Badou A. NR2F6, a new immune checkpoint that acts as a potential biomarker of immunosuppression and contributes to poor clinical outcome in human glioma. Front Immunol 2023; 14:1139268. [PMID: 37575237 PMCID: PMC10419227 DOI: 10.3389/fimmu.2023.1139268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Intoroduction Nuclear receptor subfamily 2 group F member 6 (NR2F6) is a promising checkpoint target for cancer immunotherapy. However, there has been no investigation of NR2F6 in glioma. Our study systematically explored the clinical characteristics and biological functions of NR2F6 in gliomas. Methods We extracted RNA sequencing (RNA-seq) data of 663 glioma samples from The Cancer Genome Atlas (TCGA) as the training cohort and 325 samples from the Chinese Glioma Genome Atlas (CGGA) as the validation cohort. We also confirmed the NR2F6 gene expression feature in our own cohort of 60 glioma patients. R language and GraphPad Prism softwares were mainly used for statistical analysis and graphical work. Results We found that NR2F6 was significantly related to high tumor aggressiveness and poor outcomes for glioma patients. Functional enrichment analysis demonstrated that NR2F6 was associated with many biological processes that are related to glioma progression, such as angiogenesis, and with multiple immune-related functions. Moreover, NR2F6 was found to be significantly correlated with stromal and immune infiltration in gliomas. Subsequent analysis based on Gliomas single-cell sequencing datasets showed that NR2F6 was expressed in immune cells, tumor cells, and stromal cells. Mechanistically, results suggested that NR2F6 might act as a potential immunosuppression-mediated molecule in the glioma microenvironment through multiple ways, such as the recruitment of immunosuppressive cells, secretion of immunosuppressive cytokines, M2 polarization of macrophages, in addition to combining with other immune checkpoint inhibitors. Conclusion Our findings indicated that intracellular targeting of NR2F6 in both immune cells and tumor cells, as well as stromal cells, may represent a promising immunotherapeutic strategy for glioma. Stromal cells, may represent a promising immunotherapeutic strategy for glioma.
Collapse
Affiliation(s)
- Hayat Miftah
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Saadia Ait Ssi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, University Hospital Center (UHC) Ibn Rochd, Casablanca, Morocco
- Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
9
|
Wang H, Zhang M, Fang F, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. The nuclear receptor subfamily 4 group A1 in human disease. Biochem Cell Biol 2023; 101:148-159. [PMID: 36861809 DOI: 10.1139/bcb-2022-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China
| |
Collapse
|
10
|
Yang SL, Guan HQ, Yang HB, Chen Y, Huang XY, Chen L, Shen ZF, Wang LX. The expression and biological effect of NR2F6 in non-small cell lung cancer. Front Oncol 2022; 12:940234. [PMID: 36119482 PMCID: PMC9478584 DOI: 10.3389/fonc.2022.940234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 12/25/2022] Open
Abstract
Objective This study aimed to explore the expression and effect of the nuclear receptor subfamily 2 group F member 6 (NR2F6) gene in non-small cell lung cancer (NSCLC) and provide an experimental basis for the targeted therapy of NSCLC. Method First, the expression of NR2F6 in lung cancer tissues was analyzed using the Gene Expression Omnibus and the Cancer Genome Atlas (TCGA) databases, and the expression of NR2F6 in lung cancer tissues and cells was verified by Western blotting and quantitative polymerase chain reaction. Next, the relationship between NR2F6 expression and the clinicopathological features of lung cancer was analyzed via immunohistochemistry, and the relationship between NR2F6 expression and prognosis was analyzed using the Kaplan–Meier Plotter. The influence of NR2F6 knockdown on the proliferation capacity of lung cancer cells was then verified at cell level. Finally, the expression of heterogeneous nuclear ribonucleoprotein D (HNRNPD) in lung cancer tissue was analyzed using the TCGA database and immunohistochemistry. The impact of HNRNPD knockdown on the proliferation capacity of lung cancer cells was verified at cell level, and the relationship between NR2F6 and HNRNPD was verified by co-immunoprecipitation. Results NR2F6 was highly expressed in lung cancer tissues and cells, and its expression was positively correlated with the depth of invasion, lymphatic metastasis, and clinical stage of lung cancer. High expression of NR2F6 in lung cancer was also significantly associated with poor prognosis. At cell level, NR2F6 knockdown was found to inhibit the proliferation of H460 and H358 in lung cancer cells. Furthermore, the TCGA database and immunohistochemical results showed that HNRNPD was highly expressed in lung cancer tissues and was highly consistent with NR2F6 expression in these tissues. Knockdown of HNRNPD also inhibited the proliferation of lung cancer cells. The co-immunoprecipitation experiment verified that NR2F6 interacted with HNRNPD. Conclusion NR2F6 may interact with HNRNPD to jointly regulate the progression of lung cancer, and this conclusion provides a new experimental basis for the study of the molecular targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Shu lin Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huan qin Guan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong bao Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yao Chen
- Department of pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao ying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi fa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang xing Wang, ; Zhi fa Shen,
| | - Liang xing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang xing Wang, ; Zhi fa Shen,
| |
Collapse
|
11
|
Ning W, Xu N, Zhou C, Zou L, Quan J, Yang H, Lu Z, Cao H, Liu J. Ethyl Acetate Fraction of Hedyotis diffusa Willd Induces Apoptosis via JNK/Nur77 Pathway in Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1932777. [PMID: 36062172 PMCID: PMC9433286 DOI: 10.1155/2022/1932777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is characterized by poor diagnosis and high mortality. Novel and efficient therapeutic agents are urgently needed for the treatment. Hedyotis diffusa Willd (HDW) is used to treat cancers, especially HCC in China. Purpose The study aimed to identify the main anti-HCC extract in HDW and to explore the mechanism of the active extract. Materials and Methods The high-performance liquid chromatography-quadrupole-time of flight mass spectrometry (HPLC-QTOF-MS) method was used for the simultaneous determination of main compounds in the ethyl acetate fraction of HDW (EHDW). The toxicity test of different HDW fractions was carried out on larvae at 2 day-post-fertilization (dpf) for 72 h. The in vivo anti-HCC effect of different HDW fractions was evaluated on a zebrafish tumor model by immersion administration. The antiproliferative effect of HDW fractions was determined with MTT assay, as well as hematoxylin and eosin (HE) staining assay. Hoechst 33258 staining was used to observe changes in nucleus morphology. Flow cytometry analysis was used to investigate apoptosis induction. Western blot analysis was used to examine apoptosis-related proteins, and key proteins in JNK/Nur77 signaling pathway. SP600125 was served to validate the apoptotic mechanism. Results EHDW showed the strongest tumor cell growth inhibitory effect on zebrafish tumor model. Further study revealed that EHDW induced apoptosis in zebrafish tumor model and in cultured Hep3B cells. Meanwhile, it has been shown that the levels of BCL2-associated X (Bax), cytochrome c (cyto c), cleaved-caspase 3, and poly-ADP-ribose polymerase (PARP) cells were upregulated. In contrast, the level of antiapoptotic B cell lymphoma-2 (Bcl-2) was downregulated in Hep3B cells. Additionally, EHDW activated JNK/Nur77 pathway by increasing the levels of p-JNK(Thr183/Tyr185) and p-Nur77(Ser351). Further study showed that blockage of JNK by SP600125 reversed EHDW-induced JNK/Nur77 pathway and the downstream apoptotic proteins. Conclusion In conclusion, EHDW exerted the anti-HCC effect, which may be attributed to the activation of JNK/Nur77 pathway. This study supported the rationale of HDW as an HCC therapeutic agent.
Collapse
Affiliation(s)
- Weimin Ning
- Dongguan Hospital of Chinese Medicine affiliated to Guangzhou University of Chinese Medicine, Dongguan 523005, China
| | - Nishan Xu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunhong Zhou
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lifang Zou
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyu Quan
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hua Yang
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zinbin Lu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junshan Liu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Role of Nuclear Receptors in Controlling Erythropoiesis. Int J Mol Sci 2022; 23:ijms23052800. [PMID: 35269942 PMCID: PMC8911257 DOI: 10.3390/ijms23052800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear receptors (NRs), are a wide family of ligand-regulated transcription factors sharing a common modular structure composed by an N-terminal domain and a ligand-binding domain connected by a short hinge linker to a DNA-binding domain. NRs are involved in many physiological processes, including metabolism, reproduction and development. Most of them respond to small lipophilic ligands, such as steroids, retinoids, and phospholipids, which act as conformational switches. Some NRs are still "orphan" and the search for their ligands is still ongoing. Upon DNA binding, NRs can act both as transcriptional activators or repressors of their target genes. Theoretically, the possibility to modulate NRs activity with small molecules makes them ideal therapeutic targets, although the complexity of their signaling makes drug design challenging. In this review, we discuss the role of NRs in erythropoiesis, in both homeostatic and stress conditions. This knowledge is important in view of modulating red blood cells production in disease conditions, such as anemias, and for the expansion of erythroid cells in culture for research purposes and for reaching the long-term goal of cultured blood for transfusion.
