1
|
Xiao SM, Xu R, Yang YX, Zhao R, Xie Y, Lei XD, Wu XT. Gastrointestinal stromal tumors regulate macrophage M2 polarization through the MIF/CXCR4 axis to immune escape. Front Immunol 2024; 15:1431535. [PMID: 39464891 PMCID: PMC11502962 DOI: 10.3389/fimmu.2024.1431535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose The infiltration of immune cells and their roles of the infiltrating-immune cells in gastrointestinal stromal tumor (GIST) is still unclear. We aimed to discover the infiltration cell types and the relationship between the infiltrating-immune cells and the progression of GIST. Experimental design Single-cell RNA sequencing were performed to discover types of the infiltrating-immune cells and to analyze CellChat between cells. Immunohistochemistry of 80 GIST samples were used to clarify the relation between macrophages and recurrence risk. In vitro, flow cytometry and Real-time PCR were performed to uncover a potential mechanism of tumor cell regulation of macrophages. Results Tumor cells, macrophages, and T-cells were the predominant cell types. The MIF/CXCR4 axis was the most common ligand-receptor interaction between macrophages and tumor cells. As the risk increased, expression levels of CD68, CD206, MIF, and CXCR4 gradually increased. In vitro, we found that GIST882 was able to secrete MIF and GIST882 cell supernatant upregulated M2 polarization. Real-time PCR showed that expression levels of IL-10 mRNA and Arginase-1 mRNA were also the highest in the GIST882 cell supernatant group. Conclusions These findings identify that macrophages are the most abundant infiltrating cells in GIST. The MIF/CXCR4 axis is the most common ligand-receptor interaction between macrophages and tumor cells. GIST cells can regulate macrophage M2 polarization through the MIF/CXCR4 axis.
Collapse
Affiliation(s)
- Shuo-meng Xiao
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Rui Xu
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ying-xin Yang
- Department of Oncology, The First People’s Hospital of Dali, Dali City, Yunnan, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Xie
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xu-dan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiao-ting Wu
- Department of Gastrointestinal Surgery, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Menssen AJ, Hudson CA, Alonzo T, Gerbing R, Pardo L, Leonti A, Cook JA, Hsu FC, Lott LL, Dai F, Fearing C, Ghirardelli K, Hylkema T, Tarlock K, Loeb KR, Kolb EA, Cooper T, Pollard J, Wells DA, Loken MR, Aplenc R, Meshinchi S, Brodersen LE. CD74 is expressed in a subset of pediatric acute myeloid leukemia patients and is a promising target for therapy: a report from the Children's Oncology Group. Haematologica 2024; 109:3182-3193. [PMID: 38299667 PMCID: PMC11443400 DOI: 10.3324/haematol.2023.283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 02/02/2024] Open
Abstract
As curative therapies for pediatric acute myleoid leukemia (AML) remain elusive, identifying potential new treatment targets is vital. We assessed the cell surface expression of CD74, also known as the major histocompatibility complex-II invariant chain, by multidimensional flow cytometry in 973 patients enrolled in the Children's Oncology Group AAML1031 clinical trial (clinicaltrials gov. Identifier: NCT01371981). Thirty-eight percent of pediatric AML patients expressed CD74 at any level and a comparison to normal hematopoietic cells revealed a subset with increased expression relative to normal myeloid progenitor cells. Pediatric AML patients expressing high intensity CD74 typically had an immature immunophenotype and an increased frequency of lymphoid antigen expression. Increased CD74 expression was associated with older patients with lower white blood cells and peripheral blood blast counts, and was enriched for t(8;21), trisomy 8, and CEBPA mutations. Overall, high CD74 expression was associated with low-risk status, however 26% of patients were allocated to high-risk protocol status and 5-year event-free survival was 53%, indicating that a significant number of high expressing patients had poor outcomes. In vitro preclinical studies indicate that anti-CD74 therapy demonstrates efficacy against AML cells but has little impact on normal CD34+ cells. Together, we demonstrate that CD74 is expressed on a subset of pediatric AML at increased levels compared to normal hematopoietic cells and is a promising target for therapy in expressing patients. Given that nearly half of patients expressing CD74 at high levels experience an adverse event within 5 years, and the availability of CD74 targeting drugs, this represents a promising line of therapy worthy of additional investigation.
Collapse
Affiliation(s)
| | | | - Todd Alonzo
- Children's Oncology Group, Monrovia, CA, USA; Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | | | | | | | | | | | | | | | | | | | | | - Katherine Tarlock
- Fred Hutchinson Cancer Research Center, Seattle WA, USA; Seattle Children's Hospital, Cancer and Blood Disorders Center, Department of Hematology/Oncology, Seattle, WA
| | - Keith R Loeb
- Fred Hutchinson Cancer Research Center, Seattle WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Edward A Kolb
- Children's Oncology Group, Monrovia, CA, USA; Nemours Center for Cancer and Blood Disorders Nemours/A.I. DuPont Hospital for Children, Wilmington DE
| | - Todd Cooper
- Seattle Children's Hospital, Cancer and Blood Disorders Center, Department of Hematology/Oncology, Seattle, WA
| | - Jessica Pollard
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA
| | | | | | | | - Soheil Meshinchi
- Children's Oncology Group, Monrovia, CA, USA; Fred Hutchinson Cancer Research Center, Seattle WA
| | | |
Collapse
|
3
|
Jha RM, Rajasundaram D, Sneiderman C, Schlegel BT, O'Brien C, Xiong Z, Janesko-Feldman K, Trivedi R, Vagni V, Zusman BE, Catapano JS, Eberle A, Desai SM, Jadhav AP, Mihaljevic S, Miller M, Raikwar S, Rani A, Rulney J, Shahjouie S, Raphael I, Kumar A, Phuah CL, Winkler EA, Simon DW, Kochanek PM, Kohanbash G. A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets. Neuron 2024; 112:3069-3088.e4. [PMID: 39019041 DOI: 10.1016/j.neuron.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ria Trivedi
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vincent Vagni
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Benjamin E Zusman
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Adam Eberle
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Margaux Miller
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jarrod Rulney
- University of Arizona School of Medicine, Tucson, AZ 85724, USA
| | - Shima Shahjouie
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Pennsylvania State University, Hershey, PA 17033, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditya Kumar
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Chia-Ling Phuah
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ethan A Winkler
- Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis W Simon
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Cheng J, Li J, Jiang X, Ma X, Li B, Zhai H, Luo X, Zhou Y, Wu J, Zhang Z, Chen S, Wang Y. CD74 facilitates immunotherapy response by shaping the tumor microenvironment of hepatocellular carcinoma. Mol Med 2024; 30:116. [PMID: 39118044 PMCID: PMC11308498 DOI: 10.1186/s10020-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND CD74 is ectopically expressed in many tumors and can regulate tumor immunity. However, there are many gaps in the study of the prognostic value of CD74 expression and immune infiltration in hepatocellular carcinoma (HCC). METHODS An online tumor database was searched to obtain data on gene/protein expression. Immune infiltration analysis was performed using the Tumor Immune Estimation Resource and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer databases. Single-cell data were obtained from the Tissue-specific Gene Expression and Regulation, Single-cell Transcriptomes of Tumor Immune Microenvironment and Tumor Immune Single-cell Hub 2 databases. RESULTS CD74 was highly expressed in HCC patients. HCC patients with high CD74 expression who consumed alcohol or were negative for hepatitis virus had a better prognosis than patients with low CD74 expression. CD74 was mainly enriched in immune response regulation pathways. Both copy number variations in CD74 and CD74 expression patterns affected the infiltration levels of immune cells. Interestingly, CD74 regulated the differentiation of myeloid cells. CD74 in macrophages and dendritic cells (DCs) forms complex networks with malignant cells and hepatic progenitor cell (HPC)-like cells, respectively. High CD74 expression in HPC-like cells and malignant cells significantly decreased the fraction of C-type lectin domain family 9 A (CLEC9A)-cDC1+ DCs and IL-1B+ macrophages, respectively. Their crosstalk subsequently shaped the tumor microenvironment of HCC, possibly through the CD74-MIF axis. Importantly, patients with high CD74 expression presented higher immune scores and achieved good outcomes after receiving immunotherapy. CONCLUSION High CD74 expression is associated with the abundance of a variety of immune cell types, mediating interactions among tumor and immune cells and shaping the malignant behavior of HCC. In summary, CD74 may be a hallmark for determining the prognosis and immune cell infiltration levels of HCC patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/etiology
- Tumor Microenvironment/immunology
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/etiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Immunotherapy/methods
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Prognosis
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor
- Computational Biology/methods
Collapse
Affiliation(s)
- Jianghong Cheng
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Junyang Li
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xinjie Jiang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xi Ma
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Bixuan Li
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Han Zhai
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Junhua Wu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Zhiming Zhang
- Department of Breast Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, P.R. China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China.
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
5
|
Wang Z, Wang B, Feng Y, Ye J, Mao Z, Zhang T, Xu M, Zhang W, Jiao X, Zhang Q, Zhang Y, Cui B. Targeting tumor-associated macrophage-derived CD74 improves efficacy of neoadjuvant chemotherapy in combination with PD-1 blockade for cervical cancer. J Immunother Cancer 2024; 12:e009024. [PMID: 39107132 PMCID: PMC11308911 DOI: 10.1136/jitc-2024-009024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Cervical cancer has the second-highest mortality rate among malignant tumors of the female reproductive system. Immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) blockade are promising therapeutic agents, but their efficacy when combined with neoadjuvant chemotherapy (NACT) has not been fully tested, and how they alter the tumor microenvironment has not been comprehensively elucidated. METHODS In this study, we conducted single-cell RNA sequencing using 46,950 cells from nine human cervical cancer tissues representing sequential different stages of NACT and PD-1 blockade combination therapy. We delineated the trajectory of cervical epithelial cells and identified the crucial factors involved in combination therapy. Cell-cell communication analysis was performed between tumor and immune cells. In addition, THP-1-derived and primary monocyte-derived macrophages were cocultured with cervical cancer cells and phagocytosis was detected by flow cytometry. The antitumor activity of blocking CD74 was validated in vivo using a CD74 humanized subcutaneous tumor model. RESULTS Pathway enrichment analysis indicated that NACT activated cytokine and complement-related immune responses. Cell-cell communication analysis revealed that after NACT therapy, interaction strength between T cells and cancer cells decreased, but intensified between macrophages and cancer cells. We verified that macrophages were necessary for the PD-1 blockade to exert antitumor effects in vitro. Additionally, CD74-positive macrophages frequently interacted with the most immunoreactive epithelial subgroup 3 (Epi3) cancer subgroup during combination NACT. We found that CD74 upregulation limited phagocytosis and stimulated M2 polarization, whereas CD74 blockade enhanced macrophage phagocytosis, decreasing cervical cancer cell viability in vitro and in vivo. CONCLUSIONS Our study reveals the dynamic cell-cell interaction network in the cervical cancer microenvironment influenced by combining NACT and PD-1 blockade. Furthermore, blocking tumor-associated macrophage-derived CD74 could augment neoadjuvant therapeutic efficacy.
