1
|
La Monica G, Pizzolanti G, Baiamonte C, Bono A, Alamia F, Mingoia F, Lauria A, Martorana A. Design and Synthesis of Novel Thieno[3,2- c]quinoline Compounds with Antiproliferative Activity on RET-Dependent Medullary Thyroid Cancer Cells. ACS OMEGA 2023; 8:34640-34649. [PMID: 37779971 PMCID: PMC10536062 DOI: 10.1021/acsomega.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 10/03/2023]
Abstract
RET kinase gain-of-function mutations represent the main cause of the high aggressiveness and invasiveness of medullary thyroid cancer (MTC). The selective inhibition of the RET kinase is a suitable strategy for the treatment of this endocrine neoplasia. Herein, we performed an innovative ligand-based virtual screening protocol using the DRUDITonline web service, focusing on the RET kinase as a biological target. In this process, thieno[3,2-c]quinolines 6a-e and 7a-e were proposed as new potential RET inhibitors. The selected compounds were synthetized by appropriate synthetic strategies, and in vitro evaluation of antiproliferative properties conducted on the particularly aggressive MTC cell line TT(C634R) identified compounds 6a-d as promising anticancer agents, with IC50 values in the micromolar range. Further structure-based computational studies revealed a significant capability of the most active compounds to the complex RET tyrosine kinase domain. The interesting antiproliferative results supported by in silico predictions suggest that these compounds may represent a starting point for the development of a new series of small heterocyclic molecules for the treatment of MTC.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Giuseppe Pizzolanti
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Concetta Baiamonte
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Francesco Mingoia
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| |
Collapse
|
2
|
Ramesh P, Shin WH, Veerappapillai S. Discovery of a Potent Candidate for RET-Specific Non-Small-Cell Lung Cancer-A Combined In Silico and In Vitro Strategy. Pharmaceutics 2021; 13:pharmaceutics13111775. [PMID: 34834190 PMCID: PMC8619101 DOI: 10.3390/pharmaceutics13111775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Rearranged during transfection (RET) is a tyrosine kinase oncogenic receptor, activated in several cancers including non-small-cell lung cancer (NSCLC). Multiple kinase inhibitors vandetanib and cabozantinib are commonly used in the treatment of RET-positive NSCLC. However, specificity, toxicity, and reduced efficacy limit the usage of multiple kinase inhibitors in targeting RET protein. Thus, in the present investigation, we aimed to figure out novel and potent candidates for the inhibition of RET protein using combined in silico and in vitro strategies. In the present study, screening of 11,808 compounds from the DrugBank repository was accomplished by different hypotheses such as pharmacophore, e-pharmacophore, and receptor cavity-based models in the initial stage. The results from the different hypotheses were then integrated to eliminate the false positive prediction. The inhibitory activities of the screened compounds were tested by the glide docking algorithm. Moreover, RF score, Tanimoto coefficient, prime-MM/GBSA, and density functional theory calculations were utilized to re-score the binding free energy of the docked complexes with high precision. This procedure resulted in three lead molecules, namely DB07194, DB03496, and DB11982, against the RET protein. The screened lead molecules together with reference compounds were then subjected to a long molecular dynamics simulation with a 200 ns time duration to validate the inhibitory activity. Further analysis of compounds using MM-PBSA and mutation studies resulted in the identification of potent compound DB07194. In essence, a cell viability assay with RET-specific lung cancer cell line LC-2/ad was also carried out to confirm the in vitro biological activity of the resultant compound, DB07194. Indeed, the results from our study conclude that DB07194 can be effectively translated for this new therapeutic purpose, in contrast to the properties for which it was originally designed and synthesized.
Collapse
Affiliation(s)
- Priyanka Ramesh
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| | - Woong-Hee Shin
- Department of Chemical Science Education, College of Education, Sunchon National University, Suncheon 57922, Korea
- Department of Advanced Components and Materials Engineering, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (W.-H.S.); (S.V.)
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
- Correspondence: (W.-H.S.); (S.V.)
| |
Collapse
|
3
|
Cristina Mendonça Nogueira T, Vinicius Nora de Souza M. New FDA oncology small molecule drugs approvals in 2020: Mechanism of action and clinical applications. Bioorg Med Chem 2021; 46:116340. [PMID: 34416511 DOI: 10.1016/j.bmc.2021.116340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022]
Abstract
In 2020, fifty-three new drugs, including forty small-molecules (thirty-six new chemical entities and four new diagnostic agents) and thirteen biologic drugs were approved by the U.S. Food and Drug Administration (FDA). This year, small-molecules continue to play a role in innovative treatments representing around 75% of all drugs accepted by FDA. The dominant therapeutic area was oncology, accounting for twenty-three new approvals, including thirteen new chemical entities, four new diagnostic agents, and thirteen biologic drugs. Recognizing the importance of small-molecules on cancer treatment, this review aims to provide an overview regarding the clinical applications and mechanism of action of the thirteen new small-molecules (excluding new diagnostic agents) approved by FDA in 2020.