Collapse
|
13
|
Sun (孙迪) D, Chai (柴思敏) S, Huang (黄鑫) X, Wang (王滢莹) Y, Xiao (肖琳琳) L, Xu (徐士霞) S, Yang (杨光) G. Novel Genomic Insights into Body Size Evolution in Cetaceans and a Resolution of Peto’s Paradox. Am Nat 2022; 199:E28-E42. [DOI: 10.1086/717768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Di Sun (孙迪)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Simin Chai (柴思敏)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Xin Huang (黄鑫)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yingying Wang (王滢莹)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Linlin Xiao (肖琳琳)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu (徐士霞)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang (杨光)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| |
Collapse
|
14
|
Hussain S, Ouyang P, Zhu Y, Khalique A, He C, Liang X, Shu G, Yin L. Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors: a novel strategy to combat salmonellosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34154-34166. [PMID: 33966165 DOI: 10.1007/s11356-021-13986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.
Collapse
Affiliation(s)
- Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Yingkun Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China.
| |
Collapse
|
15
|
NR4A1 Ligands as Potent Inhibitors of Breast Cancer Cell and Tumor Growth. Cancers (Basel) 2021; 13:cancers13112682. [PMID: 34072371 PMCID: PMC8198788 DOI: 10.3390/cancers13112682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Nuclear receptor 4A1 (NR4A1, Nur77, TR3) is more highly expressed in breast and solid tumors compared to non-tumor tissues and is a pro-oncogenic factor in solid tumor-derived cancers. NR4A1 regulates cancer cell growth, survival, migration, and invasion, and bis-indole-derived compounds (CDIMs) that bind NR4A1 act as antagonists and inhibit tumor growth. Preliminary structure-binding studies identified 1,1-bis(3'-indolyl)-1-(3,5-disubstitutedphenyl)methane analogs as NR4A1 ligands with low KD values; we further investigated the anticancer activity of the four most active analogs (KD's ≤ 3.1 µM) in breast cancer cells and in athymic mouse xenograft models. The treatment of MDA-MB-231 and SKBR3 breast cancer cells with the 3-bromo-5-methoxy, 3-chloro-5-trifluoromethoxy, 3-chloro-5-trifluoromethyl, and 3-bromo-5-trifluoromethoxy phenyl-substituted analogs decreased cell growth and the expression of epidermal of growth factor receptor (EGFR), hepatocyte growth factor receptor (cMET), and PD-L1 as well as inhibited mTOR phosphorylation. In addition, all four compounds inhibited tumor growth in athymic nude mice bearing MDA-MB-231 cells (orthotopic) at a dose of 1 mg/kg/d, which was not accompanied by changes in body weight. These 3,5-disubstituted analogs were the most potent CDIM/NR4A1 ligands reported and are being further developed for clinical applications.
Collapse
|
16
|
Ding X, Zhao Z, Wu Y, Zhang H, Chen K, Luo C, Luo X, Xu H. Identification of novel anti-inflammatory Nur77 modulators by virtual screening. Bioorg Chem 2021; 112:104912. [PMID: 33933804 DOI: 10.1016/j.bioorg.2021.104912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022]
Abstract
Orphan nuclear receptor Nur77 is a unique member of the NR4A nuclear receptor subfamily, which is critical for cellular processes especially the inflammatory responses. Many efforts have been made to discover novel scaffold small molecules targeting Nur77. Herein, we evaluated the previously reported binding sites in crystal structures of Nur77 with small molecules, and then discovered compound 13 as a hit of Nur77 via virtual screening targeting the best-scored binding site. Based on the results of fluorescence titration assay, structure-activity relationship (SAR) analysis was summarized for compound 13 and its analogs. Among these analogs, compound 13e displayed the most potent binding affinity (0.54 ± 0.02 μM). The binding mode of compound 13e was predicted via molecule docking. Moreover, 13e exhibited significant anti-inflammation activity in TNF-α induced HepG2 cell model. Taken together, these results provided a new insight into the understanding the functions of specific binding sites on Nur77 for small molecular compounds, and the development of new scaffold Nur77 modulators.
Collapse
Affiliation(s)
- Xiaoyu Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zijie Zhao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yue Wu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hao Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Heng Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
17
|
Tu X, Chen X, Zhang D, Gao M, Liang J, Bao G, Zhang J, Peng S, Zhang X, Zeng Z, Su Y. Optimization of novel oxidative DIMs as Nur77 modulators of the Nur77-Bcl-2 apoptotic pathway. Eur J Med Chem 2020; 211:113020. [PMID: 33279290 DOI: 10.1016/j.ejmech.2020.113020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Nur77, an orphan nuclear receptor, is a member of the nuclear receptor superfamily. Nur77 plays important roles in various biological processes. Previously we reported that BI1071(DIM-C-pPhCF3+MeSO3-), an oxidized form and methanesulfonate salt of (4-CF3-Ph-C-DIM), can modulate Nur77's non-genomic apoptotic pathway through that Nur77 translocated from the nucleus to mitochondria to induce cytochrome c releasing and promote apoptosis of cancer cell. Here we report our efforts to further optimize BI1071. A series of BI1071 analogs were designed, synthesized and their apoptosis potency was systematically evaluated. Our preliminary structure-activity relationship study identified compound 10b as a better modulator with strong binding to Nur77 and enhanced apoptotic activity. Binding studies demonstrated that 10b could bind to its target Nur77 with an affinity value of 33 nM. Furthermore, mechanism studies reveal that 10b acts as an anticancer agent by utilizing the Nur77-Bcl-2 apoptotic pathway.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Molecular Docking Simulation
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Oxidation-Reduction
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Rats, Sprague-Dawley
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xuhuang Tu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Xiaohui Chen
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Dongliang Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Meichun Gao
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Jingmei Liang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Guoliang Bao
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Jie Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Shuangzhou Peng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Xiaokun Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China
| | - Zhiping Zeng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China.
| | - Ying Su
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, 361002, China; NucMito Pharmaceuticals, Xiamen 361000, China.
| |
Collapse
|
18
|
Chen L, Fan F, Wu L, Zhao Y. The nuclear receptor 4A family members: mediators in human disease and autophagy. Cell Mol Biol Lett 2020; 25:48. [PMID: 33292165 PMCID: PMC7640683 DOI: 10.1186/s11658-020-00241-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
The Nuclear receptor 4A (NR4A) subfamily, which belongs to the nuclear receptor (NR) superfamily, has three members: NR4A1 (Nur77), NR4A2 (Nurr1) and NR4A3 (Nor1). They are gene regulators with broad involvement in various signaling pathways and human disease responses, including autophagy. Here, we provide a concise overview of the current understanding of the role of the NR4A subfamily members in human diseases and review the research into their regulation of cell autophagy. A deeper understanding of these mechanisms has potential to improve drug development processes and disease therapy.
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
- Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108, China.
| | - Fengtian Fan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108, China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108, China
| | - Yiyi Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
19
|
Safe S, Karki K. The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Mol Cancer Res 2020; 19:180-191. [PMID: 33106376 DOI: 10.1158/1541-7786.mcr-20-0707] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
The three-orphan nuclear receptor 4A genes are induced by diverse stressors and stimuli, and there is increasing evidence that NR4A1 (Nur77), NR4A2 (Nurr1), and NR4A3 (Nor1) play an important role in maintaining cellular homeostasis and in pathophysiology. In blood-derived tumors (leukemias and lymphomas), NR4A expression is low and NR4A1-/-/NR4A3-/- double knockout mice rapidly develop acute myelocytic leukemia, suggesting that these receptors exhibit tumor suppressor activity. Treatment of leukemia and most lymphoma cells with drugs that induce expression of NR4A1and NR4A3 enhances apoptosis, and this represents a potential clinical application for treating this disease. In contrast, most solid tumor-derived cell lines express high levels of NR4A1 and NR4A2, and both receptors exhibit pro-oncogenic activities in solid tumors, whereas NR4A3 exhibits tumor-specific activities. Initial studies with retinoids and apoptosis-inducing agents demonstrated that their cytotoxic activity is NR4A1 dependent and involved drug-induced nuclear export of NR4A1 and formation of a mitochondrial proapoptotic NR4A1-bcl-2 complex. Drug-induced nuclear export of NR4A1 has been reported for many agents/biologics and involves interactions with multiple mitochondrial and extramitochondrial factors to induce apoptosis. Synthetic ligands for NR4A1, NR4A2, and NR4A3 have been identified, and among these compounds, bis-indole derived (CDIM) NR4A1 ligands primarily act on nuclear NR4A1 to inhibit NR4A1-regulated pro-oncogenic pathways/genes and similar results have been observed for CDIMs that bind NR4A2. Based on results of laboratory animal studies development of NR4A inducers (blood-derived cancers) and NR4A1/NR4A2 antagonists (solid tumors) may be promising for cancer therapy and also for enhancing immune surveillance.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
20
|
Chen RL, Zhou JX, Cao Y, Sun LL, Su S, Deng XJ, Lin JT, Xiao ZW, Chen ZZ, Wang SY, Lin LZ. Construction of a Prognostic Immune Signature for Squamous-Cell Lung Cancer to Predict Survival. Front Immunol 2020; 11:1933. [PMID: 33072067 PMCID: PMC7533590 DOI: 10.3389/fimmu.2020.01933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background Limited treatment strategies are available for squamous-cell lung cancer (SQLC) patients. Few studies have addressed whether immune-related genes (IRGs) or the tumor immune microenvironment can predict the prognosis for SQLC patients. Our study aimed to construct a signature predict prognosis for SQLC patients based on IRGs. Methods We constructed and validated a signature from SQLC patients in The Cancer Genome Atlas (TCGA) using bioinformatics analysis. The underlying mechanisms of the signature were also explored with immune cells and mutation profiles. Results A total of 464 eligible SQLC patients from TCGA dataset were enrolled and were randomly divided into the training cohort (n = 232) and the testing cohort (n = 232). Eight differentially expressed IRGs were identified and applied to construct the immune signature in the training cohort. The signature showed a significant difference in overall survival (OS) between low-risk and high-risk cohorts (P < 0.001), with an area under the curve of 0.76. The predictive capability was verified with the testing and total cohorts. Multivariate analysis revealed that the 8-IRG signature served as an independent prognostic factor for OS in SQLC patients. Naive B cells, resting memory CD4 T cells, follicular helper T cells, and M2 macrophages were found to significantly associate with OS. There was no statistical difference in terms of tumor mutational burden between the high-risk and low-risk cohorts. Conclusion Our study constructed and validated an 8-IRG signature prognostic model that predicts clinical outcomes for SQLC patients. However, this signature model needs further validation with a larger number of patients.