Collapse
Affiliation(s)
- Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Bingyu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Yuan Feng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jinwen Ye
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Zhonghao Mao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Meining Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Wenjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
6
|
Li J, Huang Z, Wang P, Li R, Gao L, Lai KP. Therapeutic targets of formononetin for treating prostate cancer at the single-cell level. Aging (Albany NY) 2024; 16:10380-10401. [PMID: 38874510 PMCID: PMC11236323 DOI: 10.18632/aging.205935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
Prostate cancer is one of the serious health problems of older male, about 13% of male was affected by prostate cancer. Prostate cancer is highly heterogeneity disease with complex molecular and genetic alterations. So, targeting the gene candidates in prostate cancer in single-cell level can be a promising approach for treating prostate cancer. In the present study, we analyzed the single cell sequencing data obtained from 2 previous reports to determine the differential gene expression of prostate cancer in single-cell level. By using the network pharmacology analysis, we identified the therapeutic targets of formononetin in immune cells and tissue cells of prostate cancer. We then applied molecular docking to determine the possible direct binding of formononetin to its target proteins. Our result identified a cluster of differential gene expression in prostate cancer which can serve as novel biomarkers such as immunoglobulin kappa C for prostate cancer prognosis. The result of network pharmacology delineated the roles of formononetin's targets such CD74 and THBS1 in immune cells' function of prostate cancer. Also, formononetin targeted insulin receptor and zinc-alpha-2-glycoprotein which play important roles in metabolisms of tissue cells of prostate cancer. The result of molecular docking suggested the direct binding of formononetin to its target proteins including INSR, TNF, and CXCR4. Finally, we validated our findings by using formononetin-treated human prostate cancer cell DU145. For the first time, our result suggested the use of formononetin for treating prostate cancer through targeting different cell types in a single-cell level.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | | | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Li Gao
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| |
Collapse
|
7
|
Li B, Zhao X, Xie W, Hong Z, Cao Y, Zhang Y, Ding Y. Identification of co-expressed central genes and transcription factors in acute myocardial infarction and diabetic nephropathy. BMC Med Genomics 2024; 17:134. [PMID: 38764052 PMCID: PMC11103847 DOI: 10.1186/s12920-024-01906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) and diabetic nephropathy (DN) are common clinical co-morbidities, but they are challenging to manage and have poor prognoses. There is no research on the bioinformatics mechanisms of comorbidity, and this study aims to investigate such mechanisms. METHODS We downloaded the AMI data (GSE66360) and DN datasets (GSE30528 and GSE30529) from the Gene Expression Omnibus (GEO) platform. The GSE66360 dataset was divided into two parts: the training set and the validation set, and GSE30529 was used as the training set and GSE30528 as the validation set. After identifying the common differentially expressed genes (DEGs) in AMI and DN in the training set, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and protein-protein interaction (PPI) network construction were performed. A sub-network graph was constructed by MCODE, and 15 hub genes were screened by the Cytohubba plugin. The screened hub genes were validated, and the 15 screened hub genes were subjected to GO, KEGG, Gene MANIA analysis, and transcription factor (TF) prediction. Finally, we performed TF differential analysis, enrichment analysis, and TF and gene regulatory network construction. RESULTS A total of 46 genes (43 up-regulated and 3 down-regulated) were identified for subsequent analysis. GO functional analysis emphasized the presence of genes mainly in the vesicle membrane and secretory granule membrane involved in antigen processing and presentation, lipopeptide binding, NAD + nucleosidase activity, and Toll-like receptor binding. The KEGG pathways analyzed were mainly in the phagosome, neutrophil extracellular trap formation, natural killer cell-mediated cytotoxicity, apoptosis, Fc gamma R-mediated phagocytosis, and Toll-like receptor signaling pathways. Eight co-expressed hub genes were identified and validated, namely TLR2, FCER1G, CD163, CTSS, CLEC4A, IGSF6, NCF2, and MS4A6A. Three transcription factors were identified and validated in AMI, namely NFKB1, HIF1A, and SPI1. CONCLUSIONS Our study reveals the common pathogenesis of AMI and DN. These common pathways and hub genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xu Zhao
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, No. 37 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Wanrun Xie
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Zhenzhen Hong
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Ye Cao
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 37 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Yi Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
8
|
Wang N, Waghray D, Caveney NA, Jude KM, Garcia KC. Structural insights into human MHC-II association with invariant chain. Proc Natl Acad Sci U S A 2024; 121:e2403031121. [PMID: 38687785 PMCID: PMC11087810 DOI: 10.1073/pnas.2403031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
The loading of processed peptides on to major histocompatibility complex II (MHC-II) molecules for recognition by T cells is vital to cell-mediated adaptive immunity. As part of this process, MHC-II associates with the invariant chain (Ii) during biosynthesis in the endoplasmic reticulum to prevent premature peptide loading and to serve as a scaffold for subsequent proteolytic processing into MHC-II-CLIP. Cryo-electron microscopy structures of full-length Human Leukocyte Antigen-DR (HLA-DR) and HLA-DQ complexes associated with Ii, resolved at 3.0 to 3.1 Å, elucidate the trimeric assembly of the HLA/Ii complex and define atomic-level interactions between HLA, Ii transmembrane domains, loop domains, and class II-associated invariant chain peptides (CLIP). Together with previous structures of MHC-II peptide loading intermediates DO and DM, our findings complete the structural path governing class II antigen presentation.
Collapse
Affiliation(s)
- Nan Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- HHMI, Stanford University School of Medicine, Stanford, CA94305
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Nathanael A. Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- HHMI, Stanford University School of Medicine, Stanford, CA94305
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- HHMI, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
9
|
Zhou JX, Cheng AS, Chen L, Li LX, Agborbesong E, Torres VE, Harris PC, Li X. CD74 Promotes Cyst Growth and Renal Fibrosis in Autosomal Dominant Polycystic Kidney Disease. Cells 2024; 13:489. [PMID: 38534333 DOI: 10.3390/cells13060489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The progression of autosomal dominant polycystic kidney disease (ADPKD), an inherited kidney disease, is associated with renal interstitial inflammation and fibrosis. CD74 has been known not only as a receptor of macrophage migration inhibitory factor (MIF) it can also have MIF independent functions. In this study, we report unknown roles and function of CD74 in ADPKD. We show that knockout of CD74 delays cyst growth in Pkd1 mutant kidneys. Knockout and knockdown of CD74 (1) normalize PKD associated signaling pathways, including ERK, mTOR and Rb to decrease Pkd1 mutant renal epithelial cell proliferation, (2) decrease the activation of NF-κB and the expression of MCP-1 and TNF-alpha (TNF-α) which decreases the recruitment of macrophages in Pkd1 mutant kidneys, and (3) decrease renal fibrosis in Pkd1 mutant kidneys. We show for the first time that CD74 functions as a transcriptional factor to regulate the expression of fibrotic markers, including collagen I (Col I), fibronectin, and α-smooth muscle actin (α-SMA), through binding on their promoters. Interestingly, CD74 also regulates the transcription of MIF to form a positive feedback loop in that MIF binds with its receptor CD74 to regulate the activity of intracellular signaling pathways and CD74 increases the expression of MIF in ADPKD kidneys during cyst progression. We further show that knockout of MIF and targeting MIF with its inhibitor ISO-1 not only delay cyst growth but also ameliorate renal fibrosis through blocking the activation of renal fibroblasts and CD74 mediated the activation of TGF-β-Smad3 signaling, supporting the idea that CD74 is a key and novel upstream regulator of cyst growth and interstitial fibrosis. Thus, targeting MIF-CD74 axis is a novel therapeutic strategy for ADPKD treatment.
Collapse
Affiliation(s)
- Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alice Shasha Cheng
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Chen
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vicente E Torres
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Leblebici A, Sancar C, Tercan B, Isik Z, Arayici ME, Ellidokuz EB, Basbinar Y, Yildirim N. In Silico Approach to Molecular Profiling of the Transition from Ovarian Epithelial Cells to Low-Grade Serous Ovarian Tumors for Targeted Therapeutic Insights. Curr Issues Mol Biol 2024; 46:1777-1798. [PMID: 38534733 DOI: 10.3390/cimb46030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
This paper aims to elucidate the differentially coexpressed genes, their potential mechanisms, and possible drug targets in low-grade invasive serous ovarian carcinoma (LGSC) in terms of the biologic continuity of normal, borderline, and malignant LGSC. We performed a bioinformatics analysis, integrating datasets generated using the GPL570 platform from different studies from the GEO database to identify changes in this transition, gene expression, drug targets, and their relationships with tumor microenvironmental characteristics. In the transition from ovarian epithelial cells to the serous borderline, the FGFR3 gene in the "Estrogen Response Late" pathway, the ITGB2 gene in the "Cell Adhesion Molecule", the CD74 gene in the "Regulation of Cell Migration", and the IGF1 gene in the "Xenobiotic Metabolism" pathway were upregulated in the transition from borderline to LGSC. The ERBB4 gene in "Proteoglycan in Cancer", the AR gene in "Pathways in Cancer" and "Estrogen Response Early" pathways, were upregulated in the transition from ovarian epithelial cells to LGSC. In addition, SPP1 and ITGB2 genes were correlated with macrophage infiltration in the LGSC group. This research provides a valuable framework for the development of personalized therapeutic approaches in the context of LGSC, with the aim of improving patient outcomes and quality of life. Furthermore, the main goal of the current study is a preliminary study designed to generate in silico inferences, and it is also important to note that subsequent in vitro and in vivo studies will be necessary to confirm the results before considering these results as fully reliable.
Collapse
Affiliation(s)
- Asim Leblebici
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Ceren Sancar
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, 35340 Izmir, Turkey
| | - Bahar Tercan
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Zerrin Isik
- Department of Computer Engineering, Faculty of Engineering, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Mehmet Emin Arayici
- Department of Public Health, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Ender Berat Ellidokuz
- Department of Internal Medicine, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Nuri Yildirim
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, 35340 Izmir, Turkey
| |
Collapse
|
11
|
Qi L, Jiang W, He W, Li X, Wu J, Chen S, Liao Z, Yu S, Liu J, Sun Y, Wu Q, Dong C, Wang Q. Transcriptome profile analysis in spinal cord injury rats with transplantation of menstrual blood-derived stem cells. Front Mol Neurosci 2024; 17:1335404. [PMID: 38361743 PMCID: PMC10867146 DOI: 10.3389/fnmol.2024.1335404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Menstrual blood-derived stem cells (MenSCs) are vital in treating many degenerative and traumatic disorders. However, the underlying molecular mechanisms remain obscure in MenSCs-treating spinal cord injury (SCI) rats. Methods MenSCs were adopted into the injured sites of rat spinal cords at day 7 post surgery and the tissues were harvested for total RNA sequencing analysis at day 21 after surgery to investigate the expression patterns of RNAs. The differentially expressed genes (DEGs) were analyzed with volcano and heatmap plot. DEGs were sequentially analyzed by weighted gene co-expression network, functional enrichment, and competitive endogenous RNAs (ceRNA) network analysis. Next, expression of selected miRNAs, lncRNAs, circRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics packages and extra databases were enrolled to scoop the genes functions and their interaction relationships. Results A total of 89 lncRNAs, 65 circRNAs, 120 miRNAs and 422 mRNAs were significantly upregulated and 65 lncRNAs, 72 circRNAs, 74 miRNAs, and 190 mRNAs were significantly downregulated in the MenSCs treated rats compared to SCI ones. Current investigation revealed that MenSCs treatment improve the recovery of the injured rats and the most significantly involved pathways in SCI regeneration were cell adhesion molecules, nature killer cell mediated cytotoxicity, primary immunodeficiency, chemokine signaling pathway, T cell receptor signaling pathway and B cell receptor signaling pathway. Moreover, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA network of SCI was constructed. Finally, the protein-protein interaction (PPI) network was constructed using the top 100 DE mRNAs. The constructed PPI network included 47 nodes and 70 edges. Discussion In summary, the above results revealed the expression profile and potential functions of differentially expressed (DE) RNAs in the injured spinal cords of rats in the MenSCs-treated and SCI groups, and this study may provide new clues to understand the mechanisms of MenSCs in treating SCI.