Collapse
Affiliation(s)
- Thais Cristina Mendonça Nogueira
- Instituto de Tecnologia em Fármacos-Far Manguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041- 250 Brazil
| | - Marcus Vinicius Nora de Souza
- Instituto de Tecnologia em Fármacos-Far Manguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041- 250 Brazil.
| |
Collapse
|
4
|
Discovery and optimization of selective RET inhibitors via scaffold hopping. Bioorg Med Chem Lett 2021; 47:128149. [PMID: 34058344 DOI: 10.1016/j.bmcl.2021.128149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Aberrant alterations of rearranged during transfection (RET) have been identified as actionable drivers of multiple cancers, including thyroid carcinoma and lung cancer. Currently, several approved multikinase inhibitors such as vandetanib and cabozantinib demonstrate clinical activity in patients with RET-rearranged or RET-mutant cancers. However, the observed response rates are only modest and the 'off-target' toxicities resulted from the inhibition of other kinases is also a concern. Herein, we designed and synthesized a series of RET inhibitors based on the structure of selective RET inhibitor BLU-667 and investigated their biological activities. We identified compound 9 as a novel potent and selective RET inhibitor with improved drug-like properties. Compound 9 exhibits a selective inhibitory profile with an inhibitory concentration 50 (IC50) of 1.29 nM for RET and 1.97 (RET V804M) or 0.99 (RET M918T) for mutant RETs. The proliferation of Ba/F3 cells transformed with NSCLC related KIF5B-RET fusion was effectively suppressed by compound 9 (IC50 = 19 nM). Additionally, compound 9 displayed less 'off-target' effects than BLU-667. In mouse xenograft models, compound 9 repressed tumor growth driven by KIF5B-RET-Ba/F3 cells in a dose-dependent manner. Based on its exceptional kinase selectivity, good potency and high exposure in tumor tissues, compound 9 represents a promising lead for the discovery of RET directed therapeutic agents and the study of RET-driven tumor biology.
Collapse
|
5
|
Recent developments of RET protein kinase inhibitors with diverse scaffolds as hinge binders. Future Med Chem 2020; 13:45-62. [PMID: 33242992 DOI: 10.4155/fmc-2020-0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RET is a proto-oncogene encoding a receptor tyrosine kinase. RET regulates key aspects of cellular proliferation, differentiation and survival. The activation of RET via gene fusions or point mutations is closely related to lung, thyroid and other cancers. This review summarizes the developments of a diversity of small molecule RET protein kinase inhibitors in the past 10 years. These RET inhibitors are classified according to their hinge binder chemotypes as: pyrimidines, including the pyrazolopyrimidines, pyrimidine oxazines, quinazolines, 4-aminopyrimidines and 4-aminopyridines; indolinones; 5-aminopyrazole-4-carboxamides; 3-trifluoromethylanilines; imidazopyridines, imidazopyridazines and pyrazopyridines; nicotinonitriles; pyridones and 1,2,4-triazoles. In each section, the biological activities of the inhibitors, their structure-activity relationships and possible binding modes with the RET kinase are introduced.
Collapse
|
6
|
Tian Z, Niu X, Yao W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front Oncol 2020; 10:1642. [PMID: 32984034 PMCID: PMC7485562 DOI: 10.3389/fonc.2020.01642] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials have shown several multi-target tyrosine kinase inhibitors (TKIs) to be effective in the treatment of osteosarcoma. However, these TKIs have a number of targets, and it is yet unclear which of these targets has a key role in osteosarcoma treatment. In this review, we first summarize the TKIs that were studied in clinical trials registered on ClinicalTrials.gov. Further, we compare and discuss the targets of these TKIs. We found that TKIs with promising therapeutic effect for osteosarcoma include apatinib, cabozantinib, lenvatinib, regorafenib, and sorafenib. The key targets for osteosarcoma treatment may include VEGFRs and RET. The receptor tyrosine kinases (RTKs) MET, IGF-1R, AXL, PDGFRs, KIT, and FGFRs might be relevant but unimportant targets for osteosarcoma treatment. Inhibition of one type of RTK for the treatment of osteosarcoma is not effective. It is necessary to inhibit several relevant RTKs simultaneously to achieve a breakthrough in osteosarcoma treatment. This review provides comprehensive information on TKI targets relevant in osteosarcoma treatment, and it will be useful for further research in this field.