Collapse
Affiliation(s)
- Rui-Lian Chen
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing-Xu Zhou
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Cao
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Ling Sun
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shan Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Xiao-Jie Deng
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Jie-Tao Lin
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Wei Xiao
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuang-Zhong Chen
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Yu Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Zhu Lin
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Zhou H, Zhang H, Shi M, Wang J, Huang Z, Shi J. A robust signature associated with patient prognosis and tumor immune microenvironment based on immune-related genes in lung squamous cell carcinoma. Int Immunopharmacol 2020; 88:106856. [PMID: 32777677 DOI: 10.1016/j.intimp.2020.106856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is one common type of lung cancer. Immune-related genes (IRGs) are closely associated with cancer prognosis. This study aims to screen the key genes associated with LUSC and establish an immune-related prognostic model. METHODS Based on the Cancer Genome Atlas (TCGA) database, we screened the differentially expressed genes (DEGs) between LUSC and normal samples. Intersecting the DEGs with the immune-related genes (IRGs), we obtained the differentially expressed IRGs (DEIRGs). Univariate as well as multivariate Cox regression analyses were performed to identify the survival-associated IRGs and establish an immune-related prognostic model. The relationship between the prognostic model and tumor-infiltrating immune cells was analyzed by TIMER and CIBERSORT. RESULTS A total of 229 DEIRGs were screened, and 14 IRGs associated with survival were identified using univariate Cox analysis. Among the 14 IRGs, six genes were selected out using Lasso and multivariate Cox analyses, and they were used to build the prognostic model. Further analysis indicated that overall survival (OS) of high-risk groups was lower than that of low-risk groups. High risk score was independently related to worse OS. Moreover, the risk score was positively correlated with several immune infiltration cells. Finally, the efficacy of the prognostic model was validated by another independent cohort GSE73403. CONCLUSION The DEIRGs described in the study may have the potential to be the prognostic molecular markers for LUSC. In addition, the risk score model could predict the OS and provides more information for the immunotherapy of patients with LUSC.
Collapse
MESH Headings
- Biomarkers, Tumor/immunology
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Correlation of Data
- Databases, Genetic
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- MicroRNAs/immunology
- MicroRNAs/metabolism
- Prognosis
- Protein Interaction Maps/immunology
- RNA, Long Noncoding/immunology
- RNA, Long Noncoding/metabolism
- Risk Factors
- Survival Analysis
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Hao Zhou
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Muqi Shi
- Medical College of Nantong University, Nantong 226001, Jiangsu, China
| | - Jinjie Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zhanghao Huang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
22
|
Caccamo D, Currò M, Ientile R, Verderio EAM, Scala A, Mazzaglia A, Pennisi R, Musarra-Pizzo M, Zagami R, Neri G, Rosmini C, Potara M, Focsan M, Astilean S, Piperno A, Sciortino MT. Intracellular Fate and Impact on Gene Expression of Doxorubicin/Cyclodextrin-Graphene Nanomaterials at Sub-Toxic Concentration. Int J Mol Sci 2020; 21:ijms21144891. [PMID: 32664456 PMCID: PMC7402311 DOI: 10.3390/ijms21144891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Elisabetta AM Verderio
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Antonino Mazzaglia
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Department of Innate Immunology, Shenzhen International Institute for Biomedical Research, 140 Jinye Ave, Building A10, Life Science Park, Dapeng New District, Shenzhen 518119, China
| | - Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Roberto Zagami
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Consolato Rosmini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| |
Collapse
|
23
|
Cho HJ, Zhao J, Jung SW, Ladewig E, Kong DS, Suh YL, Lee Y, Kim D, Ahn SH, Bordyuh M, Kang HJ, Sa JK, Seo YJ, Kim ST, Lim DH, Dho YS, Lee JI, Seol HJ, Choi JW, Park WY, Park CK, Rabadan R, Nam DH. Distinct genomic profile and specific targeted drug responses in adult cerebellar glioblastoma. Neuro Oncol 2020; 21:47-58. [PMID: 30085274 DOI: 10.1093/neuonc/noy123] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Despite extensive efforts on the genomic characterization of gliomas, very few studies have reported the genetic alterations of cerebellar glioblastoma (C-GBM), a rare and lethal disease. Here, we provide a systematic study of C-GBM to better understand its specific genomic features. Methods We collected a cohort of C-GBM patients and compared patient demographics and tumor pathologies with supratentorial glioblastoma (S-GBM). To uncover the molecular characteristics, we performed DNA and mRNA sequencing and DNA methylation arrays on 19, 6, and 4 C-GBM cases, respectively. Moreover, chemical drug screening was conducted to identify potential therapeutic options for C-GBMs. Results Despite differing anatomical origins of C-GBM and S-GBM, neither histological, cytological, nor patient demographics appeared significantly different between the 2 types. However, we observed striking differences in mutational patterns, including frequent alterations of ATRX, PDGFRA, NF1, and RAS and absence of EGFR alterations in C-GBM. These results show a distinct evolutionary path in C-GBM, suggesting specific therapeutic targeted options. Targeted-drug screening revealed that C-GBMs were more responsive to mitogen-activated protein kinase kinase (MEK) inhibitor and resistant to epidermal growth factor receptor inhibitors than S-GBMs. Also, differential expression analysis indicated that C-GBMs may have originated from oligodendrocyte progenitor cells, suggesting that different types of cells can undergo malignant transformation according to their location in brain. Master regulator analysis with differentially expressed genes between C-GBM and proneural S-GBM revealed NR4A1 as a potential therapeutic target. Conclusions Our results imply that unique gliomagenesis mechanisms occur in adult cerebellum and new treatment strategies are needed to provide greater therapeutic benefits for C-GBM patients. Key Points 1. Distinct genomic profiles of 19 adult cerebellar GBMs were characterized. 2. MEK inhibitor was highly sensitive to cerebellar GBM compared with supratentorial GBM. 3. Master regulator analysis revealed NR4A1 as a potential therapeutic target in cerebellar GBM.