Collapse
Affiliation(s)
- Longju Qi
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wenwei Jiang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Wenhua He
- Department of Basic Medicine, Luohe Medical College, Luohe, Henan, China
| | - Xiangzhe Li
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Jiahuan Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shiyuan Chen
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zehua Liao
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shumin Yu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinyi Liu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuyu Sun
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinfeng Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Chuanming Dong
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Qinghua Wang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Sheikh IA, Bianchi-Smak J, Laubitz D, Schiro G, Midura-Kiela MT, Besselsen DG, Vedantam G, Jarmakiewicz S, Filip R, Ghishan FK, Gao N, Kiela PR. Transplant of microbiota from Crohn's disease patients to germ-free mice results in colitis. Gut Microbes 2024; 16:2333483. [PMID: 38532703 PMCID: PMC10978031 DOI: 10.1080/19490976.2024.2333483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Although the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis. We observed a markedly reduced engraftment of CD_L3 microbiome compared to healthy control microbiota. FMT from CD_L3 patients did not lead to ileitis but resulted in colitis with features consistent with CD: a discontinued pattern of colitis, more proximal colonic localization, enlarged isolated lymphoid follicles and/or tertiary lymphoid organ neogenesis, and a transcriptomic pattern consistent with epithelial reprograming and promotion of the Paneth cell-like signature in the proximal colon and immune dysregulation characteristic of CD. The observed inflammatory response was associated with persistently increased abundance of Ruminococcus gnavus, Erysipelatoclostridium ramosum, Faecalimonas umbilicate, Blautia hominis, Clostridium butyricum, and C. paraputrificum and unexpected growth of toxigenic C. difficile, which was below the detection level in the community used for inoculation. Our study provides the first evidence that the transfer of a dysbiotic community from CD patients can lead to spontaneous inflammatory changes in the colon of xGF mice and identifies a signature microbial community capable of promoting colonization of pathogenic and conditionally pathogenic bacteria.
Collapse
Affiliation(s)
- Irshad Ali Sheikh
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | | | - Daniel Laubitz
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Gabriele Schiro
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Monica T. Midura-Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - David G. Besselsen
- Pediatrics, University Animal Care, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Sara Jarmakiewicz
- Institute of Health Sciences, Medical College of Rzeszow, Rzeszow University, Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital, Rzeszow, Poland
| | - Fayez K. Ghishan
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Pawel R. Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Chen W, Yu X, Li H, Yuan S, Fu Y, Hu H, Liu F, Zhang Y, Zhong S. Single-cell RNA-seq reveals MIF-(CD74 + CXCR4) dependent inhibition of macrophages in metastatic papillary thyroid carcinoma. Oral Oncol 2024; 148:106654. [PMID: 38061122 DOI: 10.1016/j.oraloncology.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND The mechanism promoting papillary thyroid carcinoma (PTC) metastasis remains unclear. We aimed to investigate the potential metastatic mechanisms at a single-cell resolution. METHODS We performed single-cell RNA-seq (scRNA-seq) profiling of thyroid tumour (TT), adjacent normal thyroid (NT) and lymph node metastasized tumour (LN) from a young female with PTC. Validation of our results was conducted in 31 tumours with metastasis and 30 without metastasis. RESULTS ScRNA-seq analysis generated data on 38,215 genes and 0.14 billion transcripts from 28,839 cells, classified into 18 clusters, each annotated to represent 10 cell types. PTC cells were found to originate from epithelial cells. Epithelial cells and macrophages emerged as the strongest signal emitters and receivers, respectively. After reclustering epithelial cells and macrophages, our analysis, incorporating gene set variation analysis (GSVA), SCENIC analysis, and pseudotime trajectory analysis, indicated that subcluster 0 of epithelial cells (EP_0) showed a more malignant phenotype, and subclusters 3 and 4 of macrophages (M_3 and M_4) demonstrated heightened activity. Further analysis suggested that EP_0 may suppress the activity of M_3 and M_4 via MIF - (CD74 + CXCR4) in the MIF pathway. After analysing the expression of the 4 genes in the MIF pathway in both the TCGA cohort and our cohort (n = 61), CD74 was identified as significantly overexpressed in PTC tumours particularly those with lymph node metastasis. CONCLUSION Our study revealed that PTC may facilitate lymph node metastasis by inhibiting macrophages via MIF signalling. It is suggested that malignant PTC cells may suppress the immune activity of macrophages by consistently releasing signals to them via MIF-(CD74 + CXCR4).
Collapse
Affiliation(s)
- Wei Chen
- Department of Head & Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Xinnian Yu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Huixin Li
- Department of Gynaecology, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University & Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Shenglong Yuan
- Department of Gynaecology, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University & Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Yuqi Fu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Huanhuan Hu
- Department of Gynaecology, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University & Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Fangzhou Liu
- Department of Head & Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Yuan Zhang
- Department of Head & Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
14
|
Xia Y, Zhao Q, Shen X, Jin Y, Wang J, Zhu J, Chen L. Single-cell transcriptomic atlas throughout anti-BCMA CAR-T therapy in patients with multiple myeloma. Front Immunol 2023; 14:1278749. [PMID: 38035111 PMCID: PMC10682082 DOI: 10.3389/fimmu.2023.1278749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The emergence of chimeric antigen receptor (CAR)-T therapy targeting B cell maturation antigen (BCMA) has improved the prognosis of patients with multiple myeloma (MM); however, the majority of patients eventually experience relapse. Methods In this study, employing the latest single-cell RNA sequencing technology, we examined 24 bone marrow or peripheral blood samples collected throughout the course of anti-BCMA CAR-T therapy, analyzing a total of 59,725 bone marrow cells and 72,479 peripheral blood cells. Results Our findings reveal that tumor cells in relapsed patient exhibit higher expression levels of HSP90B1 and HSPA5, and demonstrate significantly enriched pathways regarding endoplasmic reticulum stress and unfolded protein response. In the analysis of T cells, we observed that patient with impaired effector function and increased expression of immune checkpoints in endogenous T cell are more susceptible to relapse. Notably, T cells from both the bone marrow microenvironment and peripheral blood share highly similar biological characteristics. Discussion Overall, this study provides a comprehensive atlas of endogenous immune cells, particularly in the relatively long term, after CAR-T therapy. It offers clinical evidence for a deeper understanding of the internal environment post CAR-T treatment and for identifying mechanisms underlying relapse.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Hematology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Qian Zhao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xuxing Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yuanyuan Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianfeng Zhu
- Department of Hematology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
15
|
Balasubramanian I, Bandyopadhyay S, Flores J, Bianchi‐Smak J, Lin X, Liu H, Sun S, Golovchenko NB, Liu Y, Wang D, Patel R, Joseph I, Suntornsaratoon P, Vargas J, Green PHR, Bhagat G, Lagana SM, Ying W, Zhang Y, Wang Z, Li WV, Singh S, Zhou Z, Kollias G, Farr LA, Moonah SN, Yu S, Wei Z, Bonder EM, Zhang L, Kiela PR, Edelblum KL, Ferraris R, Liu T, Gao N. Infection and inflammation stimulate expansion of a CD74 + Paneth cell subset to regulate disease progression. EMBO J 2023; 42:e113975. [PMID: 37718683 PMCID: PMC10620768 DOI: 10.15252/embj.2023113975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.
Collapse
Affiliation(s)
| | | | - Juan Flores
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Xiang Lin
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Haoran Liu
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Shengxiang Sun
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | | | - Yue Liu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Dahui Wang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Radha Patel
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Ivor Joseph
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Justin Vargas
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Peter HR Green
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Govind Bhagat
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Stephen M Lagana
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Wang Ying
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Yi Zhang
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Zhihan Wang
- Department of StatisticsRutgers UniversityNew BrunswickNJUSA
| | - Wei Vivian Li
- Department of Biostatistics and EpidemiologyRutgers UniversityNew BrunswickNJUSA
| | - Sukhwinder Singh
- Department of PathologyRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNJUSA
| | - George Kollias
- Biomedical Sciences Research Centre, “Alexander Fleming”VariGreece
| | - Laura A Farr
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shannon N Moonah
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shiyan Yu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Zhi Wei
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Edward M Bonder
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Lanjing Zhang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
- Department of PathologyPenn Medicine Princeton Medical CenterPlainsboroNJUSA
| | - Pawel R Kiela
- Departments of Pediatrics and Immunology, and Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research CenterThe University of Arizona Health SciencesTucsonAZUSA
| | - Karen L Edelblum
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ta‐Chiang Liu
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | - Nan Gao
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| |
Collapse
|
16
|
Shen K, Chen B, Yang L, Gao W. Integrated analysis of single-cell and bulk RNA-sequencing data reveals the prognostic value and molecular function of THSD7A in gastric cancer. Aging (Albany NY) 2023; 15:11940-11969. [PMID: 37905960 PMCID: PMC10683630 DOI: 10.18632/aging.205158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The biological role and prognostic value of thrombospondin domain-containing 7A (THSD7A) in gastric cancer remain unclear. Our purpose was to determine the molecular mechanisms underlying the functioning of THSD7A and its prognostic value in gastric cancer. Gastric cancer-associated single cell and bulk RNA sequencing data obtained from two databases, were analyzed. We used bulk RNA sequencing to examine the differential expression of THSD7A in gastric cancer and normal gastric tissues and explored the relationship between THSD7A expression and clinicopathological characteristics. Kaplan-Meier survival and Cox analyses revealed the prognostic value of THSD7A. Gene set enrichment and immune infiltration analyses were used to determine the cancer-promoting mechanisms of THSD7A and its effect on the immune microenvironment. We explored the relationship between THSD7A expression and sensitivity of anti-tumor drugs and immune checkpoint levels. Biological functions of THSD7A were validated at single-cell and in vitro levels. THSD7A expression was significantly increased in gastric cancer samples. High THSD7A expression was associated with poor clinical phenotypes and prognoses. Cox analysis showed that THSD7A was an independent risk factor for patients with gastric cancer. Enrichment analysis suggested that epithelial-mesenchymal transition and inflammatory responses may be potential pro-cancer mechanisms of THSD7A. Upregulation of THSD7A promoted infiltration by M2 macrophages and regulatory T cells. High THSD7A expression suppressed the sensitivity of patients with gastric cancer to drugs, such as 5-fluorouracil, bleomycin, and cisplatin, and upregulated immune checkpoints, such as HAVCR2, PDCD1LG2, TIGIT, and CTLA4. At the single cell level, THSD7A was an endothelial cell-associated gene and endothelial cells overexpressing THSD7A showed unique pro-oncogenic effects. In vitro experiments confirmed that THSD7A was overexpressed in gastric cancer samples and cells, and that knocking out THSD7A significantly inhibited gastric cancer cell proliferation and invasion. THSD7A overexpression may be a unique prognostic marker and therapeutic target in gastric cancer. Therefore, our study provides a new perspective on the precise treatment of gastric cancer.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
17
|
Jiang D, Ma X, Zhang X, Cheng B, Wang R, Liu Y, Zhang X. New techniques: a roadmap for the development of HCC immunotherapy. Front Immunol 2023; 14:1121162. [PMID: 37426674 PMCID: PMC10323423 DOI: 10.3389/fimmu.2023.1121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The absence of effective early diagnostic methods and the limitations of conventional therapies have led to a growing interest in immunotherapy as a novel treatment approach for HCC. The liver serves as an immune organ and a recipient of antigens from the digestive tract, creating a distinctive immune microenvironment. Key immune cells, including Kupffer cells and cytotoxic T lymphocytes, play a crucial role in HCC development, thus offering ample research opportunities for HCC immunotherapy. The emergence of advanced technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) and single-cell ribonucleic acid sequencing has introduced new biomarkers and therapeutic targets, facilitating early diagnosis and treatment of HCC. These advancements have not only propelled the progress of HCC immunotherapy based on existing studies but have also generated new ideas for clinical research on HCC therapy. Furthermore, this review analysed and summarised the combination of current therapies for HCC and the improvement of CRISPR technology for chimeric antigen receptor T cell therapy, instilling renewed hope for HCC treatment. This review comprehensively explores the advancements in immunotherapy for HCC, focusing on the use of new techniques.