Collapse
Affiliation(s)
- Zhichao Tian
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaohui Niu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, China
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Laxmi A, Gupta P, Gupta J. CCDC6, a gene product in fusion with different protoncogenes, as a potential chemotherapeutic target. Cancer Biomark 2019; 24:383-393. [DOI: 10.3233/cbm-181601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aishwarya Laxmi
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Pawan Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Department of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
8
|
Wang Y, Xu Y, Wang X, Sun C, Guo Y, Shao G, Yang Z, Qiu S, Ma K. RET fusion in advanced non-small-cell lung cancer and response to cabozantinib: A case report. Medicine (Baltimore) 2019; 98:e14120. [PMID: 30653139 PMCID: PMC6370068 DOI: 10.1097/md.0000000000014120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Lung cancer is a series of gene-driven disease. EGFR, ALK, and ROS1 are 3 major driver genes that play an important role in lung cancer development and precision management. Additionally, rare genetic alterations continue to be discovered and may become novel targets for therapy. The RET gene is one of such rare genetic alteration of non-small cell lung cancer (NSCLC). In this report, we present a RET-positive case that benefited from cabozantinib treatment. PATIENT CONCERN A 50-year-old male patient was diagnosed with lung adenocarcinoma 2 years ago, at that time he received palliative surgery of pulmonary carcinoma and completed 4 cycles of chemotherapy with gemcitabine and cisplatin. Six months later, he was hospitalized in our cancer center due to the disease recurrence, presenting with pleural metastasis. DIAGNOSIS Gene alteration was examined using the intraoperative specimen by PCR method, and KIF5B/RET gene fusion was detected. Therefore, the patient was diagnosed with late-stage lung adenocarcinoma with RET gene mutation. INTERVENTIONS The patient received treatment with cabozantinib from June 2017. OUTCOMES Cabozantinib was administered (140 mg orally, once daily) for approximate 9 months, and his disease achieved stable disease (SD). During that period, there were no severe adverse events (AE), except for a grade II rash (CTCAE 4.0). LESSONS We found that the RET fusion gene is a novel driver molecular of lung adenocarcinoma in patients without common mutations in such genes as EGFR, ALK, and ROS1. This case report supports a rationale for the treatment of lung adenocarcinoma patients with a RET fusion and provides alternative treatment options for these types of NSCLC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoguang Shao
- Thoracic surgery department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiguang Yang
- Thoracic surgery department, The First Hospital of Jilin University, Changchun, Jilin, China
| | | | | |
Collapse
|
9
|
Russell JP, Mohammadi E, Ligon CO, Johnson AC, Gershon MD, Rao M, Shen Y, Chan CC, Eidam HS, DeMartino MP, Cheung M, Oliff AI, Kumar S, Greenwood-Van Meerveld B. Exploring the Potential of RET Kinase Inhibition for Irritable Bowel Syndrome: A Preclinical Investigation in Rodent Models of Colonic Hypersensitivity. J Pharmacol Exp Ther 2018; 368:299-307. [PMID: 30413627 DOI: 10.1124/jpet.118.252973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Abdominal pain represents a significant complaint in patients with irritable bowel syndrome (IBS). While the etiology of IBS is incompletely understood, prior exposure to gastrointestinal inflammation or psychologic stress is frequently associated with the development of symptoms. Inflammation or stress-induced expression of growth factors or cytokines may contribute to the pathophysiology of IBS. Here, we aimed to investigate the therapeutic potential of inhibiting the receptor of glial cell line-derived neurotrophic factor, rearranged during transfection (RET), in experimental models of inflammation and stress-induced visceral hypersensitivity resembling IBS sequelae. In RET-cyan fluorescent protein [(CFP) RetCFP/+] mice, thoracic and lumbosacral dorsal root ganglia were shown to express RET, which colocalized with calcitonin gene-related peptide. To understand the role of RET in visceral nociception, we employed GSK3179106 as a potent, selective, and gut-restricted RET kinase inhibitor. Colonic hyperalgesia, quantified as exaggerated visceromotor response to graded pressures (0-60 mm Hg) of isobaric colorectal distension (CRD), was produced in multiple rat models induced 1) by colonic irritation, 2) following acute colonic inflammation, 3) by adulthood stress, and 4) by early life stress. In all the rat models, RET inhibition with GSK3179106 attenuated the number of abdominal contractions induced by CRD. Our findings identify a role for RET in visceral nociception. Inhibition of RET kinase with a potent, selective, and gut-restricted small molecule may represent a novel therapeutic strategy for the treatment of IBS through the attenuation of post-inflammatory and stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- John P Russell
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Ehsan Mohammadi
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Casey O Ligon
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Anthony C Johnson
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Michael D Gershon
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Meenakshi Rao
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Yuhong Shen
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Chi-Chung Chan
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Hilary S Eidam
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Michael P DeMartino
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Mui Cheung
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Allen I Oliff
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Sanjay Kumar
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Beverley Greenwood-Van Meerveld
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| |
Collapse
|
10
|
La Pietra V, Sartini S, Botta L, Antonelli A, Ferrari SM, Fallahi P, Moriconi A, Coviello V, Quattrini L, Ke YY, Hsing-Pang H, Da Settimo F, Novellino E, La Motta C, Marinelli L. Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors. Eur J Med Chem 2018; 150:491-505. [DOI: 10.1016/j.ejmech.2018.02.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/03/2023]
|
11
|
Cerrato A, Visconti R, Celetti A. The rationale for druggability of CCDC6-tyrosine kinase fusions in lung cancer. Mol Cancer 2018; 17:46. [PMID: 29455670 PMCID: PMC5817729 DOI: 10.1186/s12943-018-0799-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Gene fusions occur in up to 17% of solid tumours. Oncogenic kinases are often involved in such fusions. In lung cancer, almost 30% of patients carrying an activated oncogene show the fusion of a tyrosine kinase to an heterologous gene. Several genes are partner in the fusion with the three kinases ALK, ROS1 and RET in lung. The impaired function of the partner gene, in combination with the activation of the kinase, may alter the cell signaling and promote the cancer cell addiction to the oncogene. Moreover, the gene that is partner in the fusion to the kinase may affect the response to therapeutics and/or promote resistance in the cancer cells. Few genes are recurrent partners in tyrosine kinase fusions in lung cancer, including CCDC6, a recurrent partner in ROS1 and RET fusions, that can be selected as possible target for new strategies of combined therapy including TKi.