Collapse
Affiliation(s)
- Hee Jin Cho
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Sang Won Jung
- Institute for Refractory Cancer Research, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Erik Ladewig
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Donggeon Kim
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Sun Hee Ahn
- Institute for Refractory Cancer Research, Seoul, Korea
| | - Mykola Bordyuh
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Hyun Ju Kang
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Seoul, Korea.,Research Institute for Future Medicine, Seoul, Korea
| | - Yun Jee Seo
- Institute for Refractory Cancer Research, Seoul, Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun-Sik Dho
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
24
|
Xiong Y, Ran J, Xu L, Tong Z, Adel Abdo MS, Ma C, Xu K, He Y, Wu Z, Chen Z, Hu P, Jiang L, Bao J, Chen W, Wu L. Reactivation of NR4A1 Restrains Chondrocyte Inflammation and Ameliorates Osteoarthritis in Rats. Front Cell Dev Biol 2020; 8:158. [PMID: 32258036 PMCID: PMC7090231 DOI: 10.3389/fcell.2020.00158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease and uncontrolled inflammation is now recognized to play vital roles in OA development. Targeting the endogenous counterpart of inflammation may develop new therapeutic approaches in resolving inflammation persistence and treating inflammatory disease including OA. The orphan nuclear receptor 4A1 (NR4A1) is a key negative regulator of inflammatory responses but its role in osteoarthritis remains unclear. In the present study, we found that the NR4A1 expression was elevated in human osteoarthritis cartilage and in vitro OA model, which could be blocked by NF-κB signal inhibitor JSH23. The overexpression of NR4A1 inhibited, whereas knockdown of NR4A1 enhanced IL-1β induced COX-2, iNOS, MMP3, MMP9 and MMP13 expression, and luciferase reporter activity of NF-κB response element. Though NR4A1 was upregulated in inflammatory stimulation and creates a negative feedback loop, persistent inflammatory stimulation inhibited NR4A1 expression and activation. The expression of NR4A1 declined rapidly after an initial peak in conditions of chronic IL-1β stimulation, which could be partially restored by HDACs inhibitor SAHA. The phosphorylation of NR4A1 was increased in human osteoarthritis cartilage, and p38 inhibitor SB203580, JNK inhibitor SP600125 and ERK inhibitor FR180204 could significantly inhibited IL-1β induced NR4A1 phosphorylation. Reactivation of NR4A1 by its agonist cytosporone B could inhibit IL-1β induced chondrocyte inflammation and expression of COX-2, iNOS, MMP3, MMP9, and MMP13. In rat OA model, intra-articular injection of cytosporone B protected cartilage damage and ameliorated osteoarthritis. Thus, our study demonstrated that the NR4A1 is a key endogenous inhibitor of chondrocyte inflammation, which was relatively inactivated under chronic inflammatory stimulation through HDACs mediated transcriptional suppression and MAKP dependent phosphorylation in osteoarthritis. NR4A1 agonist cytosporone B could reactivate and restore the inhibitory regulatory ability of NR4A1, prevent excessive inflammation, and ameliorates osteoarthritis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Moqbel Safwat Adel Abdo
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhipeng Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhonggai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiapeng Bao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiping Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Kønig SM, Rissler V, Terkelsen T, Lambrughi M, Papaleo E. Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level. PLoS Comput Biol 2019; 15:e1007485. [PMID: 31825969 PMCID: PMC6927658 DOI: 10.1371/journal.pcbi.1007485] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/23/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is an essential defensive mechanism against tumorigenesis. Proteins of the B-cell lymphoma-2 (Bcl-2) family regulate programmed cell death by the mitochondrial apoptosis pathway. In response to intracellular stress, the apoptotic balance is governed by interactions of three distinct subgroups of proteins; the activator/sensitizer BH3 (Bcl-2 homology 3)-only proteins, the pro-survival, and the pro-apoptotic executioner proteins. Changes in expression levels, stability, and functional impairment of pro-survival proteins can lead to an imbalance in tissue homeostasis. Their overexpression or hyperactivation can result in oncogenic effects. Pro-survival Bcl-2 family members carry out their function by binding the BH3 short linear motif of pro-apoptotic proteins in a modular way, creating a complex network of protein-protein interactions. Their dysfunction enables cancer cells to evade cell death. The critical role of Bcl-2 proteins in homeostasis and tumorigenesis, coupled with mounting insight in their structural properties, make them therapeutic targets of interest. A better understanding of gene expression, mutational profile, and molecular mechanisms of pro-survival Bcl-2 proteins in different cancer types, could help to clarify their role in cancer development and may guide advancement in drug discovery. Here, we shed light on the pro-survival Bcl-2 proteins in breast cancer using different bioinformatic approaches, linking -omics with structural data. We analyzed the changes in the expression of the Bcl-2 proteins and their BH3-containing interactors in breast cancer samples. We then studied, at the structural level, a selection of interactions, accounting for effects induced by mutations found in the breast cancer samples. We find two complexes between the up-regulated Bcl2A1 and two down-regulated BH3-only candidates (i.e., Hrk and Nr4a1) as targets associated with reduced apoptosis in breast cancer samples for future experimental validation. Furthermore, we predict L99R, M75R as damaging mutations altering protein stability, and Y120C as a possible allosteric mutation from an exposed surface to the BH3-binding site.
Collapse
Affiliation(s)
- Simon Mathis Kønig
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Vendela Rissler
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Xiong J, Kuang X, Lu T, Liu X, Cheng B, Wang W, Wei D, Li X, Zhang Z, Fang Q, Wu D, Wang J. Fenretinide-induced Apoptosis of Acute Myeloid Leukemia Cells via NR4A1 Translocation into Mitochondria and Bcl-2 Transformation. J Cancer 2019; 10:6767-6778. [PMID: 31839811 PMCID: PMC6909957 DOI: 10.7150/jca.32167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 09/01/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE: Fenretinide is reported to induce NR4A1-associated apoptosis in several types of cancer cells. However, it remains unclear about its specific role and the underlying mechanism in acute myeloid leukemia (AML). Therefore, this study aimed to explore the role and mechanism of fenretinide-induced apoptosis in AML. METHOD: Firstly, the NR4A1 mRNA level in the newly diagnosed AML patients was measured, then AML cells were treated with fenretinide at various time points and doses, and cell viability was investigated by using the cell-counting kit-8 (CCK-8) assay. Additionally, apoptosis and cell cycles were analyzed by using flow cytometry. Moreover, siNR4A1 was utilized to knockdown NR4A1 expression, and leptomycin B (LMB) was adopted to inhibit the nuclear export; afterwards, the apoptosis rate and expression of apoptotic proteins in AML cells were detected. In addition, the expression levels of NR4A1 in the nuclei and mitochondria of fenretinide-treated AML cells were also measured. Meanwhile, the interaction between NR4A1 and Bcl-2, as well as the Bcl-2 transformation, was also examined. The anti-leukemic effect of fenretinide on NOD/SCID mice was also determined through subcutaneous injection of HL-60 cells. RESULTS: NR4A1 expression in AML patients was markedly down-regulated compared with that in normal donors. Fenretinide induced the expression of NR4A1 and mitochondria-mediated apoptotic pathway-associated proteins in a time- and concentration-dependent manner. Importantly, both siNR4A1 alone or the combination of fenretinide with LMB could attenuate the fenretinide-induced apoptosis and expression of apoptotic proteins. Under the action of fenretinide, the NR4A1 protein expression was down-regulated in nuclear extracts whereas up-regulated in mitochondrial extracts. At the same time, fenretinide promoted NR4A1 translocation from nuclei into mitochondria, and enhanced the interaction between NR4A1 and Bcl-2, thereby exposing the BH3 domain of Bcl-2 to exert the anti-apoptotic effect. Moreover, fenretinide also exhibited an anti-leukemic effect and induced NR4A1 expression in the AML mouse model. CONCLUSIONS: Fenretinide exerts an obvious effect on AML cells both in vitro and in vivo. Besides, the NR4A1-mediated signaling pathway is highly involved in the fenretinide-induced apoptosis of AML cells.
Collapse
Affiliation(s)
- Jie Xiong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation,188 Shizi Street, Suzhou 215006, Jiangsu, China.,Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Xingyi Kuang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Tingting Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Xu Liu
- Department of Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Bingqing Cheng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Weili Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Danna Wei
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Xinyao Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Zhaoyuan Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation,188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
27
|
Pendergrass HA, May AE. Natural Product Type III Secretion System Inhibitors. Antibiotics (Basel) 2019; 8:antibiotics8040162. [PMID: 31554164 PMCID: PMC6963908 DOI: 10.3390/antibiotics8040162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
Many known inhibitors of the bacterial type III secretion system (T3SS), a virulence factor used by pathogenic bacteria to infect host cells, are natural products. These compounds, produced by bacteria, fungi, and plants, may have developed as prophylactic treatments for potential attack by bacterial pathogens or as an attempt by symbiotic organisms to protect their hosts. Regardless, better understanding of the structures and mechanisms of action of these compounds may open opportunities for drug development against diseases caused by pathogens utilizing the T3SS. This review will cover selected known natural products of the T3SS and detail what is known of their origin and mechanism of action. These inhibitors highlight nature’s ability to modulate interactions between organisms at a cellular level.