Collapse
|
18
|
Gu Y, Xu J, Sun F, Cheng J. Elevated intracellular pH of zygotes during mouse aging causes mitochondrial dysfunction associated with poor embryo development. Mol Cell Endocrinol 2023:111991. [PMID: 37336488 DOI: 10.1016/j.mce.2023.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
The mortality of preimplantation embryos is positively correlated with maternal age. However, the underlying mechanism for the poor quality of embryos remains unclear. Here, we found that aging caused elevated intracellular pH (pHi) in zygotes, which could trigger aberrant mitochondrial membrane potential, increased reactive oxygen species (ROS) levels, and poor embryo development. Moreover, single-cell transcriptome sequencing of mouse zygotes identified 120 genes that were significantly differentially expressed (DE) between young and older zygotes. These include genes such as Slc14a1, Fxyd5, CD74, and Bst, which are related to cell division, ion transporter, and cell differentiation. Further analysis indicated that these DE genes were enriched in apoptosis, the NF-kappa B signaling pathway, and the chemokine signaling pathway, which might be the key regulatory pathway affecting the quality of zygotes and subsequent embryo development. Taken together, our study helps elucidate the poor quality and development of older preimplantation embryos.
Collapse
Affiliation(s)
- Yimin Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Junjie Xu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China; Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, 7, Taiyuan, 030001, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Jinmei Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
19
|
Liang Y, Li C, Liu Y, Tian L, Yang D. Prognostic role of CD74, CD10 and Ki-67 immunohistochemical expression in patients with diffuse malignant peritoneal mesothelioma: a retrospective study. BMC Cancer 2023; 23:406. [PMID: 37147569 PMCID: PMC10161649 DOI: 10.1186/s12885-023-10871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Diagnosis and treatment of diffuse malignant peritoneal mesothelioma (DMPM) are still challenging. The aim of the present study was to explore the correlation between CD74, CD10, Ki-67 and clinicopathological parameters, and identify independent prognostic factors of DMPM. METHODS Seventy patients with pathologically proven DMPM were retrospectively reviewed. The expression of CD74, CD10 and Ki-67 in peritoneal tissues was detected by immunohistochemical analysis using standard avidin biotin complex (ABC) immunostaining technique. Kaplan-Meier survival analysis and multivariate Cox regression analyses were performed to assess prognostic factors. The nomogram based on the Cox hazards regression model was established. C-index and calibration curve were performed to evaluate the accuracy of nomogram models. RESULTS The median age of DMPM was 62.34 years, and the male-to-female ratio was 1: 1.80. CD74 expression was identified in 52 (74.29%) of 70 specimens, CD10 in 34 (48.57%) specimens, and higher Ki-67 in 33(47.14%) specimens. CD74 was negatively associated with asbestos exposure(r = -0.278), Ki-67(r = -0.251) and TNM stage(r = -0.313). All patients were effectively followed up in the survival analysis. Univariate analysis revealed that PCI, TNM stage, treatment, Ki-67, CD74 and ECOG PS were associated with DMPM prognosis. CD74 (HR = 0.65, 95%Cl:0.46-0.91, P = 0.014), Ki-67(HR = 2.09, 95%Cl:1.18-3.73, P = 0.012),TNM stage (HR = 1.89, 95%Cl:1.16-3.09, P = 0.011), ECOG PS(HR = 2.12, 95%Cl:1.06-4.25, P = 0.034), systemic chemotherapy (HR = 0.41, 95%Cl:0.21-0.82, P = 0.011) and intraperitoneal chemotherapy (HR = 0.34, 95%Cl:0.16-0.71, P = 0.004) were independent predictors by multivariate Cox analysis. The C‑index of the nomogram for predicting overall survival (OS) was 0.81. The OS calibration curve showed good agreement between nomogram-predicted and observed survival. CONCLUSIONS CD74, Ki-67, TNM stage, ECOG PS and treatment were independent factors affecting prognosis of DMPM. Reasonable chemotherapy treatment might improve the prognosis of patients. The proposed nomogram was a visual tool to effectively predict the OS of DMPM patients.
Collapse
Affiliation(s)
- Yufei Liang
- Department of Gastroenterology, Cangzhou Central Hospital, Xinhua West Road No.16, Cangzhou, Hebei, 061001, China
| | - Chunying Li
- Department of Gastroenterology, Cangzhou Central Hospital, Xinhua West Road No.16, Cangzhou, Hebei, 061001, China.
| | - Yingying Liu
- Department of Gastroenterology, Cangzhou Central Hospital, Xinhua West Road No.16, Cangzhou, Hebei, 061001, China
| | - Liang Tian
- Department of Pathology, Cangzhou Central Hospital, Xinhua West Road No.16, Cangzhou, Hebei, 061001, China
| | - Dongliang Yang
- Cangzhou Medical College, Jiuhe West Road No.39, Cangzhou, Hebei, 061001, China
| |
Collapse
|
20
|
Patasova K, Lundberg IE, Holmqvist M. Genetic Influences in Cancer-Associated Myositis. Arthritis Rheumatol 2023; 75:153-163. [PMID: 36053262 PMCID: PMC10107284 DOI: 10.1002/art.42345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 02/02/2023]
Abstract
Idiopathic inflammatory myopathies (IIMs) comprise a heterogeneous group of rare immune-mediated disorders that primarily affect muscles but also lead to dysfunction in other organs. Five different clinical subphenotypes of IIM have been distinguished: dermatomyositis, polymyositis, inclusion body myositis, antisynthetase syndrome, and immune-mediated necrotizing myopathy. Excess mortality and morbidity associated with IIM are largely attributed to comorbidities, particularly cancer. The risk of malignancy is not equally distributed among IIM groups and is particularly high among patients with dermatomyositis. The cancer risk peaks around 3 years on either side of the IIM diagnosis and remains elevated even 10 years after the onset of the disease. Lung, colorectal, and ovarian neoplasms typically arise before the onset of IIM, whereas melanoma, cervical, oropharyngeal, and nonmelanoma skin cancers usually develop after IIM diagnosis. Given the close temporal proximity between IIM diagnosis and the emergence of malignancy, it has been proposed that IIM could be a consequence rather than a cause of cancer, a process known as a paramalignant phenomenon. Thus, a separate group of IIMs related to paramalignant phenomenon has been distinguished, known as cancer-associated myositis (CAM). Although the relationship between IIM and cancer is widely recognized, the pathophysiology of CAM remains elusive. Given that genetic factors play a role in the development of IIM, dissection of the molecular mechanisms shared between IIM and cancer presents an opportunity to examine the role of autoimmunity in cancer development and progression. In this review, the evidence supporting the contribution of genetics to CAM will be discussed.
Collapse
Affiliation(s)
- Karina Patasova
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid E Lundberg
- Rheumatology Division, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Holmqvist
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Kang J, Xiang X, Chen X, Jiang J, Zhang Y, Li L, Tang J. Angiogenesis-related gene signatures reveal the prognosis of cervical cancer based on single cell sequencing and co-expression network analysis. Front Cell Dev Biol 2023; 10:1086835. [PMID: 36712973 PMCID: PMC9877352 DOI: 10.3389/fcell.2022.1086835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Cervical cancer ranks first in female reproductive tract tumors in terms of morbidity and mortality. Yet the curative effect of patients with persistent, recurrent or metastatic cervical cancer remains unsatisfactory. Although antitumor angiogenic drugs have been recommended as the first-line treatment options for cervical cancer, there are no comprehensive prognostic indicators for cervical cancer based on angiogenic signature genes. In this study, we aimed to develop a model to assess the prognosis of cervical cancer based on angiogenesis-related (AG) signature genes, and to provide some reference for the comprehensive treatment of cervical cancer in the clinical setting. First we screened the AG gene set from GeneCard website, and then performed angiogenesis-related scores (AGS) per cell from single cell sequencing dataset GSE168652, followed by performing weighted gene co-expression network analysis (WGCNA) for cervical cancer patients according to angiogenesis phenotype. Thus, we established a prognostic model based on AGS by taking the intersection of WGCNA angiogenic module gene and differential gene (DEGs) of GSE168652. The GSE44001 was selected as an external validation set, followed by performing ROC curve analysis to assess its accuracy. The results showed that we successfully constructed a prognostic model related to the AG genes. Patients in the high-AGS group in both the train, test and the validation sets had a worse prognosis than those in the low-AGS group, had lower expression of most immune checkpoint-associated genes and lower tumor mutational burden as well. Patients in the low-AGS group were more sensitive to AMG.706, Bosutinib, and Lenalidomide while Imatinib, Pazopanib, and Sorafenib were more recommended to patients in the high-AGS group. Finally, TXNDC12 and ZC3H13, which have high hazard ratio and poor prognosis in the model, were highly expressed in cervical cancer cell lines and tissue. Meanwhile, the results showed that TXNDC12 promoted the migration of cervical cancer cells and the tubule-forming ability of endothelial cells. In conclusion, our model based on genes with AG features can effectively assess the prognosis of cervical cancer, and can also provide reference for clinicians to choose immune-related treatments.
Collapse
Affiliation(s)
- Jiawen Kang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqing Xiang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Xiaoyan Chen
- Department of Pathology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jingwen Jiang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China,*Correspondence: Yong Zhang, ; Lesai Li, ; Jie Tang,
| | - Lesai Li
- Department of Gynecologic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Yong Zhang, ; Lesai Li, ; Jie Tang,
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Yong Zhang, ; Lesai Li, ; Jie Tang,
| |
Collapse
|
22
|
Huang X, Zhang Y, Huang J, Gao W, Yongfang X, Zeng C, Gao C. The effect of FMT and vitamin C on immunity-related genes in antibiotic-induced dysbiosis in mice. PeerJ 2023; 11:e15356. [PMID: 37193034 PMCID: PMC10183171 DOI: 10.7717/peerj.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Antibiotics are double-edged swords. Although antibiotics are used to inhibit pathogenic bacteria, they also run the risk of destroying some of the healthy bacteria in our bodies. We examined the effect of penicillin on the organism through a microarray dataset, after which 12 genes related to immuno-inflammatory pathways were selected by reading the literature and validated using neomycin and ampicillin. The expression of genes was measured using qRT-PCR. Several genes were significantly overexpressed in antibiotic-treated mice, including CD74 and SAA2 in intestinal tissues that remained extremely expressed after natural recovery. Moreover, transplantation of fecal microbiota from healthy mice to antibiotic-treated mice was made, where GZMB, CD3G, H2-AA, PSMB9, CD74, and SAA1 were greatly expressed; however, SAA2 was downregulated and normal expression was restored, and in liver tissue, SAA1, SAA2, SAA3 were extremely expressed. After the addition of vitamin C, which has positive effects in several aspects, to the fecal microbiota transplantation, in the intestinal tissues, the genes that were highly expressed after the fecal microbiota transplantation effectively reduced their expression, and the unaffected genes remained normally expressed, but the CD74 gene remained highly expressed. In liver tissues, normally expressed genes were not affected, but the expression of SAA1 was reduced and the expression of SAA3 was increased. In other words, fecal microbiota transplantation did not necessarily bring about a positive effect of gene expression restoration, but the addition of vitamin C effectively reduced the effects of fecal microbiota transplantation and regulated the balance of the immune system.
Collapse
Affiliation(s)
- Xiaorong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Yv Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Junsong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Gao
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing, China
| | - Xie Yongfang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chuisheng Zeng
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chao Gao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| |
Collapse
|
23
|
Integrative Bioinformatics Analysis of mRNA Expression Profiles of Mice to Explore the Key Genes Involved in Crim1 Mutation-Induced Congenital Cataracts. Biochem Genet 2022:10.1007/s10528-022-10323-3. [PMID: 36586009 PMCID: PMC10372119 DOI: 10.1007/s10528-022-10323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Crim1 has been implicated in cataracts in mice and is of great importance in the development of the eye in both humans and mice. Therefore, we aimed to clarify how Crim1 mutations affect lens development and the molecular mechanism of cataracts in mice through comprehensive bioinformatics analysis. The microarray chip was downloaded from the GEO database to obtain the gene expression profile data set. Differentially expressed genes (DEGs) were screened using the limma package. GO and KEGG analyses of DEGs were performed using the DAVID database. Then, we established the protein-protein interaction (PPI) network in Cytoscape. Next, we used MCODE to analyze the data. We obtained 750 DEGs in total, including 407 upregulated DEGs and 343 downregulated DEGs. GO analysis showed that the DEGs were mainly related to biological processes, such as apoptosis, cell translation and the immune system. KEGG analysis showed that the enriched functions and pathways were related to the processing and presentation of ribosomes, lysosomes, and antigens. We identified 18 HUB genes, among which four core genes, C1qa, C1qb, C1qc, and Cd74, were closely related to congenital cataracts induced by Crim1 mutation. This study reveals the molecular pathogenesis of congenital cataracts induced by Crim1, and this information is expected to facilitate clinical genetic testing, molecular diagnosis, prognosis, and individualized chemotherapy for congenital cataracts (CC).