Collapse
Affiliation(s)
- Aniello Cerrato
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy.
| | - Roberta Visconti
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
12
|
Redaelli S, Plaza-Menacho I, Mologni L. Novel targeted therapeutics for MEN2. Endocr Relat Cancer 2018; 25:T53-T68. [PMID: 29348306 DOI: 10.1530/erc-17-0297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/28/2023]
Abstract
The rearranged during transfection (RET) proto-oncogene was recognized as the multiple endocrine neoplasia type 2 (MEN2) causing gene in 1993. Since then, much effort has been put into a clear understanding of its oncogenic signaling, its biochemical function and ways to block its aberrant activation in MEN2 and related cancers. Several small molecules have been designed, developed or redirected as RET inhibitors for the treatment of MEN2 and sporadic MTC. However, current drugs are mostly active against several other kinases, as they were not originally developed for RET. This limits efficacy and poses safety issues. Therefore, there is still much to do to improve targeted MEN2 treatments. New, more potent and selective molecules, or combinatorial strategies may lead to more effective therapies in the near future. Here, we review the rationale for RET targeting in MEN2, the use of currently available drugs and novel preclinical and clinical RET inhibitor candidates.
Collapse
Affiliation(s)
- Sara Redaelli
- School of Medicine and SurgeryUniversity of Milano-Bicocca, Monza, Italy
| | | | - Luca Mologni
- School of Medicine and SurgeryUniversity of Milano-Bicocca, Monza, Italy
| |
Collapse
|
13
|
Salvi S, Ravetti JL, Arena G, Musso C, Varesano S, Pistillo MP, Canessa PA, Ferro P, Fedeli F, Roncella S. Evaluation of RET Gene Rearrangement by Fluorescence In Situ Hybridization in Malignant Mesothelioma. J Thorac Oncol 2017; 13:e12-e14. [PMID: 29258668 DOI: 10.1016/j.jtho.2017.09.1957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sandra Salvi
- Division of Anatomic Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Jean Louis Ravetti
- Division of Anatomic Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Arena
- Division of Anatomic Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Clementina Musso
- Division of Anatomic Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Serena Varesano
- Unit of Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Pia Pistillo
- Unit of Tumor Epigenetics, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pier Aldo Canessa
- Division of Pneumology, Azienda Sanitaria Locale 5, La Spezia, Italy
| | - Paola Ferro
- Division of Histopathology and Cytopathology, Azienda Sanitaria Locale 5, La Spezia, Italy
| | - Franco Fedeli
- Division of Histopathology and Cytopathology, Azienda Sanitaria Locale 5, La Spezia, Italy
| | - Silvio Roncella
- Division of Histopathology and Cytopathology, Azienda Sanitaria Locale 5, La Spezia, Italy.
| |
Collapse
|
14
|
Levinson S, Cagan RL. Drosophila Cancer Models Identify Functional Differences between Ret Fusions. Cell Rep 2017; 16:3052-3061. [PMID: 27626672 DOI: 10.1016/j.celrep.2016.08.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 12/23/2022] Open
Abstract
We generated and compared Drosophila models of RET fusions CCDC6-RET and NCOA4-RET. Both RET fusions directed cells to migrate, delaminate, and undergo EMT, and both resulted in lethality when broadly expressed. In all phenotypes examined, NCOA4-RET was more severe than CCDC6-RET, mirroring their effects on patients. A functional screen against the Drosophila kinome and a library of cancer drugs found that CCDC6-RET and NCOA4-RET acted through different signaling networks and displayed distinct drug sensitivities. Combining data from the kinome and drug screens identified the WEE1 inhibitor AZD1775 plus the multi-kinase inhibitor sorafenib as a synergistic drug combination that is specific for NCOA4-RET. Our work emphasizes the importance of identifying and tailoring a patient's treatment to their specific RET fusion isoform and identifies a multi-targeted therapy that may prove effective against tumors containing the NCOA4-RET fusion.
Collapse
Affiliation(s)
- Sarah Levinson
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029-1020, USA
| | - Ross L Cagan
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029-1020, USA.
| |
Collapse
|
15
|
Dolly SO, Collins DC, Sundar R, Popat S, Yap TA. Advances in the Development of Molecularly Targeted Agents in Non-Small-Cell Lung Cancer. Drugs 2017; 77:813-827. [PMID: 28378229 DOI: 10.1007/s40265-017-0732-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-small-cell lung cancer (NSCLC) remains a significant global health challenge and the leading cause of cancer-related mortality. The traditional 'one-size-fits-all' treatment approach has now evolved into one that involves personalized strategies based on histological and molecular subtypes. The molecular era has revolutionized the treatment of patients harboring epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) and ROS1 gene aberrations. In the appropriately selected population, anti-tumor agents against these molecular targets can significantly improve progression-free survival. However, the emergence of acquired resistance is inevitable. Novel potent compounds with much improved and rational selectivity profiles, such as third-generation EGFR T790M resistance mutation-specific inhibitors, have been developed and added to the NSCLC armamentarium. To date, attempts to overcome resistance bypass pathways through downstream signaling blockade has had limited success. Furthermore, the majority of patients still do not harbor known driver genetic or epigenetic alterations and/or have no new available treatment options, with chemotherapy remaining their standard of care. Several potentially actionable driver aberrations have recently been identified, with the early clinical development of multiple inhibitors against these promising targets currently in progress. The advent of immune checkpoint inhibitors has led to significant benefit for advanced NSCLC patients with durable responses observed. Further interrogation of the underlying biology of NSCLC, coupled with modern clinical trial designs, is now required to develop novel targeted therapeutics rationally matched with predictive biomarkers of response, so as to further advance NSCLC therapeutics through the next decade.