Collapse
Affiliation(s)
- Heather A Pendergrass
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Aaron E May
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
28
|
Zhang C, Liu J, Tao F, Lu Y, He Q, Zhao L, Ou R, Xu Y, Li W. Retracted Article: The nuclear export of TR3 mediated gambogic acid-induced apoptosis in cervical cancer cells through mitochondrial dysfunction. RSC Adv 2019; 9:11855-11864. [PMID: 35516982 PMCID: PMC9063542 DOI: 10.1039/c8ra10542a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/29/2019] [Indexed: 12/02/2022] Open
Abstract
At present, chemotherapy is still the main treatment for cervical cancer. However, the drug resistance of chemotherapy drugs seriously restricts its use, so it is urgent to develop new drugs for cervical cancer. Some studies have shown that gambogic acid has a strong anti-tumor effect, while the anti-tumor effect and molecular mechanism of gambogic acid on cervical cancer need to be studied. Our study confirms that the cytotoxic effect of gambogic acid on cervical cancer cells depends on the expression of TR3 protein. Moreover, gambogic acid-induced apoptosis requires TR3 expression. In the mechanism, gambogic acid promoted nuclear export of TR3, resulting in up-regulation of p53, which leads to the decrease of mitochondrial membrane potential, eventually inducing apoptosis. These results suggest that the nuclear export of TR3 mediated gambogic acid-induced apoptosis through a p53-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Chunhong Zhang
- Department of Pharmacy, The First Affliated Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Jia Liu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
- Plastic and Cosmetic Center, The Affiliated Eye Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Fengxing Tao
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Yiyi Lu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Qin He
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affliated Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Yunsheng Xu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Wenfeng Li
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| |
Collapse
|
29
|
Sun R, Bao M, Long X, Yuan Y, Wu M, Li X, Bao J. Metabolic gene NR4A1 as a potential therapeutic target for non-smoking female non-small cell lung cancer patients. Thorac Cancer 2019; 10:715-727. [PMID: 30806032 PMCID: PMC6449245 DOI: 10.1111/1759-7714.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although cigarette smoking is considered one of the key risk factors for lung cancer, 15% of male patients and 53% of female patients with lung cancer are non-smokers. Metabolic changes are critical features of cancer. Therapeutic target identification from a metabolic perspective in non-small cell lung cancer (NSCLC) tissue of female non-smokers has long been ignored. RESULTS Based on microarray data retrieved from Affymetrix expression arrays E-GEOD-19804, we found that the downregulated genes in non-smoking female NSCLC patients tended to participate in protein/amino acid and lipid metabolism, while upregulated genes were more involved in protein/amino acid and carbohydrate metabolism. Combining nutrient metabolic co-expression, protein-protein interaction network construction and overall survival assessment, we identified NR4A1 and TIE1 as potential therapeutic targets for NSCLC in female non-smokers. To accelerate the drug development for non-smoking female NSCLC patients, we identified nilotinib as a potential agonist targeting NR4A1 encoded protein by molecular docking and molecular dynamic stimulation. We also show that nilotinib inhibited proliferation and induced senescence of cells in non-smoking female NSCLC patients in vitro. CONCLUSIONS These results not only uncover nutrient metabolic characteristics in non-smoking female NSCLC patients, but also provide a new paradigm for identifying new targets and drugs for novel therapy for such patients.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Down-Regulation
- Drug Screening Assays, Antitumor
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Non-Smokers/statistics & numerical data
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Interaction Maps
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptor, TIE-1/genetics
- Receptor, TIE-1/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Rong Sun
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Min‐Yue Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Long
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Yuan Yuan
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Miao‐Miao Wu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jin‐Ku Bao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
30
|
Chen X, Cao X, Tu X, Alitongbieke G, Xia Z, Li X, Chen Z, Yin M, Xu D, Guo S, Li Z, Chen L, Zhang X, Xu D, Gao M, Liu J, Zeng Z, Zhou H, Su Y, Zhang XK. BI1071, a Novel Nur77 Modulator, Induces Apoptosis of Cancer Cells by Activating the Nur77-Bcl-2 Apoptotic Pathway. Mol Cancer Ther 2019; 18:886-899. [PMID: 30926635 DOI: 10.1158/1535-7163.mct-18-0918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/28/2018] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
Abstract
Nur77 (also called TR3 or NGFI-B), an orphan member of the nuclear receptor superfamily, induces apoptosis by translocating to mitochondria where it interacts with Bcl-2 to convert Bcl-2 from an antiapoptotic to a pro-apoptotic molecule. Nur77 posttranslational modification such as phosphorylation has been shown to induce Nur77 translocation from the nucleus to mitochondria. However, small molecules that can bind directly to Nur77 to trigger its mitochondrial localization and Bcl-2 interaction remain to be explored. Here, we report our identification and characterization of DIM-C-pPhCF3 +MeSO3 - (BI1071), an oxidized product derived from indole-3-carbinol metabolite, as a modulator of the Nur77-Bcl-2 apoptotic pathway. BI1071 binds Nur77 with high affinity, promotes Nur77 mitochondrial targeting and interaction with Bcl-2, and effectively induces apoptosis of cancer cells in a Nur77- and Bcl-2-dependent manner. Studies with animal model showed that BI1071 potently inhibited the growth of tumor cells in animals through its induction of apoptosis. Our results identify BI1071 as a novel Nur77-binding modulator of the Nur77-Bcl-2 apoptotic pathway, which may serve as a promising lead for treating cancers with overexpression of Bcl-2.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xihua Cao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Gulimiran Alitongbieke
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zebin Xia
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Xiaotong Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | | | - Dan Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Shangjie Guo
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Liqun Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Dingyu Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Meichun Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Ying Su
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China. .,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
31
|
Liu N, Wu Z, Chen A, Chai D, Li L, Zhang L, Zheng J. ISG12a and its interaction partner NR4A1 are involved in TRAIL-induced apoptosis in hepatoma cells. J Cell Mol Med 2019; 23:3520-3529. [PMID: 30821058 PMCID: PMC6484314 DOI: 10.1111/jcmm.14251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in cancer cells while sparing normal cells, thereby leading to the development of TRAIL receptor agonists for cancer treatment. However, these agonist-based therapeutics exhibit little clinical benefits due to the lack of biomarkers to predict whether patients are responsive to the treatment, as well as determine the resistance of cancer cells to TRAIL-based agonists. Our previous study has demonstrated that ISG12a enhances TRAIL-induced apoptosis and might serve as a biomarker to predict the TRAIL response. The downstream mechanism by which ISG12a augments TRAIL-induced apoptosis remains to be elucidated. In this study, we found that ISG12a was localized in the mitochondria and nucleus and augmented TRAIL-induced apoptosis through intrinsic apoptotic pathway. In addition, ISG12a interacted with NR4A1 and promoted its nuclear-to-cytoplasm translocation. Upon translocate to cytoplasm, NR4A1 targeted mitochondria and induced Bcl2 conformational change, thereby exposing its BH3 domain. Moreover, TRAIL treatment can induce NR4A1 expression through the activation of NF-κB in TRAIL-resistant Huh7 hepatoma cells. Knockdown of NR4A1 could overcome TRAIL resistance. However, in TRAIL-sensitive LH86 liver cancer cells, TRAIL activated the Jun N-terminal kinases signalling pathway. Overall, these results showed that both ISG12a and its interaction partner NR4A1 are involved in TRAIL-mediated apoptosis in hepatoma cells.
Collapse
Affiliation(s)
- Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyuan Wu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Aoxing Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
32
|
Zhong C, Mai Y, Gao H, Zhou W, Zhou D. Mitochondrial targeting of TR3 is involved in TPA induced apoptosis in breast cancer cells. Gene 2019; 693:61-68. [PMID: 30641217 DOI: 10.1016/j.gene.2018.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Abstract
TPA is considered to be a tumor promoting molecule that induces the expression of COX-2 protein. However, it is contradictory to find that TPA can induce tumor cell apoptosis and exert antitumor activity. Therefore, the role of TPA in tumorigenesis and development has not yet been elucidated. Here we show that TPA can promote the apoptosis of breast cancer cells and increase the ratio of Bax/Bcl-2. It is suggested that TPA may induce apoptosis of breast cancer cells through mitochondrial apoptosis pathway. Further studies showed that TPA could cause mitochondrial dysfunction and trigger mitochondrial apoptotic pathway. In mechanism, the mitochondrial targeting of TR3 is involved in TPA induced apoptosis in breast cancer cells. In conclusion, our findings suggest that TPA can play a role in inhibiting cancer by inducing apoptosis and TR3 is expected to be a new target for cancer treatment.
Collapse
Affiliation(s)
- Caineng Zhong
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China.
| | - Yuchang Mai
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Hengyuan Gao
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Wenbin Zhou
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Dongxian Zhou
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Huang M, Xie X, Song X, Gu S, Chang X, Su T, Liang B, Huang D. MiR-506 Suppresses Colorectal Cancer Development by Inhibiting Orphan Nuclear Receptor NR4A1 Expression. J Cancer 2019; 10:3560-3570. [PMID: 31293661 PMCID: PMC6603418 DOI: 10.7150/jca.28272] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 05/01/2019] [Indexed: 02/05/2023] Open
Abstract
NR4A1 acts as an oncogene and plays an important role in colorectal cancer development and progression, but little is known about the regulatory mechanism of NR4A1 expression. MicroRNA (miRNA) is involved in the progression of various tumors, affecting proliferation, apoptosis or migration. We aimed to elucidate whether miRNA regulates NR4A1 expression and determine its underlying significance in colorectal cancer. By using the TargetScan database, we identified a miR-506 binding site in the NR4A1 3'-UTR. Examination of colorectal cancer tissues and cells revealed that NR4A1 mRNA and protein were up-regulated, while miR-506 expression was down-regulated. Spearman correlation analysis revealed that expression of NR4A1 mRNA was negatively correlated with miR-506 levels in colorectal cancer tissue. Further studies indicated that miR-506 decreased NR4A1 expression through directly targeting the NR4A1 mRNA 3'-UTR. Functional experiments showed that rescue of NR4A1 expression in cells reversed the inhibitory effects of miR-506 on proliferation, migration and invasion of colorectal cancer cells. In conclusion, miR-506 acts as a tumor suppressor and inhibits proliferation, migration and invasion in colorectal cancer cells partly through decreasing NR4A1 expression.