Collapse
|
24
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
25
|
A Risk-Assessing Signature Based on Hypoxia- and Immune-Related Genes for Prognosis of Lung Adenocarcinoma Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7165851. [PMID: 36213576 PMCID: PMC9534655 DOI: 10.1155/2022/7165851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
Abstract
Lung Adenocarcinoma (LUAD) drastically influences human health. Tumor hypoxia and immunity impact hugely on the immunotherapeutic effect of LUAD patients. This study is aimed at exploring the prognostic markers associated with hypoxia and immunity in LUAD patients and evaluates their reliability. The relationship between hypoxia and immune-related genes and prognoses of LUAD patients was investigated by the univariate regression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods were used to reveal the enriched pathways and biological processes of prognosis-related genes. Univariate, LASSO, and multivariate Cox regression analyses were used to construct a prognostic signature and verify its independence. The reliability of the signature was evaluated by the Principal Component Analysis (PCA), the Kaplan-Meier (K-M) curve, and the receiver operating characteristic (ROC) curve. Gene set enrichment analysis (GSEA), tumor mutational burden (TMB), and single-sample GSEA (ssGSEA) further verified the performance of the signature. Finally, a prognostic signature for LUAD was constructed based on 7 hypoxia- and immune-related genes. According to riskScores acquired from the signature, the test set was divided into groups, where the prognosis of high-risk patients was poor. The feature genes had good reliability, and the riskScore could be used as an independent prognostic factor for LUAD patients. Meanwhile, high TMB scores and low immune scores were found in high-risk patients, and feature genes were enriched in signaling pathways such as cell cycle and p53 signaling pathway. In sum, a prognostic signature based on 7 hypoxia- and immune-related genes was constructed.
Collapse
|
26
|
Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022; 79:512. [PMID: 36094626 PMCID: PMC9468113 DOI: 10.1007/s00018-022-04539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine–chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.,Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany
| | - Elena Siminkovitch
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jeremy A Nestele
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Alexander Bild
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Kathleen Hille
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Vanessa Rohde
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Fröhlich
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jona Golemi
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Michael K Otabil
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Junfu Luo
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Kevin H Mayo
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Biochemistry, Molecular Biology and Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
27
|
Lu W, Li Y, Dai Y, Chen K. Dominant Myocardial Fibrosis and Complex Immune Microenvironment Jointly Shape the Pathogenesis of Arrhythmogenic Right Ventricular Cardiomyopathy. Front Cardiovasc Med 2022; 9:900810. [PMID: 35845067 PMCID: PMC9278650 DOI: 10.3389/fcvm.2022.900810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable life-threatening myocardial disease characterized by ventricular arrhythmias and sudden cardiac death. Few studies used RNA-sequencing (RNA-seq) technology to analyze gene expression profiles, hub genes, dominant pathogenic processes, immune microenvironment in ARVC. This study aimed to explore these questions via integrated bioinformatics analysis. Methods RNA-sequencing datasets of GSE107475, GSE107311, GSE107156, and GSE107125 were obtained from the Gene Expression Omnibus database, including right and left ventricular myocardium from ARVC patients and normal controls. Weighted gene co-expression network analysis identified the ARVC hub modules and genes. Functional enrichment and protein-protein interaction analysis were performed by Metascape and STRING. Single-sample gene-set enrichment analysis (ssGSEA) was applied to assess immune cell infiltration. Transcription regulator (TF) analysis was performed by TRRUST. Results Three ARVC hub modules with 25 hub genes were identified. Functional enrichment analysis of the hub genes indicated that myocardial fibrosis was the dominant pathogenic process. Higher myocardial fibrosis activity existed in ARVC than in normal controls. A complex immune microenvironment was discovered that type 2 T helper cell, type 1 T helper cell, regulatory T cell, plasmacytoid dendritic cell, neutrophil, mast cell, central memory CD4 T cell, macrophage, CD56dim natural killer cell, myeloid-derived suppressor cell, memory B cell, natural killer T cell, and activated CD8 T cell were highly infiltrated in ARVC myocardium. The immune-related hub module was enriched in immune processes and inflammatory disease pathways, with hub genes including CD74, HLA-DRA, ITGAM, CTSS, CYBB, and IRF8. A positive linear correlation existed between immune cell infiltration and fibrosis activity in ARVC. NFKB1 and RELA were the shared TFs of ARVC hub genes and immune-related hub module genes, indicating the critical role of NFκB signaling in both mechanisms. Finally, the potential lncRNA-miRNA-mRNA interaction network for ARVC hub genes was constructed. Conclusion Myocardial fibrosis is the dominant pathogenic process in end-stage ARVC patients. A complex immune microenvironment exists in the diseased myocardium of ARVC, in which T cell subsets are the primary category. A tight relationship exists between myocardial fibrosis activity and immune cell infiltration. NFκB signaling pathway possibly contributes to both mechanisms.
Collapse
Affiliation(s)
- Wenzhao Lu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yao Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Dai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Su R, Jin C, Bu H, Xiang J, Zhou L, Jin C. Development and Validation of an Immune-Related Prognostic Signature in Cervical Cancer. Front Oncol 2022; 12:861392. [PMID: 35651784 PMCID: PMC9148954 DOI: 10.3389/fonc.2022.861392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cervical cancer is the fourth most frequent gynecological malignancy across the world. Immunotherapies have proved to improve prognosis of cervical cancer. However, few studies on immune-related prognostic signature had been reported in cervical cancer. Methods Raw data and clinical information of cervical cancer samples were downloaded from TCGA and UCSC Xena website. Immunophenoscore of immune infiltration cells in cervical cancer samples was calculated through the ssGSEA method using GSVA package. WGCNA, Cox regression analysis, LASSO analysis, and GSEA analysis were performed to classify cervical cancer prognosis and explore the biological signaling pathway. Results There were eight immune infiltration cells associated with prognosis of cervical cancer. Through WGCNA, 153 genes from 402 immune-related genes were significantly correlated with prognosis of cervical cancer. A 15-gene signature demonstrated powerful predictive ability in prognosis of cervical cancer. GSEA analysis showed multiple signaling pathways containing Programmed cell death ligand-1 (PD-L1) expression and PD-1 checkpoint pathway differences between high-risk and low-risk groups. Furthermore, the 15-gene signature was associated with multiple immune cells and immune infiltration in tumor microenvironment. Conclusion The 15-gene signature is an effective potential prognostic classifier in the immunotherapies and surveillance of cervical cancer.
Collapse
Affiliation(s)
- Rongjia Su
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gynecologic Oncology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengwen Jin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hualei Bu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Chengjuan Jin, ; Lina Zhou,
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Chengjuan Jin, ; Lina Zhou,
| |
Collapse
|
29
|
Panstruga R, Donnelly SC, Bernhagen J. A Cross-Kingdom View on the Immunomodulatory Role of MIF/D-DT Proteins in Mammalian and Plant Pseudomonas Infections. Immunology 2022; 166:287-298. [PMID: 35416298 DOI: 10.1111/imm.13480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gram-negative Pseudomonas bacteria are largely harmless saprotrophs, but some species can be potent pathogens of both plants and mammals. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT, also referred to as MIF-2) are multifunctional proteins that in addition to their intracellular functions also serve as extracellular signaling molecules (cytokines) in orchestrating mammalian immune responses. It recently emerged that plants also possess MIF-like proteins, termed MIF/D-DT-like (MDL) proteins. We here provide a comparative cross-kingdom view on the immunomodulatory role of MIF and MDL proteins during Pseudomonas infections in mammals and plants. Although in both kingdoms the lack of MIF/MDL proteins is associated with a reduction in bacterial load and disease symptoms, the underlying molecular principles seem to be different. We provide a perspective for future research activities to unravel additional commonalities and differences in the MIF/MDL-mediated adjustment of antibacterial immune activities.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilian-University (LMU) Munich, Munich, Germany
| |
Collapse
|
30
|
Clanchy FIL, Borghese F, Bystrom J, Balog A, Penn H, Taylor PC, Stone TW, Mageed RA, Williams RO. Disease status in human and experimental arthritis, and response to TNF blockade, is associated with MHC class II invariant chain (CD74) isoform expression. J Autoimmun 2022; 128:102810. [PMID: 35245865 DOI: 10.1016/j.jaut.2022.102810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
Splice variants of CD74 differentially modulate the activity of cathepsin L (CTSL). As CD74 and CTSL participate in the pathogenesis of inflammatory diseases such as rheumatoid arthritis (RA), we determined whether splice variants of CD74 could be biomarkers of disease activity. Gene expression was measured in mice with collagen-induced arthritis using quantitative PCR (qPCR). In vitro studies using murine macrophage/DC-lineage cells determined the relative influence of macrophage phenotype on isoform expression and the potential to produce CTSL in response to TNF. CD74 splice variants were measured in human RA synovium and RA patients' monocytes. In arthritic mice, the expression of the p41 CD74 isoform was significantly higher in severely affected paws compared with unaffected paws or the paws of naïve mice; the p41 isoform significantly correlated with the expression of TNF in arthritic paws. Compared with M2-like macrophages, M1-like macrophages expressed increased levels of CD74 and had higher expression, secretion and activity of CTSL. RA patients that responded to TNF blockade had significantly higher expression levels of CD74 in circulating monocytes after treatment, compared with non-responders. The expression of the human CD74 isoform a was significantly higher in RA synovia, compared with osteoarthritis synovia, and was associated with CSTL enzymatic activity. This study is the first to demonstrate differential expression of the CD74 p41 isoform in an auto-immune disorder and in response to therapy. The differential expression of CD74 splice variants indicates an association, and potentially a mechanistic role, in the pathogenesis of RA.
Collapse
Affiliation(s)
- Felix I L Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Federica Borghese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - Jonas Bystrom
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Attila Balog
- Department of Rheumatology and Immunology, Szent-Györgyi Albert Clinical Centre, University of Szeged, Szeged, Hungary
| | | | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Trevor W Stone
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - Rizgar A Mageed
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| |
Collapse
|
31
|
Wang H, Jiang H, Cheng XW. Cathepsin S are involved in human carotid atherosclerotic disease progression, mainly by mediating phagosomes: bioinformatics and in vivo and vitro experiments. PeerJ 2022; 10:e12846. [PMID: 35186462 PMCID: PMC8833225 DOI: 10.7717/peerj.12846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Atherosclerosis emerges as a result of multiple dynamic cell processes including endothelial damage, inflammatory and immune cell infiltration, foam cell formation, plaque rupture, and thrombosis. Animal experiments have indicated that cathepsins (CTSs) mediate the antigen transmission and inflammatory response involved in the atherosclerosis process, but the specific signal pathways and target cells of the CTSs involved in atherosclerosis are unknown. METHODS We used the GEO query package to download the dataset GSE28829 from the Gene Expression Omnibus (GEO) and filtered the data to check the standardization of the samples through the box chart. We then used the 'limma' package to analyze between-group differences and selected the corresponding differentially expressed genes of CTSs from the protein-protein interaction (PPI) network constructed with the STRING database, and then visualized the CTS-target genes. The best matching pathway and target cells were verified by a male mouse ligation experiment, single-sample GSEA (ssGSEA) analysis, and vitro experiment. RESULTS There were 275 differentially expressed genes (DEGs) selected from the GSE28829 dataset, and the DEGs were identified mainly in the PPI network; 58 core genes (APOE, CD74, CP, AIF1, etc.) target three selected CTS family members (CTSS, CTSB, and CTSC). After the enriched analysis, 15 CTS-target genes were markedly enriched in the phagosome signaling pathway. The mouse experiment results revealed that the percentages and numbers of monocytes and neutrophils and the number of CD68+ cells in CTSS deficiency (CatS-/-) group were lower than those in the wildtype (CatS+/+) group. CTSS mediating phagosome via macrophage were further verified by ssGSEA analysis and vitro experiment. CONCLUSIONS CTSS are the main target molecules in the CTS family that are involved in atherosclerosis. The molecule participate in the progression of atherosclerosis by mediating the phagosome via macrophage.