Collapse
Affiliation(s)
| | | | - Raghav Sundar
- Royal Marsden NHS Foundation Trust, London, UK.,National University Health System, Singapore, Singapore
| | - Sanjay Popat
- Royal Marsden NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Timothy A Yap
- Royal Marsden NHS Foundation Trust, London, UK. .,Drug Development Unit and Lung Cancer Unit, The Institute of Cancer Research and Royal Marsden Hospital, Downs Road, London, SM2 5PT, UK.
| |
Collapse
|
16
|
Plenker D, Riedel M, Brägelmann J, Dammert MA, Chauhan R, Knowles PP, Lorenz C, Keul M, Bührmann M, Pagel O, Tischler V, Scheel AH, Schütte D, Song Y, Stark J, Mrugalla F, Alber Y, Richters A, Engel J, Leenders F, Heuckmann JM, Wolf J, Diebold J, Pall G, Peifer M, Aerts M, Gevaert K, Zahedi RP, Buettner R, Shokat KM, McDonald NQ, Kast SM, Gautschi O, Thomas RK, Sos ML. Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors. Sci Transl Med 2017; 9:eaah6144. [PMID: 28615362 PMCID: PMC5805089 DOI: 10.1126/scitranslmed.aah6144] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/03/2017] [Accepted: 03/21/2017] [Indexed: 01/25/2023]
Abstract
Oncogenic fusion events have been identified in a broad range of tumors. Among them, RET rearrangements represent distinct and potentially druggable targets that are recurrently found in lung adenocarcinomas. We provide further evidence that current anti-RET drugs may not be potent enough to induce durable responses in such tumors. We report that potent inhibitors, such as AD80 or ponatinib, that stably bind in the DFG-out conformation of RET may overcome these limitations and selectively kill RET-rearranged tumors. Using chemical genomics in conjunction with phosphoproteomic analyses in RET-rearranged cells, we identify the CCDC6-RETI788N mutation and drug-induced mitogen-activated protein kinase pathway reactivation as possible mechanisms by which tumors may escape the activity of RET inhibitors. Our data provide mechanistic insight into the druggability of RET kinase fusions that may be of help for the development of effective therapies targeting such tumors.
Collapse
Affiliation(s)
- Dennis Plenker
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Maximilian Riedel
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Marcel A Dammert
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Rakhee Chauhan
- Structural Biology Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Phillip P Knowles
- Structural Biology Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Carina Lorenz
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Marina Keul
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Mike Bührmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Oliver Pagel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Verena Tischler
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Andreas H Scheel
- Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
| | - Daniel Schütte
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Yanrui Song
- Crown BioScience, Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA
| | - Justina Stark
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Florian Mrugalla
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Yannic Alber
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - André Richters
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Julian Engel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | | | | | - Jürgen Wolf
- Department of Internal Medicine, Center for Integrated Oncology Köln Bonn, University Hospital Cologne, Cologne, 50931 Cologne, Germany
| | - Joachim Diebold
- Cancer Center, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | - Georg Pall
- Department of Internal Medicine 5, University Hospital Innsbruck, Haematology/Oncology, Anichstraße 35, 6020 Innsbruck, Austria
| | - Martin Peifer
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Maarten Aerts
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Reinhard Buettner
- Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Neil Q McDonald
- Structural Biology Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Stefan M Kast
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Oliver Gautschi
- Cancer Center, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Department of Internal Medicine, Center for Integrated Oncology Köln Bonn, University Hospital Cologne, Cologne, 50931 Cologne, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, Center of Integrated Oncology, University Hospital Cologne, 50937 Cologne, Germany.
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
17
|
Han M, Li S, Ai J, Sheng R, Hu Y, Hu Y, Geng M. Discovery of 4-chloro-3-(5-(pyridin-3-yl)-1,2,4-oxadiazole-3-yl)benzamides as novel RET kinase inhibitors. Bioorg Med Chem Lett 2016; 26:5679-5684. [DOI: 10.1016/j.bmcl.2016.10.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
|
18
|
Moyle LA, Blanc E, Jaka O, Prueller J, Banerji CR, Tedesco FS, Harridge SD, Knight RD, Zammit PS. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. eLife 2016; 5. [PMID: 27841748 PMCID: PMC5108591 DOI: 10.7554/elife.11405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/01/2016] [Indexed: 12/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically-approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD. DOI:http://dx.doi.org/10.7554/eLife.11405.001
Collapse
Affiliation(s)
- Louise A Moyle
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eric Blanc
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany.,Institute of Pathology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Oihane Jaka
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| | - Johanna Prueller
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Christopher Rs Banerji
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Stephen Dr Harridge
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| | - Robert D Knight
- Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Jóri B, Kamps R, Xanthoulea S, Delvoux B, Blok MJ, Van de Vijver KK, de Koning B, Oei FT, Tops CM, Speel EJ, Kruitwagen RF, Gomez-Garcia EB, Romano A. Germ-line variants identified by next generation sequencing in a panel of estrogen and cancer associated genes correlate with poor clinical outcome in Lynch syndrome patients. Oncotarget 2016; 6:41108-22. [PMID: 26517685 PMCID: PMC4747393 DOI: 10.18632/oncotarget.5694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/16/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The risk to develop colorectal and endometrial cancers among subjects testing positive for a pathogenic Lynch syndrome mutation varies, making the risk prediction difficult. Genetic risk modifiers alter the risk conferred by inherited Lynch syndrome mutations, and their identification can improve genetic counseling. We aimed at identifying rare genetic modifiers of the risk of Lynch syndrome endometrial cancer. METHODS A family based approach was used to assess the presence of genetic risk modifiers among 35 Lynch syndrome mutation carriers having either a poor clinical phenotype (early age of endometrial cancer diagnosis or multiple cancers) or a neutral clinical phenotype. Putative genetic risk modifiers were identified by Next Generation Sequencing among a panel of 154 genes involved in endometrial physiology and carcinogenesis. RESULTS A simple pipeline, based on an allele frequency lower than 0.001 and on predicted non-conservative amino-acid substitutions returned 54 variants that were considered putative risk modifiers. The presence of two or more risk modifying variants in women carrying a pathogenic Lynch syndrome mutation was associated with a poor clinical phenotype. CONCLUSION A gene-panel is proposed that comprehends genes that can carry variants with putative modifying effects on the risk of Lynch syndrome endometrial cancer. Validation in further studies is warranted before considering the possible use of this tool in genetic counseling.