Collapse
Affiliation(s)
- Meihui Huang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- Department of Pathology and Central Laboratory, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Xina Xie
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated H-ospital of Shenzhen University, Health Science Center, Shenzhen 518035, China
| | - Xuhong Song
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Songgang Gu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xiaolan Chang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Ting Su
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Bin Liang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- ✉ Corresponding authors: Dongyang Huang, Bin Liang. E-mail: and
| | - Dongyang Huang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- ✉ Corresponding authors: Dongyang Huang, Bin Liang. E-mail: and
| |
Collapse
|
34
|
Fedorova O, Petukhov A, Daks A, Shuvalov O, Leonova T, Vasileva E, Aksenov N, Melino G, Barlev NA. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene 2018; 38:2108-2122. [PMID: 30455429 DOI: 10.1038/s41388-018-0566-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 11/09/2022]
Abstract
Major tumor suppressor and transcription factor p53 coordinates expression of many genes hence affecting critical cellular functions including cell cycle, senescence, and apoptosis. The NR4A family of orphan receptors (NR4A1-3) belongs to the superfamily of nuclear receptors. They regulate genes involved in proliferation, cell migration, and apoptosis. In this study, we report an identification of NR4A3 as a direct transcriptional target of p53. Using various techniques, we showed that p53 directly bound the promoter of NR4A3 gene and induced its transcription. Functionally, over-expression of NR4A3 attenuated proliferation of cancer cells and promoted apoptosis by augmenting the expression of pro-apoptotic genes, PUMA and Bax. Knockdown of NR4A3 reversed these phenotypes. Importantly, NR4A3 exhibited tumor suppressive functions both in p53-dependent and independent manner. In addition, NR4A3 physically interacted with an anti-apoptotic Bcl-2 protein hence sequestering it from blunting apoptosis. These observations were corroborated by the bioinformatics analysis, which demonstrated a correlation between high levels of NR4A3 expression and better survival of breast and lung cancer patients. Collectively, our studies revealed a novel transcriptional target of p53, NR4A3, which triggers apoptosis and thus likely has a tumor suppressive role in breast and lung cancers.
Collapse
Affiliation(s)
- Olga Fedorova
- Gene Expression Program, Institute of Cytology, Saint-Petersburg, Russia, 194064
| | - Alexey Petukhov
- Gene Expression Program, Institute of Cytology, Saint-Petersburg, Russia, 194064.,Almazov National Medical Research Centre, St. Petersburg, Russia, 197341
| | - Alexandra Daks
- Gene Expression Program, Institute of Cytology, Saint-Petersburg, Russia, 194064
| | - Oleg Shuvalov
- Gene Expression Program, Institute of Cytology, Saint-Petersburg, Russia, 194064
| | - Tatyana Leonova
- Gene Expression Program, Institute of Cytology, Saint-Petersburg, Russia, 194064
| | - Elena Vasileva
- Gene Expression Program, Institute of Cytology, Saint-Petersburg, Russia, 194064
| | - Nikolai Aksenov
- Gene Expression Program, Institute of Cytology, Saint-Petersburg, Russia, 194064
| | | | - Nikolai A Barlev
- Gene Expression Program, Institute of Cytology, Saint-Petersburg, Russia, 194064. .,Moscow Institute of Technology and Physics, Dolgoprudny, Moscow Region, Russia, 141700.
| |
Collapse
|
35
|
Tel-Karthaus N, Kers-Rebel ED, Looman MW, Ichinose H, de Vries CJ, Ansems M. Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Front Immunol 2018; 9:1797. [PMID: 30123220 PMCID: PMC6085422 DOI: 10.3389/fimmu.2018.01797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system. Proper function of DCs is crucial to elicit an effective immune response against pathogens and to induce antitumor immunity. Different members of the nuclear receptor (NR) family of transcription factors have been reported to affect proper function of immune cells. Nur77 is a member of the NR4A subfamily of orphan NRs that is expressed and has a function within the immune system. We now show that Nur77 is expressed in different murine DCs subsets in vitro and ex vivo, in human monocyte-derived DCs (moDCs) and in freshly isolated human BDCA1+ DCs, but its expression is dispensable for DC development in the spleen and lymph nodes. We show, by siRNA-mediated knockdown of Nur77 in human moDCs and by using Nur77-/- murine DCs, that Nur77-deficient DCs have enhanced inflammatory responses leading to increased T cell proliferation. Treatment of human moDCs with 6-mercaptopurine, an activator of Nur77, leads to diminished DC activation resulting in an impaired capacity to induce IFNγ production by allogeneic T cells. Altogether, our data show a yet unexplored role for Nur77 in modifying the activation status of murine and human DCs. Ultimately, targeting Nur77 may prove to be efficacious in boosting or diminishing the activation status of DCs and may lead to the development of improved DC-based immunotherapies in, respectively, cancer treatment or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nina Tel-Karthaus
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther D Kers-Rebel
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike W Looman
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Carlie J de Vries
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Marleen Ansems
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
36
|
Zhang L, Liu W, Wang Q, Li Q, Wang H, Wang J, Teng T, Chen M, Ji A, Li Y. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy. Molecules 2018; 23:molecules23030565. [PMID: 29498706 PMCID: PMC6017334 DOI: 10.3390/molecules23030565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Medullary thyroid cancer (MTC) is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1) plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK) and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K), which is the key enzyme in the mammalian target of rapamycin (mTOR) pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53)-sestrins-AMPK-mTOR signaling pathway.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzopyrans/chemistry
- Benzopyrans/pharmacology
- Binding Sites
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Molecular Docking Simulation
- Molecular Targeted Therapy/methods
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phosphorylation
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thyroid Gland/drug effects
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Lei Zhang
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Qinpei Li
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Huijuan Wang
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Jun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Tieshan Teng
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Mingliang Chen
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Ailing Ji
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| | - Yanzhang Li
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China.
- Henan University Medical bioinformatics institute, Kaifeng 475004, China.
- Henan University School of Basic Medical Sciences, Kaifeng 475004, China.
| |
Collapse
|
37
|
Zhang D, Chen Z, Hu C, Yan S, Li Z, Lian B, Xu Y, Ding R, Zeng Z, Zhang XK, Su Y. Celastrol binds to its target protein via specific noncovalent interactions and reversible covalent bonds. Chem Commun (Camb) 2018; 54:12871-12874. [DOI: 10.1039/c8cc06140h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Celastrol binding to its target protein Nur77 requires specific noncovalent interactions that position celastrol close to a specific cysteine and furthermore confer its binding specificity.
Collapse
|
38
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|
39
|
Overexpression of NR4A1 is associated with tumor recurrence and poor survival in non-small-cell lung carcinoma. Oncotarget 2017; 8:113977-113986. [PMID: 29371962 PMCID: PMC5768379 DOI: 10.18632/oncotarget.23048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Abstract
The expression level and clinical significance of NR4A1 are presently unknown in the non-small-cell lung carcinoma (NSCLC). This study aimed to explore the expression, prognostic value, and function of NR4A1 in NSCLC. METHODS Clinicopathological parameters of 167 NSCLC patients who received radical surgery from January 2007 and December 2012 were retrospectively reviewed. The NR4A1 expression in NSCLC tumors and the adjacent matched para-carcinoma specimens were examined, and the association between NR4A1 expression and clinical variables was explored. Cell viability assay, and transwell migration and invasion assays were used to access the function of NR4A1 in NSCLC. Kaplan-Meier analysis and Cox regression were performed to investigate the prognostic significance of NR4A1 for NSCLC. RESULTS NR4A1 was overexpressed in NSCLC tissues compared with the para-carcinoma specimens. Consistently, Oncomine analysis showed that NR4A1 was overexpressed in NSCLC tissues compared with normal tissues in published datasets (P < 0.001). The elevated NR4A1 expression was associated with carcinoma recurrence (P < 0.05). The 5-year median overall survival (OS) and progression free survival (PFS) were significantly poorer in the NR4A1-overexpression group. Multivariate Cox analysis showed that NR4A1 overexpression was an independent factor for OS (HR, 95%CI: P < 0.05) and PFS (HR, 95%CI: P < 0.05) in NSCLC. Moreover, knockdown of NR4A1 significantly reduced NSCLC cell proliferation, migration, and invasion. CONCLUSIONS NR4A1 exhibits a tumor-promoting effect on NSCLC, and might serve as a promising prognostic biomarker and a therapeutic target for NSCLC.
Collapse
|
40
|
Lee HS, Safe S, Lee SO. Inactivation of the orphan nuclear receptor NR4A1 contributes to apoptosis induction by fangchinoline in pancreatic cancer cells. Toxicol Appl Pharmacol 2017; 332:32-39. [PMID: 28754437 DOI: 10.1016/j.taap.2017.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022]
Abstract
Previous studies have demonstrated that the orphan nuclear receptor NR4A1 is overexpressed in human pancreatic cancer and antagonizing this receptor promotes apoptosis and inhibits pancreatic cancer cells and tumor growth. In the present study, we identified fangchinoline, a bisbenzyltetrahydroisoquinoline alkaloid from Stephania tetrandra, as a new inactivator of nuclear NR4A1 and demonstrated that fangchinoline inhibits cell proliferation and induces apoptosis, in part, via the NR4A1-dependent pro-apoptotic pathways in human pancreatic cancer cells. It decreased expression of the antiapoptotic protein survivin by inhibiting Sp1-mediated transcription and induced oxidative stress-mediated endoplasmic reticulum (ER) stress in pancreatic cancer cells. These results suggest that inhibition of NR4A1-mediated transcriptional activity was involved in the anticancer effects of fangchinoline, and fangchinoline represents a novel class of mechanism-based anticancer agents targeting NR4A1 that is overexpressed in pancreatic cancer.