Collapse
Affiliation(s)
- Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, China,Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haiying Jiang
- Department of Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing, Zhejiang, China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, China,Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
32
|
Liedtke C, Nevzorova YA, Luedde T, Zimmermann H, Kroy D, Strnad P, Berres ML, Bernhagen J, Tacke F, Nattermann J, Spengler U, Sauerbruch T, Wree A, Abdullah Z, Tolba RH, Trebicka J, Lammers T, Trautwein C, Weiskirchen R. Liver Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814496. [PMID: 35087852 PMCID: PMC8787129 DOI: 10.3389/fmed.2021.814496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was funded for 13 years (2009-2021) by the German Research Council (DFG). This consortium was hosted by the Medical Schools of the RWTH Aachen University and Bonn University in Germany. The SFB/TRR57 implemented combined basic and clinical research to achieve detailed knowledge in three selected key questions: (i) What are the relevant mechanisms and signal pathways required for initiating organ fibrosis? (ii) Which immunological mechanisms and molecules contribute to organ fibrosis? and (iii) How can organ fibrosis be modulated, e.g., by interventional strategies including imaging and pharmacological approaches? In this review we will summarize the liver-related key findings of this consortium gained within the last 12 years on these three aspects of liver fibrogenesis. We will highlight the role of cell death and cell cycle pathways as well as nutritional and iron-related mechanisms for liver fibrosis initiation. Moreover, we will define and characterize the major immune cell compartments relevant for liver fibrogenesis, and finally point to potential signaling pathways and pharmacological targets that turned out to be suitable to develop novel approaches for improved therapy and diagnosis of liver fibrosis. In summary, this review will provide a comprehensive overview about the knowledge on liver fibrogenesis and its potential therapy gained by the SFB/TRR57 consortium within the last decade. The kidney-related research results obtained by the same consortium are highlighted in an article published back-to-back in Frontiers in Medicine.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Immunology, Ophthalmology and Otolaryngology, School of Medicine, Complutense University Madrid, Madrid, Spain
| | - Tom Luedde
- Medical Faculty, Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Henning Zimmermann
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela Kroy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Zeinab Abdullah
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
33
|
Xu S, Li X, Tang L, Liu Z, Yang K, Cheng Q. CD74 Correlated With Malignancies and Immune Microenvironment in Gliomas. Front Mol Biosci 2021; 8:706949. [PMID: 34540893 PMCID: PMC8440887 DOI: 10.3389/fmolb.2021.706949] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Cluster of differentiation 74 (CD74) is found to be highly involved in the development of various types of cancers and could affect the activities of infiltrated cells in the tumor microenvironment. However, these studies only focus on a few types of immune cells. Our study aims to comprehensively explore the role of CD74 in glioma prognosis and immune microenvironment. Methods: A total of 40 glioma specimens were collected in this study. We extracted data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene-Expression Omnibus (GEO) databases to explore the expression pattern of CD74 in gliomas. gene sets enrichment analysis and gene set variation analysis analyses were conducted to characterize the immune features of CD74. ESTIMATE, ssGSEA, Tumor IMmune Estimation Resource, and CIBERSORT algorithms were applied to assess the immune infiltration. Kaplan-Meier analysis was used for survival analysis. Receiver operating characteristic analysis was used to evaluate the predictive accuracy of CD74 in glioma diagnosis and prognosis. Results: A total of 2,399 glioma patients were included in our study. CD74 was highly expressed in glioma tissue compared to normal brain tissue and its expression was significantly higher in the high-grade glioma compared to the lower grade glioma at transcriptional and translational levels. Besides, CD74 was positively associated with immune checkpoints and inflammatory cytokines as well as immune processes including cytokine secretion and leukocyte activation. The high expression of CD74 indicated a high infiltration of immune cells such as macrophages, dendritic cells, and neutrophils. Moreover, patients with high expression of CD74 had poor prognoses. CD74 had moderate predictive accuracy in the diagnosis of glioblastoma and prediction of survival. Conclusions: In conclusion, our study revealed that the high expression of CD74 was associated with poor prognosis and high immune infiltration. CD74 could be used as a potential target for glioma treatment and as a biomarker to predict the prognosis of glioma patients.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Lu Tang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| |
Collapse
|
34
|
Schoeps B, Eckfeld C, Flüter L, Keppler S, Mishra R, Knolle P, Bayerl F, Böttcher J, Hermann CD, Häußler D, Krüger A. Identification of invariant chain CD74 as a functional receptor of tissue inhibitor of metalloproteinases-1 (TIMP-1). J Biol Chem 2021; 297:101072. [PMID: 34391782 PMCID: PMC8429975 DOI: 10.1016/j.jbc.2021.101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Multifunctionality of tissue inhibitor of metalloproteinases-1 (TIMP-1) comprising antiproteolytic as well as cytokinic activity has been attributed to its N-terminal and C-terminal domains, respectively. The molecular basis of the emerging proinflammatory cytokinic activity of TIMP-1 is still not completely understood. The cytokine receptor invariant chain (CD74) is involved in many inflammation-associated diseases and is highly expressed by immune cells. CD74 triggers zeta chain–associated protein kinase-70 (ZAP-70) signaling–associated activation upon interaction with its only known ligand, the macrophage migration inhibitory factor. Here, we demonstrate TIMP-1–CD74 interaction by coimmunoprecipitation and confocal microscopy in cells engineered to overexpress CD74. In silico docking in HADDOCK predicted regions of the N-terminal domain of TIMP-1 (N-TIMP-1) to interact with CD74. This was experimentally confirmed by confocal microscopy demonstrating that recombinant N-TIMP-1 lacking the entire C-terminal domain was sufficient to bind CD74. Interaction of TIMP-1 with endogenously expressed CD74 was demonstrated in the Namalwa B lymphoma cell line by dot blot binding assays as well as confocal microscopy. Functionally, we demonstrated that TIMP-1–CD74 interaction triggered intracellular ZAP-70 activation. N-TIMP-1 was sufficient to induce ZAP-70 activation and interference with the cytokine-binding site of CD74 using a synthetic peptide–abrogated TIMP-1-mediated ZAP-70 activation. Altogether, we here identified CD74 as a receptor and mediator of cytokinic TIMP-1 activity and revealed TIMP-1 as moonlighting protein harboring both cytokinic and antiproteolytic activity within its N-terminal domain. Recognition of this functional TIMP-1–CD74 interaction may shed new light on clinical attempts to therapeutically target ligand-induced CD74 activity in cancer and other inflammatory diseases.
Collapse
Affiliation(s)
- Benjamin Schoeps
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Celina Eckfeld
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Laura Flüter
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Selina Keppler
- School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Ritu Mishra
- School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Percy Knolle
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Felix Bayerl
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Jan Böttcher
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Chris D Hermann
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Daniel Häußler
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Achim Krüger
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
35
|
Xiao N, Li K, Zhu X, Xu B, Liu X, Lei M, Sun HC. CD74 + macrophages are associated with favorable prognosis and immune contexture in hepatocellular carcinoma. Cancer Immunol Immunother 2021; 71:57-69. [PMID: 34009409 DOI: 10.1007/s00262-021-02962-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
CD74 was initially thought to participate mainly in antigen presentation as an MHC class II chaperone. Recent studies have shown that CD74 plays an important role within the cell and throughout the immune system in a wide spectrum of neoplasms. However, the role of CD74 in hepatocellular carcinoma (HCC) remains elusive. In this study, HCC tissues from Zhongshan Hospital and data from The Cancer Genome Atlas (TCGA) were obtained and analyzed. Immunohistochemistry, flow cytometry, and single-cell RNA sequencing (scRNA-seq) were performed to detect the characteristics of CD74+ cells and explore their impact on the tumor microenvironment (TME) of HCC. Our data revealed that stromal CD74+ cell enrichment was associated with favorable prognosis in patients with HCC. CD74 was abundant in a large portion of HCC specimens and prominently distributed on stromal macrophages. scRNA-seq data also indicated that the pathways related to immune response were significantly upregulated in CD74+ macrophages. High infiltration of CD74+ macrophages was associated with increased infiltration of CD8+ cytotoxic T lymphocytes (CTLs) with enhanced effector functions in HCC. Besides, blocking CD74 weakened the antitumor activity and proliferation ability of CD8+ CTLs in HCC. Our findings highlight the critical role of CD74 in HCC. New drugs and antibodies targeting CD74 may be effective strategies for HCC therapy.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Kangshuai Li
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaodong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Bin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Xuefeng Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Ming Lei
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
36
|
Gruner K, Leissing F, Sinitski D, Thieron H, Axstmann C, Baumgarten K, Reinstädler A, Winkler P, Altmann M, Flatley A, Jaouannet M, Zienkiewicz K, Feussner I, Keller H, Coustau C, Falter-Braun P, Feederle R, Bernhagen J, Panstruga R. Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. J Biol Chem 2021; 296:100611. [PMID: 33798552 PMCID: PMC8122116 DOI: 10.1016/j.jbc.2021.100611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Human macrophage migration inhibitory factor (MIF) is an atypical chemokine implicated in intercellular signaling and innate immunity. MIF orthologs (MIF/D-DT-like proteins, MDLs) are present throughout the plant kingdom, but remain experimentally unexplored in these organisms. Here, we provide an in planta characterization and functional analysis of the three-member gene/protein MDL family in Arabidopsis thaliana. Subcellular localization experiments indicated a nucleo-cytoplasmic distribution of MDL1 and MDL2, while MDL3 is localized to peroxisomes. Protein–protein interaction assays revealed the in vivo formation of MDL1, MDL2, and MDL3 homo-oligomers, as well as the formation of MDL1-MDL2 hetero-oligomers. Functionally, Arabidopsismdl mutants exhibited a delayed transition from vegetative to reproductive growth (flowering) under long-day conditions, but not in a short-day environment. In addition, mdl mutants were more resistant to colonization by the bacterial pathogen Pseudomonas syringae pv. maculicola. The latter phenotype was compromised by the additional mutation of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), a gene implicated in the defense-induced biosynthesis of the key signaling molecule salicylic acid. However, the enhanced antibacterial immunity was not associated with any constitutive or pathogen-induced alterations in the levels of characteristic phytohormones or defense-associated metabolites. Interestingly, bacterial infection triggered relocalization and accumulation of MDL1 and MDL2 at the peripheral lobes of leaf epidermal cells. Collectively, our data indicate redundant functionality and a complex interplay between the three chemokine-like Arabidopsis MDL proteins in the regulation of both developmental and immune-related processes. These insights expand the comparative cross-kingdom analysis of MIF/MDL signaling in human and plant systems.