Collapse
Affiliation(s)
- Balazs Jóri
- Department of Gynecology and Obstetrics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Genetics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rick Kamps
- Department of Clinical Genetics, Genomics & Bioinformatics, CARIM - School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sofia Xanthoulea
- Department of Gynecology and Obstetrics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bert Delvoux
- Department of Gynecology and Obstetrics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marinus J Blok
- Department of Clinical Genetics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Koen K Van de Vijver
- Department of Pathology, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Current address: Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Bart de Koning
- Department of Clinical Genetics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Felicia Trups Oei
- Department of Clinical Genetics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ernst Jm Speel
- Department of Pathology, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roy F Kruitwagen
- Department of Gynecology and Obstetrics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Encarna B Gomez-Garcia
- Department of Clinical Genetics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Gynecology and Obstetrics, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
20
|
Mologni L, Gambacorti-Passerini C, Goekjian P, Scapozza L. RET kinase inhibitors: a review of recent patents (2012-2015). Expert Opin Ther Pat 2016; 27:91-99. [PMID: 27646564 DOI: 10.1080/13543776.2017.1238073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Tyrosine kinases are involved in the control of several biological processes and have been recognized as hot spots of oncogenic transformation, thus representing a major therapeutic target. Dysregulated activation of RET kinase, either through point mutations or gene fusions, is accountable for a significant fraction of thyroid carcinomas, as well as a minor population of lung cancers. Two drugs are currently available for the treatment of medullary thyroid carcinoma and two additional compounds have been approved for differentiated thyroid carcinoma. Several other molecules are under preclinical and clinical evaluation. Areas covered: This review covers the most recent patent literature (2012-2015) describing compounds with activity against the RET kinase, trying to catch a view of the next generation of potential anti-RET drugs. Expert opinion: RET has been a focus of molecularly targeted efforts for over a decade. However, none of the drugs currently on the clinical stage were specifically developed to hit RET, which was rather an off-target. Besides, only two of four drugs have activity on metastatic medullary carcinoma. Therefore, there is still a need of additional, more potent and more specific RET inhibitors, which will hopefully emerge from the new generation of compounds disclosed in most recent patents.
Collapse
Affiliation(s)
- Luca Mologni
- a School of Medicine and Surgery , University of Milano-Bicocca , Monza , Italy.,d Galkem srl , Monza , Italy
| | - Carlo Gambacorti-Passerini
- a School of Medicine and Surgery , University of Milano-Bicocca , Monza , Italy.,d Galkem srl , Monza , Italy
| | - Peter Goekjian
- b Chimie Organique 2-Glycosciences , University of Lyon , Lyon , France.,d Galkem srl , Monza , Italy
| | - Leonardo Scapozza
- c School of Pharmaceutical Sciences , University of Geneva , Geneva , Switzerland.,d Galkem srl , Monza , Italy
| |
Collapse
|
21
|
Lin C, Wang S, Xie W, Zheng R, Gan Y, Chang J. Apatinib inhibits cellular invasion and migration by fusion kinase KIF5B-RET via suppressing RET/Src signaling pathway. Oncotarget 2016; 7:59236-59244. [PMID: 27494860 PMCID: PMC5312308 DOI: 10.18632/oncotarget.10985] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022] Open
Abstract
The Rearranged during transfection (RET) fusion gene is a newly identified oncogenic mutation in non-small cell lung cancer (NSCLC). The aim of this study is to explore the biological functions of the gene in tumorigenesis and metastasis in RET gene fusion-driven preclinical models. We also investigate the anti-tumor activity of Apatinib, a potent inhibitor of VEGFR-2, PDGFR-β, c-Src and RET, in RET-rearranged lung adenocarcinoma, together with the mechanisms underlying. Our results suggested that KIF5B-RET fusion gene promoted cell invasion and migration, which were probably mediated through Src signaling pathway. Apatinib exerted its anti-cancer effect not only via cytotoxicity, but also via inhibition of migration and invasion by suppressing RET/Src signaling pathway, supporting a potential role for Apatinib in the treatment of KIF5B-RET driven tumors.