Collapse
Affiliation(s)
- Hyo-Seon Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea; The center for Traditional Microorganism Resource (TMR), Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
41
|
Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Mol Cell 2017; 66:141-153.e6. [PMID: 28388439 DOI: 10.1016/j.molcel.2017.03.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 03/10/2017] [Indexed: 01/09/2023]
Abstract
Mitochondria play an integral role in cell death, autophagy, immunity, and inflammation. We previously showed that Nur77, an orphan nuclear receptor, induces apoptosis by targeting mitochondria. Here, we report that celastrol, a potent anti-inflammatory pentacyclic triterpene, binds Nur77 to inhibit inflammation and induce autophagy in a Nur77-dependent manner. Celastrol promotes Nur77 translocation from the nucleus to mitochondria, where it interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase important for inflammatory signaling. The interaction is mediated by an LxxLL motif in TRAF2 and results not only in the inhibition of TRAF2 ubiquitination but also in Lys63-linked Nur77 ubiquitination. Under inflammatory conditions, ubiquitinated Nur77 resides at mitochondria, rendering them sensitive to autophagy, an event involving Nur77 interaction with p62/SQSTM1. Together, our results identify Nur77 as a critical intracellular target for celastrol and unravel a mechanism of Nur77-dependent clearance of inflamed mitochondria to alleviate inflammation.
Collapse
|
42
|
Liu J, Wang GH, Duan YH, Dai Y, Bao Y, Hu M, Zhou YQ, Li M, Jiang F, Zhou H, Yao XS, Zhang XK. Modulation of the Nur77-Bcl-2 apoptotic pathway by p38α MAPK. Oncotarget 2017; 8:69731-69745. [PMID: 29050237 PMCID: PMC5642512 DOI: 10.18632/oncotarget.19227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/05/2017] [Indexed: 02/02/2023] Open
Abstract
Orphan nuclear receptor Nur77 promotes apoptosis by targeting mitochondria through interaction with Bcl-2, an event that converts Bcl-2 from a survival to killer. However, how the Nur77-Bcl-2 apoptotic pathway is regulated remains largely unknown. In this study, we examined the regulation of the Nur77-Bcl-2 pathway by CCE9, a xanthone compound. Our results demonstrated that the apoptotic effect of CCE9 depended on its induction of Nur77 expression, cytoplasmic localization, and mitochondrial targeting. The activation of the Nur77-Bcl-2 pathway by CCE9 was associated with its activation of p38α MAPK. Inhibition of p38α MAPK activation by knocking down or knocking out p38α MAPK impaired the effect of CCE9 on inducing apoptosis and the expression and cytoplasmic localization of Nur77. In addition, CCE9 activation of p38α MAPK resulted in Bcl-2 phosphorylation and Bcl-2 interaction with Nur77, whereas inhibition of p38α MAPK activation or expression suppressed the interaction. Moreover, mutating Ser87 and Thr56 in the loop of Bcl-2, which are known to be phosphorylated by p38α MAPK, impaired the ability Bcl-2 to interact with Nur77. Together, our results reveal a profound role of p38α MAPK in regulating the Nur77-Bcl-2 apoptotic pathway through its modulation of Nur77 expression, Bcl-2 phosphorylation, and their interaction.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Guang-Hui Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Ying-Hui Duan
- Institutes of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | - Yi Dai
- Institutes of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | - Yuzhou Bao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Mengjie Hu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Yu-Qi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Mingyu Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xin-Sheng Yao
- Institutes of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
43
|
Li XM, Yang TY, He XS, Wang JR, Gan WJ, Zhang S, Li JM, Wu H. Orphan nuclear receptor Nur77 inhibits poly (I:C)-triggered acute liver inflammation by inducing the ubiquitin-editing enzyme A20. Oncotarget 2017; 8:61025-61035. [PMID: 28977843 PMCID: PMC5617403 DOI: 10.18632/oncotarget.17731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a key contributor to various types of acute and chronic liver disease. We recently reported that lack of Nur77, an orphan nuclear receptor, contributes to the pathogenesis of inflammatory diseases including inflammatory bowel disease and sepsis. However, whether Nur77 plays a critical role in liver inflammation remains to be fully understood. Employing in vivo acute liver inflammation model in wild-type (Nur77+/+) and Nur77-/- mice, we here found that Nur77 deficiency dramatically increased the production of pro-inflammatory cytokines and accelerated liver injury induced by poly (I:C)/D-GalN in Nur77-/- mice. Mechanistically, Nur77 acts as a negative regulator of NF-κB signaling by inducing the expression of ubiquitin-editing enzyme A20, a novel target gene of Nur77. Notably, in inflammatory cells, overexpression of A20 enhanced, whereas knockdown of A20 by siRNA approach impaired, the inhibitory effect of Nur77 on poly (I:C)-triggered inflammation. Collectively, our data suggest that the orphan nuclear receptor Nur77 plays a protective role in poly (I:C)-triggered liver inflammation by inducing A20, thus making it a promising target for the prevention and treatment of liver inflammation.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Tian-Yu Yang
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Li XM, Wang JR, Shen T, Gao SS, He XS, Li JN, Yang TY, Zhang S, Gan WJ, Li JM, Wu H. Nur77 deficiency in mice accelerates tumor invasion and metastasis by facilitating TNFα secretion and lowering CSF-1R expression. PLoS One 2017; 12:e0171347. [PMID: 28170411 PMCID: PMC5295676 DOI: 10.1371/journal.pone.0171347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Nur77, an orphan member of the nuclear receptor superfamily, plays critical roles in inflammation and immunity. However, the role of Nur77 in tumor microenvironment remains elusive. Results showed that deletion of Nur77 strikingly enhanced tumor metastasis compared to WT mice. Additionally, compared to the conditioned media derived from Nur77+/+ peritoneal macrophages (CM1), the conditioned media derived from Nur77-/- peritoneal macrophages (CM2) significantly promoted the EMT of cancer cells, and greatly enhanced the migratory and invasive abilities of cancer cells. Moreover, studies using TNF-α blocking antibody demonstrated that pro-inflammatory cytokine TNF-α was indispensable in supporting CM2-induced EMT to drive cancer cells migration and invasion. Furthermore, we found that Nur77 promoted the expression of CSF-1R, a novel downstream target gene of Nur77, and subsequently enhanced the migration of inflammatory cells. Notably, infiltration of inflammatory cells in the tumors of Nur77-/- mice was markedly abrogated compared to Nur77+/+ mice. Collectively, these results revealed that host Nur77 expression was pivotal in antitumor immune response, and in inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tong Shen
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shang-Shang Gao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang-Nan Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tian-Yu Yang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HW); (JML)
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
- * E-mail: (HW); (JML)
| |
Collapse
|
45
|
Hu H, Lin C, Ao M, Ji Y, Tang B, Zhou X, Fang M, Zeng J, Wu Z. Synthesis and biological evaluation of 1-(2-(adamantane-1-yl)-1H-indol-5-yl)-3-substituted urea/thiourea derivatives as anticancer agents. RSC Adv 2017. [DOI: 10.1039/c7ra08149a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel 2,5-disubstituted indole derivatives were synthesized. Compounds 7n, 7s, and 7w induced Nur77-expression in a time- and dose- dependent manner in H460 cells. Furthermore, Nur77 served as a critical mediator for the anticancer action of 7s.
Collapse
Affiliation(s)
- Hongyu Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Chunrong Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Yufen Ji
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Bowen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Xiaoxiao Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Jinzhang Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| |
Collapse
|
46
|
Delgado E, Boisen MM, Laskey R, Chen R, Song C, Sallit J, Yochum ZA, Andersen CL, Sikora MJ, Wagner J, Safe S, Elishaev E, Lee A, Edwards RP, Haluska P, Tseng G, Schurdak M, Oesterreich S. High expression of orphan nuclear receptor NR4A1 in a subset of ovarian tumors with worse outcome. Gynecol Oncol 2016; 141:348-356. [PMID: 26946093 DOI: 10.1016/j.ygyno.2016.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Nuclear receptors (NRs) play a vital role in the development and progression of several cancers including breast and prostate. Using TCGA data, we sought to identify critical nuclear receptors in high grade serous ovarian cancers (HGSOC) and to confirm these findings using in vitro approaches. METHODS In silico analysis of TCGA data was performed to identify relevant NRs in HGSOC. Ovarian cancer cell lines were screened for NR expression and functional studies were performed to determine the significance of these NRs in ovarian cancers. NR expression was analyzed in ovarian cancer tissue samples using immunohistochemistry to identify correlations with histology and stage of disease. RESULTS The NR4A family of NRs was identified as a potential driver of ovarian cancer pathogenesis. Overexpression of NR4A1 in particular correlated with worse progression free survival. Endogenous expression of NR4A1 in normal ovarian samples was relatively high compared to that of other tissue types, suggesting a unique role for this orphan receptor in the ovary. Expression of NR4A1 in HGSOC cell lines as well as in patient samples was variable. NR4A1 primarily localized to the nucleus in normal ovarian tissue while co-localization within the cytoplasm and nucleus was noted in ovarian cancer cell lines and patient tissues. CONCLUSIONS NR4A1 is highly expressed in a subset of HGSOC samples from patients that have a worse progression free survival. Studies to target NR4A1 for therapeutic intervention should include HGSOC.