Collapse
Affiliation(s)
- Katrin Gruner
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Franz Leissing
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Dzmitry Sinitski
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Hannah Thieron
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Christian Axstmann
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Kira Baumgarten
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Anja Reinstädler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Pascal Winkler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Melina Altmann
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany
| | - Andrew Flatley
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany
| | - Maëlle Jaouannet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Krzysztof Zienkiewicz
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Harald Keller
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Christine Coustau
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Pascal Falter-Braun
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany; Ludwig-Maximilians-Universität (LMU), Faculty of Biology, Chair of Microbe-Host Interactions, Planegg-Martinsried, Germany
| | - Regina Feederle
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Bernhagen
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany.
| |
Collapse
|
37
|
Hu CJ, Li MT, Li X, Peng LY, Zhang SZ, Leng XM, Su JM, Zeng XF. CD74 auto-antibodies display little clinical value in Chinese Han population with axial spondyloarthritis. Medicine (Baltimore) 2020; 99:e23433. [PMID: 33327271 PMCID: PMC7738092 DOI: 10.1097/md.0000000000023433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The European cohort study has indicated about CD74 IgG-autoantibodies as potential marker for axial spondyloarthritis (axSpA) diagnosis. However, multiple studies have questioned the diagnostic value of various disease-specific autoantibodies in different ethnic groups. Here, we have tried to assess the diagnostic value of anti-CD74 IgG and IgA autoantibodies in axSpA patients from Chinese Han population.The anti-CD74 IgG and IgA autoantibodies were analyzed using ELISA assay in a cohort of 97 axSpA patients, including 47 treatment-naïve axSpA patients never treated with steroids or immunosuppressants and 50 treated axSpA patients. The rheumatic disease control (RDC) group consisted of 40 rheumatoid arthritis, 25 systemic lupus erythematosus, 18 psoriatic arthritis patients, and 60 healthy controls (HC).Our data demonstrated the presence of anti-CD74 IgA auto-antibodies in 25.8% of the axSpA patients, 30.1% of the RDC group patients and none in HC. Similarly, anti-CD74 IgG autoantibodies were observed in 23.7% of the axSpA patients, 18.1% of the RDC patients and 18.3% of the HC. The sensitivity, specificity, and accuracy of IgA autoantibodies were 21.3%, 82.5%, & 67.4%, respectively, while for IgG, it was 27.7%, 81.8%, and 68.4%, in treatment-naïve axSpA patients. Furthermore, weak positive relationship between anti-CD74 IgA autoantibodies and bath ankylosing spondylitis disease activity index ( r = 0.253, P = .012) and functional index (bath ankylosing spondylitis functional index; r = 0.257, P = .011) was observed.Overall, our study demonstrated little clinical and predictive value of CD74 autoantibodies in the diagnosis of axSpA and its related manifestations, among Chinese Han population.
Collapse
Affiliation(s)
- Chao-Jun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID); Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing
| | - Meng-Tao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID); Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing
| | - Xi Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID); Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lin-Yi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID); Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing
| | - Shang-Zhu Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID); Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing
| | - Xiao-Mei Leng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID); Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing
| | - Jin-Mei Su
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID); Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing
| | - Xiao-Feng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID); Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing
| |
Collapse
|
38
|
Anti-CD74 antibodies in spondyloarthritis: A systematic review and meta-analysis. Semin Arthritis Rheum 2020; 51:7-14. [PMID: 33340822 DOI: 10.1016/j.semarthrit.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE There is still an unmet need for a simple and reliable biomarker for the diagnosis of spondyloarthritis. Recent studies indicated that anti-CD74 antibody could act as a biomarker for spondyloarthritis. Therefore, this review aims to evaluate the levels of anti-CD74 IgG and IgA antibodies in spondyloarthritis and the diagnostic value of anti-CD74 antibodies. METHODS PubMed, Web of Science and Medline were comprehensively searched from inception to August 7th, 2019. The pooled standard mean difference (SMD) with 95% confidence interval (CI) was used to estimate the differences of the levels of anti-CD74 IgG and IgA antibodies between spondyloarthritis patients and controls. Sensitivity, specificity and summary receiver operating characteristics (SROC) curve were used for evaluating the diagnostic value of anti-CD74 antibodies. The use of fixed-effect or random-effects model depended on heterogeneity. RESULTS Among 55 searched studies, 9 studies were finally included for analysis. Anti-CD74 IgG and IgA antibodies were both significantly increased in spondyloarthritis patients compared with matched controls (IgG: SMD = 0.88, 95% CI = 0.55 to 1.21; IgA: SMD = 0.98, 95% CI = 0.68 to 1.28). The pooled sensitivity, specificity and area under the SROC curve of anti-CD74 IgG antibodies were 0.61, 0.90 and 0.8881, while these indicators of anti-CD74 IgA antibodies were 0.59, 0.95 and 0.8671, respectively. CONCLUSION Anti-CD74 IgG and IgA antibodies were significantly increased in spondyloarthritis patients and suggest a high diagnostic specificity of spondyloarthritis. Anti-CD74 antibody could potentially be a biomarker for the diagnosis of spondyloarthritis, but many open questions remain.
Collapse
|
39
|
Wang ZX, Wan Q, Xing A. HLA in Alzheimer's Disease: Genetic Association and Possible Pathogenic Roles. Neuromolecular Med 2020; 22:464-473. [PMID: 32894413 DOI: 10.1007/s12017-020-08612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is commonly considered as the most prominent dementing disorder globally and is characterized by the deposition of misfolded amyloid-β (Aβ) peptide and the aggregation of neurofibrillary tangles. Immunological disturbances and neuroinflammation, which result from abnormal immunological reactivations, are believed to be the primary stimulating factors triggering AD-like neuropathy. It has been suggested by multiple previous studies that a bunch of AD key influencing factors might be attributed to genes encoding human leukocyte antigen (HLA), whose variety is an essential part of human adaptive immunity. A wide range of activities involved in immune responses may be determined by HLA genes, including inflammation mediated by the immune response, T-cell transendothelial migration, infection, brain development and plasticity in AD pathogenesis, and so on. The goal of this article is to review the recent epidemiological findings of HLA (mainly HLA class I and II) associated with AD and investigate to what extent the genetic variations of HLA were clinically significant as pathogenic factors for AD. Depending on the degree of contribution of HLA in AD pathogenesis, targeted research towards HLA may propel AD therapeutic strategies into a new era of development.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
- Department of Neurosurgery, Qingdao University, Qingdao, 266071, China.
- Department of Pathophysiology, Qingdao University, Qingdao, 266071, China.
| | - Ang Xing
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| |
Collapse
|
40
|
Association of variant on the promoter of cluster of differentiation 74 in graves disease and graves ophthalmopathy. Biosci Rep 2020; 40:225965. [PMID: 32744317 PMCID: PMC7432997 DOI: 10.1042/bsr20202072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/05/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF)/cluster of differentiation 74 (CD74) plays a role in immunological functions. The present study aims to investigate whether single-nucleotide polymorphisms (SNPs) in the MIF and CD74 are risk factors for developing Graves ophthalmopathy (GO) in patients with Graves disease (GD). A case–control study enrolled 484 patients with GD (203 with and 281 without GO) and 1000 healthy individuals. SNPs were discriminated using real-time polymerase chain reaction. Hardy–Weinberg equilibrium, as well as frequencies of allele and genotype between GD patients with and without GO, were estimated using the Chi-square test. The effects of CD74 on adipocyte proliferation and differentiation were evaluated using 3T3-L1 preadipocytes. Quantitative DNA-immunoprecipitation was used to detect the binding capacity of NR3C1 and FOXP3 to A/G oligonucleotides. The results showed that individuals carrying the GG genotype at rs2569103 in the CD74 had a decreased risk of developing GD (P=3.390 × 10−11, odds ratio (OR) = 0.021, 95% confidence interval (CI) = 0.003–0.154); however, patients with GD carrying the AG genotype at rs2569103 in the CD74 had an increased risk of developing GO (P=0.009, OR = 1.707, 95% CI = 1.168–2.495). The knockdown of CD74 reduced adipocyte proliferation and differentiation. NR3C1 had a higher affinity for A, whereas FOXP3 had a higher affinity for G of rs2569103. The results suggested the existence of a link between the genetic variation of CD74 promoter and the risk for developing GD and GO, which should be considered in clinical practice.
Collapse
|
41
|
Farr L, Ghosh S, Moonah S. Role of MIF Cytokine/CD74 Receptor Pathway in Protecting Against Injury and Promoting Repair. Front Immunol 2020; 11:1273. [PMID: 32655566 PMCID: PMC7325688 DOI: 10.3389/fimmu.2020.01273] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Wound healing after an injury is essential for life. An in-depth understanding of the healing process is necessary to ultimately improve the currently limited treatment options for patients suffering as a result of damage to various organs and tissues. Injuries, even the most minor, trigger an inflammatory response that protects the host and activates repair pathways. In recent years, substantial progress has been made in delineating the mechanisms by which inflammatory cytokines and their receptors facilitate tissue repair and regeneration. This mini review focuses on emerging literature on the role of the cytokine macrophage migration inhibitory factor (MIF) and its cell membrane receptor CD74, in protecting against injury and promoting healing in different parts of the body.
Collapse
Affiliation(s)
- Laura Farr
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Swagata Ghosh
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shannon Moonah
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
42
|
Cappelli LC, Thomas MA, Bingham CO, Shah AA, Darrah E. Immune checkpoint inhibitor-induced inflammatory arthritis as a model of autoimmune arthritis. Immunol Rev 2020; 294:106-123. [PMID: 31930524 PMCID: PMC7047521 DOI: 10.1111/imr.12832] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The development of inflammatory arthritis in patients receiving immune checkpoint inhibitor therapy is increasingly recognized due to the growing use of these drugs for the treatment of cancer. This represents an important opportunity not only to define the mechanisms responsible for the development of this immune-related adverse event and to ultimately predict or prevent its development, but also to provide a unique window into early events in the development of inflammatory arthritis. Knowledge gained through the study of this patient population, for which the inciting event is known, could shed light into the pathogenesis of autoimmune arthritis. This review will highlight the clinical and immunologic features of these entities to define common elements for future study.
Collapse
Affiliation(s)
- Laura C. Cappelli
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Mekha A. Thomas
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Clifton O. Bingham
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Ami A. Shah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Erika Darrah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| |
Collapse
|
43
|
Farr L, Ghosh S, Jiang N, Watanabe K, Parlak M, Bucala R, Moonah S. CD74 Signaling Links Inflammation to Intestinal Epithelial Cell Regeneration and Promotes Mucosal Healing. Cell Mol Gastroenterol Hepatol 2020; 10:101-112. [PMID: 32004754 PMCID: PMC7215244 DOI: 10.1016/j.jcmgh.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The inflammatory response to intestinal damage promotes healing through mechanisms that are incompletely understood. Gene expression of cluster of differentiation 74 (CD74), the receptor for cytokine macrophage migration inhibitory factor, is increased in patients with inflammatory bowel disease (IBD), however, the role of CD74 signaling in intestinal inflammation remains poorly understood. The aim of this study was to determine the functional role of CD74 signaling in intestinal inflammation. METHODS We studied the characteristics of CD74 protein expression in human IBD and experimental colitis. The functional role of CD74 signaling in the intestine was investigated using cellular models; wild-type, CD74-/-, and bone marrow chimera mice; neutralizing anti-CD74 antibodies; flow cytometry; immunohistochemistry; immunofluorescence; immunoblotting; and clustered regularly interspaced short palindromic repeats and associated protein 9 technology. RESULTS In IBD patients and experimental colitis, CD74-receptor protein expression was increased in inflamed intestinal tissue, prominently in the crypt epithelial cells. By using distinct but complementary chemical and non-chemically induced mouse models of colitis with genetic and antibody neutralization approaches, we found that CD74 signaling was necessary for gut repair. Mechanistically, we found that the macrophage migration inhibitory factor cytokine, which also is increased in colitis, stimulated the CD74 receptor, enhancing intestinal epithelial cell proliferation through activation of the protein kinase B and the extracellular signal-regulated kinase pathways. Our data also suggest that CD74 signaling in immune cells was not essential for mucosal healing. CONCLUSIONS CD74 signaling is strongly activated during intestinal inflammation and protects the host by promoting epithelial cell regeneration, healing, and maintaining mucosal barrier integrity. Enhancing the CD74 pathway may represent a unique therapeutic strategy for promoting healing in IBD.