Collapse
Affiliation(s)
- Chen Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Shanshan Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Weiwei Xie
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Rongliang Zheng
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, P.R. China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, P.R. China
| | - Jianhua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| |
Collapse
|
22
|
Franz H, Greschik H, Willmann D, Ozretić L, Jilg CA, Wardelmann E, Jung M, Buettner R, Schüle R. The histone code reader SPIN1 controls RET signaling in liposarcoma. Oncotarget 2016; 6:4773-89. [PMID: 25749382 PMCID: PMC4467114 DOI: 10.18632/oncotarget.3000] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Henriette Franz
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Holger Greschik
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Dominica Willmann
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Luka Ozretić
- Universitätsklinikum Köln, Institut für Pathologie, Köln, Germany
| | - Cordula Annette Jilg
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Eva Wardelmann
- Universitätsklinikum Münster, Gerhard-Domagk-Insitut für Pathologie, Münster, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort Freiburg, Germany
| | | | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort Freiburg, Germany
| |
Collapse
|
23
|
Lin C, Wang S, Xie W, Chang J, Gan Y. The RET fusion gene and its correlation with demographic and clinicopathological features of non-small cell lung cancer: a meta-analysis. Cancer Biol Ther 2015; 16:1019-28. [PMID: 25975578 DOI: 10.1080/15384047.2015.1046649] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The RET fusion gene is a novel oncogene observed in a subset of NSCLC in recent years. Nevertheless, the results of epidemiological studies concerning the gene remain unclear. Thus, a meta-analysis was conducted to evaluate the correlation of RET fusion gene with demographic and clinicopathological features of NSCLC. METHODS PubMed, Embase, and Web of Science databases were searched to identify eligible studies. The association of RET fusion gene occurrence with gender, age, smoking status, histology type and tumor stage were analyzed in meta-analysis. Subgroup analysis according to patients' location (Asian and non-Asian) was also conducted. Odds ratio (OR) and 95% confidence interval (95% CI) were calculated to assess the correlation. RESULTS Nine studies with a total of 6,899 NSCLC patients met the inclusion criteria. A total of 84 patients with RET fusion gene were detected. The RET fusion gene was identified at significantly higher frequencies in female (OR = 0.55, 95%CI = 0.35-0.85) than male patients and in young (<60) patients (OR = 0.43, 95%CI = 0.19-0.99) than old patients (≤60), particularly in patients from Asian. A significant higher frequency was also identified in non-smokers (OR = 0.28, 95% CI = 0.16-0.49), and in patients with lung adenocarcinomas (OR = 3.59, 95%CI = 1.50-8.56). Additionally, no association between RET fusion gene and the TNM stage of tumor was observed. CONCLUSION RET fusion gene occurred predominantly in Asian females with younger age, in non-smokers, and in lung adenocarcinomas patients. This subset of NSCLC patients might be good candidates for personalized diagnostic and therapeutic approaches.
Collapse
Key Words
- ADC, Adenocarcinoma
- ARTN, Artemin
- CIs, Confidence Intervals
- EGFR, Epidermal Growth Factor Receptor
- GDNF, Glial cell line-derived Neurotrophic Factor
- NADC, Non-adenocarcinoma
- NRTN, Neurturin
- NSCLC, Non-Small Cell Lung Cancer
- OR, Odd Ratio
- PI3K, Phosphatidylinositol 3-kinase
- PSPN, Persephin
- RET
- RT-PCR, Real-Time Polymerase Chain Reaction
- SCLC, Small-cell lung cancer
- TKIs, Tyrosine Kinase Inhibitors
- clinicopathological features
- demographic features
- fusion
- meta-analysis
- non-small cell lung cancer
- targeted therapy
Collapse
Affiliation(s)
- Chen Lin
- a Department of Medical Oncology; Fudan University Shanghai Cancer Center ; Shanghai , China
| | | | | | | | | |
Collapse
|
24
|
Zer A, Leighl N. Promising Targets and Current Clinical Trials in Metastatic Non-Squamous NSCLC. Front Oncol 2014; 4:329. [PMID: 25505733 PMCID: PMC4243502 DOI: 10.3389/fonc.2014.00329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/31/2014] [Indexed: 11/24/2022] Open
Abstract
Lung adenocarcinoma is the most common subtype of lung cancer today. With the discovery of epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) rearrangements, and effective targeted therapy, personalized medicine has become a reality for patients with lung adenocarcinoma. Here, we review potential additional targets and novel therapies of interest in lung adenocarcinoma including targets within the cell surface (receptor tyrosine kinases EGFR, human epidermal growth factor receptor 2, RET, ROS1, mesenchymal-epidermal transition, TRK), targets in intracellular signal transduction (ALK, RAS-RAF-MEK, PI3K-AKT-PTEN, WNT), nuclear targets such as poly-ADP ribose polymerase, heat shock protein 90, and histone deacetylase, and selected pathways in the tumor environment. With the evolving ability to identify specific molecular aberrations in patient tumors in routine practice, our ability to further personalize therapy in lung adenocarcinoma is rapidly expanding.