Collapse
MESH Headings
- Animals
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Female
- Genome
- Heterografts
- Humans
- Immunohistochemistry
- Mice
- Mice, SCID
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/biosynthesis
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Evan Delgado
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Michelle M Boisen
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Robin Laskey
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rui Chen
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chi Song
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Zachary A Yochum
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Courtney L Andersen
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Molecular Pharmacology Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Matthew J Sikora
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jacob Wagner
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Esther Elishaev
- Department of Pathology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adrian Lee
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Robert P Edwards
- Division of Gynecologic Oncology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paul Haluska
- Department of Oncology and Pharmacology, Mayo Clinic, Rochester, MN, USA
| | - George Tseng
- Department of Biostatistics and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee-Womens Research Institute, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Safe S, Jin UH, Morpurgo B, Abudayyeh A, Singh M, Tjalkens RB. Nuclear receptor 4A (NR4A) family - orphans no more. J Steroid Biochem Mol Biol 2016; 157:48-60. [PMID: 25917081 PMCID: PMC4618773 DOI: 10.1016/j.jsbmb.2015.04.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/26/2015] [Accepted: 04/21/2015] [Indexed: 01/17/2023]
Abstract
The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer.
Collapse
MESH Headings
- Arthritis/metabolism
- Cardiovascular Diseases/metabolism
- DNA-Binding Proteins/metabolism
- Homeostasis
- Humans
- Immunity, Cellular
- Inflammation/metabolism
- Ligands
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Neoplasms/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Benjamin Morpurgo
- Texas A&M Institute for Genomic Medicine, Texas A&M University, 670 Raymond Stotzer Pkwy, College Station, TX 77843, USA
| | - Ala Abudayyeh
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mandip Singh
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ronald B Tjalkens
- Department of Toxicology and Neuroscience, Colorado State University, 1680Campus Delivery, Fort Collins, CO 80523-1680, USA
| |
Collapse
|
48
|
Tenga A, Beard JA, Takwi A, Wang YM, Chen T. Regulation of Nuclear Receptor Nur77 by miR-124. PLoS One 2016; 11:e0148433. [PMID: 26840408 PMCID: PMC4739595 DOI: 10.1371/journal.pone.0148433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/18/2016] [Indexed: 01/26/2023] Open
Abstract
The nuclear receptor Nur77 is commonly upregulated in adult cancers and has oncogenic functions. Nur77 is an immediate-early response gene that acts as a transcription factor to promote proliferation and protect cells from apoptosis. Conversely, Nur77 can translocate to the mitochondria and induce apoptosis upon treatment with various cytotoxic agents. Because Nur77 is upregulated in cancer and may have a role in cancer progression, it is of interest to understand the mechanism controlling its expression. MicroRNAs (miRNAs) are responsible for inhibiting translation of their target genes by binding to the 3'UTR and either degrading the mRNA or preventing it from being translated into protein, thereby making these non-coding endogenous RNAs vital regulators of every cellular process. Several miRNAs have been predicted to target Nur77; however, strong evidence showing the regulation of Nur77 by any miRNA is lacking. In this study, we used a luciferase reporter assay containing the 3'UTR of Nur77 to screen 296 miRNAs and found that miR-124, which is the most abundant miRNA in the brain and has a role in promoting neuronal differentiation, caused the greatest reduction in luciferase activity. Interestingly, we discovered an inverse relationship in Daoy medulloblastoma cells and undifferentiated granule neuron precursors in which Nur77 is upregulated and miR-124 is downregulated. Exogenous expression to further elevate Nur77 levels in Daoy cells increased proliferation and viability, but knocking down Nur77 via siRNA resulted in the opposite phenotype. Importantly, exogenous expression of miR-124 reduced Nur77 expression, cell viability, proliferation, and tumor spheroid size in 3D culture. In all, we have discovered miR-124 to be downregulated in instances of medulloblastoma in which Nur77 is upregulated, resulting in a proliferative state that abets cancer progression. This study provides evidence for increasing miR-124 expression as a potential therapy for cancers with elevated levels of Nur77.
Collapse
MESH Headings
- 3' Untranslated Regions
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Medulloblastoma/genetics
- Medulloblastoma/metabolism
- Medulloblastoma/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Transport
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
Collapse
Affiliation(s)
- Alexa Tenga
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jordan A. Beard
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Apana Takwi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
49
|
Wu H, Li XM, Wang JR, Gan WJ, Jiang FQ, Liu Y, Zhang XD, He XS, Zhao YY, Lu XX, Guo YB, Zhang XK, Li JM. NUR77 exerts a protective effect against inflammatory bowel disease by negatively regulating the TRAF6/TLR-IL-1R signalling axis. J Pathol 2015; 238:457-69. [PMID: 26564988 DOI: 10.1002/path.4670] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/05/2023]
Abstract
Nur77, an immediate-early response gene, participates in a wide range of biological functions. Its human homologue, NUR77, is known by several names and has the HGNC-approved gene symbol NR4A1. However, the role of Nur77 in inflammatory bowel disease (IBD) and its underlying mechanisms remain elusive. Here, using public data from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) on the most recent genome-wide association studies (GWAS) for ulcerative colitis (UC) and Crohn's disease (CD), we found that genetic variants of the NUR77 gene are associated with increased risk for both UC and CD. Accordingly, Nur77 expression was significantly reduced in colon tissues from patients with UC or CD and mice treated with DSS. Nur77 deficiency increased the susceptibility of mice to DSS-induced experimental colitis and prevented intestinal recovery, whereas treatment with cytosporone B (Csn-B), an agonist for Nur77, significantly attenuated excessive inflammatory response in the DSS-induced colitis mouse model. Mechanistically, NUR77 acts as a negative regulator of TLR-IL-1R signalling by interacting with TRAF6. This interaction prevented auto-ubiquitination and oligomerization of TRAF6 and subsequently inhibited NF-κB activation and pro-inflammatory cytokine production. Taken together, our GWAS-based analysis and in vitro and in vivo studies have demonstrated that Nur77 is an important regulator of TRAF6/TLR-IL-1R-initiated inflammatory signalling, and loss of Nur77 may contribute to the development of IBD, suggesting Nur77 as a potential target for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Hua Wu
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Xiu-Ming Li
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Jing-Ru Wang
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Wen-Juan Gan
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China.,First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fu-Quan Jiang
- School of Pharmaceutical Sciences, Xiamen University, People's Republic of China
| | - Yao Liu
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Xin-Dao Zhang
- School of Pharmaceutical Sciences, Xiamen University, People's Republic of China
| | - Xiao-Shun He
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Yuan-Yuan Zhao
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Xing-Xing Lu
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Yan-Bing Guo
- School of Pharmaceutical Sciences, Xiamen University, People's Republic of China.,Sanford-Burnham Medical Research Institute, Cancer Center, La Jolla, CA, USA
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, People's Republic of China.,Sanford-Burnham Medical Research Institute, Cancer Center, La Jolla, CA, USA
| | - Jian-Ming Li
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
50
|
Xie L, Jiang F, Zhang X, Alitongbieke G, Shi X, Meng M, Xu Y, Ren A, Wang J, Cai L, Zhou Y, Xu Y, Su Y, Liu J, Zeng Z, Wang G, Zhou H, Chen QC, Zhang XK. Honokiol sensitizes breast cancer cells to TNF-α induction of apoptosis by inhibiting Nur77 expression. Br J Pharmacol 2015; 173:344-56. [PMID: 26505879 DOI: 10.1111/bph.13375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The orphan nuclear receptor Nur77 is implicated in the survival and apoptosis of cancer cells. The purpose of this study was to determine whether and how Nur77 serves to mediate the effect of the inflammatory cytokine TNF-α in cancer cells and to identify and characterize new agents targeting Nur77 for cancer therapy. EXPERIMENTAL APPROACH The effects of TNF-α on the expression and function of Nur77 were studied using in vitro and in vivo models. Nur77 expression was evaluated in tumour tissues from breast cancer patients. The anticancer effects of honokiol and its mechanism of action were assessed by in vitro, cell-based and animal studies. KEY RESULTS TNF-α rapidly and potently induced the expression of Nur77 in breast cancer cells through activation of IκB kinase and JNK. Knocking down Nur77 resulted in TNF-α-dependent apoptosis, while ectopic Nur77 expression in MCF-7 cells promoted their growth in animals. Levels of Nur77 were higher in tumour tissues than the corresponding tissues surrounding the tumour in about 50% breast cancer patients studied. Our in vitro and animal studies also identified honokiol as an effective sensitizer of TNF-α-induced apoptosis by inhibiting TNF-α-induced Nur77 mRNA expression, which could be attributed to its interference of TNFR1's interaction with receptor-interacting protein 1 (RIPK1). CONCLUSIONS AND IMPLICATIONS TNF-α-induced Nur77 serves as a survival factor to attenuate the death effect of TNF-α in cancer cells. With its proven human safety profile, honokiol represents a promising agent that warrants further clinical development.
Collapse
Affiliation(s)
- Lei Xie
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | | | - Xinlei Shi
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - MinJun Meng
- Zhongshan Hospital, Xiamen University, Xiamen, 361102, China
| | - Yiming Xu
- Zhongshan Hospital, Xiamen University, Xiamen, 361102, China
| | - Anshi Ren
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lijun Cai
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ying Su
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, 92037, USA
| | - Jie Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Guanghui Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Quan Cheng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.,Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, 92037, USA
| |
Collapse
|