Collapse
Affiliation(s)
- Laura Farr
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Swagata Ghosh
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nona Jiang
- Department of Medicine, Yale University, New Haven, Connecticut
| | - Koji Watanabe
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Mahmut Parlak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Richard Bucala
- Department of Medicine, Yale University, New Haven, Connecticut
| | - Shannon Moonah
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia,Correspondence Address correspondence to: Shannon Moonah, MD, ScM, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, Virginia 22908-1340. fax: (434) 243-1230.
| |
Collapse
|
44
|
Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020; 295:850-867. [PMID: 31811089 PMCID: PMC6970916 DOI: 10.1074/jbc.ra119.009716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/17/2019] [Indexed: 01/07/2023] Open
Abstract
Human macrophage migration-inhibitory factor (MIF) is an evolutionarily-conserved protein that has both extracellular immune-modulating and intracellular cell-regulatory functions. MIF plays a role in various diseases, including inflammatory diseases, atherosclerosis, autoimmunity, and cancer. It serves as an inflammatory cytokine and chemokine, but also exhibits enzymatic activity. Secreted MIF binds to cell-surface immune receptors such as CD74 and CXCR4. Plants possess MIF orthologs but lack the associated receptors, suggesting functional diversification across kingdoms. Here, we characterized three MIF orthologs (termed MIF/d-dopachrome tautomerase-like proteins or MDLs) of the model plant Arabidopsis thaliana Recombinant Arabidopsis MDLs (AtMDLs) share similar secondary structure characteristics with human MIF, yet only have minimal residual tautomerase activity using either p-hydroxyphenylpyruvate or dopachrome methyl ester as substrate. Site-specific mutagenesis suggests that this is due to a distinct amino acid difference at the catalytic cavity-defining residue Asn-98. Surprisingly, AtMDLs bind to the human MIF receptors CD74 and CXCR4. Moreover, they activate CXCR4-dependent signaling in a receptor-specific yeast reporter system and in CXCR4-expressing human HEK293 transfectants. Notably, plant MDLs exert dose-dependent chemotactic activity toward human monocytes and T cells. A small molecule MIF inhibitor and an allosteric CXCR4 inhibitor counteract this function, revealing its specificity. Our results indicate cross-kingdom conservation of the receptor signaling and leukocyte recruitment capacities of human MIF by its plant orthologs. This may point toward a previously unrecognized interplay between plant proteins and the human innate immune system.
Collapse
Affiliation(s)
- Dzmitry Sinitski
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Katrin Gruner
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Markus Brandhofer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Pascal Winkler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Priscila Bourilhon
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Zhangping Xiao
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Robbert Cool
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Frank J. Dekker
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany, To whom correspondence may be addressed:
Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany. Tel.:
49-241-80-26655; Fax:
49-241-80-22637; E-mail:
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany, To whom correspondence may be addressed:
Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU) Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany. Tel.:
49-89-4400–46151; Fax:
49-89-4400–46010; E-mail:
| |
Collapse
|
45
|
Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
46
|
Listik E, Azevedo Marques Gaschler J, Matias M, Neuppmann Feres MF, Toma L, Raphaelli Nahás-Scocate AC. Proteoglycans and dental biology: the first review. Carbohydr Polym 2019; 225:115199. [DOI: 10.1016/j.carbpol.2019.115199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
|
47
|
Ssadh HA, Abdulmonem WA, Rasheed Z, Madar IH, Alhoderi J, Eldeen SKN, Alradhwan A, Alasmael N, Alkhamiss A, Fernández N. Knockdown of CD-74 in the Proliferative and Apoptotic Activity of Breast Cancer Cells. Open Access Maced J Med Sci 2019; 7:3169-3176. [PMID: 31949511 PMCID: PMC6953917 DOI: 10.3889/oamjms.2019.354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The cluster of differentiation (CD) 74 is known for its immunological functions and its elevated level was reported in various cancer cells. AIM The aim of the present study was to investigate the expression and potential roles of CD74 in the proliferative and apoptotic activity of breast cancer. METHODS Expression of CD74, macrophage migration inhibitory factor (MIF) and CD44 was assayed in CAMA-1 and MDA-MB-231 cell lines using flow cytometry. CD74 was knocked down using CD74 siRNA-transfection in CAMA-1, and MDA-MB-231 cells and proliferation and apoptosis were determined in the transfected breast cancer cells. RESULTS The data showed that CD74, MIF and CD44 were expressed in breast cancer cell lines and were associated with cell proliferation and apoptosis. Correlation analysis revealed that CD74 was positively correlated and colocalised with MIF on the cell-surface of CAMA-1 and MDA-MB-231. The knockdown of CD74 significantly reduced CAMA-1 and MDA-MB-231 cell proliferation and increased the level of apoptotic cells. CONCLUSION We concluded that the interactions of CD74 with MIF and CD74 with CD44 could be a potential tumour marker for breast cancer cells. Moreover, the level of co-expression of MIF and CD74 or CD44 could be a surrogate marker for the efficacy of anti-angiogenic drugs, particularly in breast cancer tumours. In short, the study revealed the potential roles of CD74 in the proliferation and apoptosis of breast cancer which may serve as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hussain Al Ssadh
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Saudi Arabia
| | - Inamul Hasan Madar
- Department of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, India
| | - Jamila Alhoderi
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Samah K Nasr Eldeen
- Clinical Laboratory Sciences, Inaya Medical College, Riyadh, Saudi Arabia.,Central Laboratories, Egyptian Ministry of Health, Tanta, Egypt
| | - Ali Alradhwan
- Biochemistry Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | | | - Abdullah Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Nelson Fernández
- School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
48
|
Liu Y, Liao X, Shi G. Autoantibodies in Spondyloarthritis, Focusing on Anti-CD74 Antibodies. Front Immunol 2019; 10:5. [PMID: 30723468 PMCID: PMC6349765 DOI: 10.3389/fimmu.2019.00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023] Open
Abstract
Spondyloarthritis (SpA) is an inflammatory rheumatic disease with diverse clinical presentation. The diagnosis of SpA remains a big challenge in daily clinical practice because of the limitation in specific biomarkers of SpA, more biomarkers are still needed for SpA diagnosis and disease activity monitoring. In the past, SpA was considered predominantly as auto-inflammatory disease vs. autoimmune disease. However, in recent years several researches demonstrated a broad autoantibody response in SpA patients. Study also indicated that mice lack of ZAP70 in T cell develop SpA featured inflammation. These studies indicated the autoimmune features of SpA and gave rise to the potential use of autoantibody in SpA management. In this article, we reviewed recent reports of autoantibodies associated with SpA patients, revealing the autoimmune features of SpA, suggesting the hypothesis that SpA was also an autoimmune disease, studies about the autoimmune features might provide more insights in the pathogenesis of SpA. In addition, as there are two opposite conclusions in the role of anti-CD74 autoantibody in the diagnosis of SpA, we also gave our own data on the diagnostic value of anti-CD74 in Chinese SpA patients. Though our data indicated that anti-CD74 might not be a good biomarker for SpA diagnosis in Asian people, CD74 was still a good molecule target in the research of SpA pathogenesis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xining Liao
- Medical College, Xiamen University, Xiamen, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
49
|
Soppert J, Kraemer S, Beckers C, Averdunk L, Möllmann J, Denecke B, Goetzenich A, Marx G, Bernhagen J, Stoppe C. Soluble CD74 Reroutes MIF/CXCR4/AKT-Mediated Survival of Cardiac Myofibroblasts to Necroptosis. J Am Heart Assoc 2018; 7:e009384. [PMID: 30371153 PMCID: PMC6201423 DOI: 10.1161/jaha.118.009384] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 01/03/2023]
Abstract
Background Although macrophage migration inhibitory factor ( MIF ) has been demonstrated to mediate cardioprotection in ischemia/reperfusion injury and antagonize fibrotic effects through its receptor, CD 74, the function of the soluble CD 74 receptor ectodomain ( sCD 74) and its interaction with circulating MIF have not been explored in cardiac disease. Methods and Results Cardiac fibroblasts were isolated from hearts of neonatal mice and differentiated into myofibroblasts. Co-treatment with recombinant MIF and sCD 74 induced cell death ( P<0.001), which was mediated by receptor-interacting serine/threonine-protein kinase ( RIP) 1/ RIP 3-dependent necroptosis ( P=0.0376). This effect was specific for cardiac fibroblasts and did not affect cardiomyocytes. Gene expression analyses using microarray and RT - qPCR technology revealed a 4-fold upregulation of several interferon-induced genes upon co-treatment of myofibroblasts with sCD 74 and MIF (Ifi44: P=0.011; Irg1: P=0.022; Clec4e: P=0.011). Furthermore, Western blot analysis confirmed the role of sCD 74 as a modulator of MIF signaling by diminishing MIF -mediated protein kinase B ( AKT) activation ( P=0.0197) and triggering p38 activation ( P=0.0641). We obtained evidence that sCD 74 inhibits MIF -mediated survival pathway through the C-X-C chemokine receptor 4/ AKT axis, enabling the induction of CD 74-dependent necroptotic processes in cardiac myofibroblasts. Preliminary clinical data revealed a lowered sCD 74/ MIF ratio in heart failure patients (17.47±10.09 versus 1.413±0.6244). Conclusions These findings suggest that treatment of cardiac myofibroblasts with sCD 74 and MIF induces necroptosis, offering new insights into the mechanism of myofibroblast depletion during scar maturation. Preliminary clinical data provided first evidence about a clinical relevance of the sCD 74/ MIF axis in heart failure, suggesting that these proteins may be a promising target to modulate cardiac remodeling and disease progression in heart failure.
Collapse
Affiliation(s)
- Josefin Soppert
- Department of Intensive Care MedicineUniversity HospitalRWTH AachenAachenGermany
- Department of Thoracic, Cardiac and Vascular SurgeryUniversity HospitalRWTH AachenAachenGermany
| | - Sandra Kraemer
- Department of Thoracic, Cardiac and Vascular SurgeryUniversity HospitalRWTH AachenAachenGermany
| | - Christian Beckers
- Department of Thoracic, Cardiac and Vascular SurgeryUniversity HospitalRWTH AachenAachenGermany
| | - Luisa Averdunk
- Department of Intensive Care MedicineUniversity HospitalRWTH AachenAachenGermany
| | - Julia Möllmann
- Department of Cardiology, Pneumology, Angiology and Internal Intensive CareUniversity HospitalRWTH AachenAachenGermany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research (IZKF)University HospitalRWTH AachenAachenGermany
| | - Andreas Goetzenich
- Department of Thoracic, Cardiac and Vascular SurgeryUniversity HospitalRWTH AachenAachenGermany
| | - Gernot Marx
- Department of Intensive Care MedicineUniversity HospitalRWTH AachenAachenGermany
| | - Jürgen Bernhagen
- Department of Vascular BiologyInstitute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Cardiovascular Research (DZHK)partner site Munich Heart AllianceMunichGermany
- Munich Cluster for Systems Neurology (EXC 1010 SyNergy)MunichGermany
| | - Christian Stoppe
- Department of Intensive Care MedicineUniversity HospitalRWTH AachenAachenGermany
| |
Collapse
|
50
|
Beaumont M, Tomazela D, Hodges D, Ermakov G, Hsieh E, Figueroa I, So OY, Song Y, Ma H, Antonenko S, Mengesha W, Zhang YW, Zhang S, Hseih S, Ayanoglu G, Du X, Rimmer E, Judo M, Vives F, Yearley JH, Moon C, Manibusan A, Knudsen N, Beck A, Bresson D, Gately D, Neupane D, Escandón E. Antibody-drug conjugates: integrated bioanalytical and biodisposition assessments in lead optimization and selection. AAPS OPEN 2018. [DOI: 10.1186/s41120-018-0026-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|