Collapse
Affiliation(s)
- Alona Zer
- Division of Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Natasha Leighl
- Division of Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Alao JP, Michlikova S, Dinér P, Grøtli M, Sunnerhagen P. Selective inhibition of RET mediated cell proliferation in vitro by the kinase inhibitor SPP86. BMC Cancer 2014; 14:853. [PMID: 25409876 PMCID: PMC4252022 DOI: 10.1186/1471-2407-14-853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The RET tyrosine kinase receptor has emerged as a target in thyroid and endocrine resistant breast cancer. We previously reported the synthesis of kinase inhibitors with potent activity against RET. Herein, we have further investigated the effect of the lead compound SPP86 on RET mediated signaling and proliferation. Based on these observations, we hypothesized that SPP86 may be useful for studying the cellular activity of RET. METHODS We compared the effects of SPP86 on RET-induced signaling and proliferation in thyroid cancer cell lines expressing RET-PTC1 (TPC1), or the activating mutations BRAFV600E (8505C) and RASG13R (C643). The effect of SPP86 on RET- induced phosphatidylinositide 3-kinases (PI3K)/Akt and MAPK pathway signaling and cell proliferation in MCF7 breast cancer cells was also investigated. RESULTS SPP86 inhibited MAPK signaling and proliferation in RET/PTC1 expressing TPC1 but not 8505C or C643 cells. In TPC1 cells, the inhibition of RET phosphorylation required co-exposure to SPP86 and the focal adhesion kinase (FAK) inhibitor PF573228. In MCF7 cells, SPP86 inhibited RET- induced phosphatidylinositide 3-kinases (PI3K)/Akt and MAPK signaling and estrogen receptorα (ERα) phosphorylation, and inhibited proliferation to a similar degree as tamoxifen. Interestingly, SPP86 and PF573228 inhibited RET/PTC1 and GDNF- RET induced activation of Akt and MAPK signaling to a similar degree. CONCLUSION SPP86 selectively inhibits RET downstream signaling in RET/PTC1 but not BRAFV600E or RASG13R expressing cells, indicating that downstream kinases were not affected. SPP86 also inhibited RET signaling in MCF7 breast cancer cells. Additionally, RET- FAK crosstalk may play a key role in facilitating PTC1/RET and GDNF- RET induced activation of Akt and MAPK signaling in TPC1 and MCF7 cells.
Collapse
Affiliation(s)
- John P Alao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Zhang T, Lu Y, Ye Q, Zhang M, Zheng L, Yin X, Gavine P, Sun Z, Ji Q, Zhu G, Su X. An evaluation and recommendation of the optimal methodologies to detectRETgene rearrangements in papillary thyroid carcinoma. Genes Chromosomes Cancer 2014; 54:168-76. [DOI: 10.1002/gcc.22229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 01/21/2023] Open
Affiliation(s)
- Tianwei Zhang
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Yachao Lu
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Qingqing Ye
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Meizhuo Zhang
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Li Zheng
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Xiaolu Yin
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Paul Gavine
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Zhongsheng Sun
- Institute of Genomic Medicine; Wenzhou Medical University; Wenzhou Zhejiang 325000 China
| | - Qunsheng Ji
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Guanshan Zhu
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| | - Xinying Su
- Asia & Emerging Markets iMed; AstraZeneca R&D. 199 LiangJing Road, ZhangJiang Hi-Tech Park Shanghai 201203 China
| |
Collapse
|
27
|
Abstract
The identification of molecular subtypes of non-small-cell lung cancer has transformed the clinical management of this disease. This is best exemplified by the clinical success of targeting the EGFR or ALK with tyrosine kinase inhibitors in the front-line setting. Our ability to further improve patient outcomes with biomarker-based targeted therapies will depend on a more comprehensive genetic platform that can rationally interrogate the cancer genome of an individual patient. Novel technologies, including multiplex genotyping and next-generation sequencing are rapidly evolving and will soon challenge the oncologist with a wealth of genetic information for each patient. Although there are many barriers to overcome, the integration of these genetic platforms into clinical care has the potential to transform the management of lung cancer through improved molecular categorization, patient stratification, and drug development, thereby, improving clinical outcomes through personalized lung cancer medicine.
Collapse
Affiliation(s)
- Ross A Okimoto
- Division of Hematology & Medical Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Trever G Bivona
- Division of Hematology & Medical Oncology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Ku X, Heinzlmeir S, Helm D, Médard G, Kuster B. New affinity probe targeting VEGF receptors for kinase inhibitor selectivity profiling by chemical proteomics. J Proteome Res 2014; 13:2445-52. [PMID: 24712744 DOI: 10.1021/pr401247t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors are dependent for growth on nutrients and the supply of oxygen, which they often acquire via neoangiogenesis. Vascular endothelial growth factors and the corresponding receptors (VEGFRs) play central roles in this process, and consequently, the blockade of this pathway is one therapeutic strategy for cancer treatment. A number of small molecules inhibiting VEGFR inhibitors have been developed for clinical use, and a comprehensive view of target selectivity is important to assess the therapeutic as well as risk potential of a drug molecule. Recent advances in mass spectrometry-based chemical proteomics allow analyses of drug-target interactions under close-to-physiological conditions, and in this study, we report on the design, synthesis, and application of a small molecule affinity probe as a tool for the selectivity profiling of VEGFR and other kinase inhibitors. The probe is capable of binding >132 protein kinases, including angiokinases such as VEGFRs, PDGFRs, and c-KIT from lysates of cancer cell lines or human placenta tissue. Combining the new probe with Kinobeads in competitive binding assays, we were able to identify nanomolar off-targets of the VEGFR/PDGFR inhibitors pazopanib and axitinib. Because of its broad binding spectrum, the developed chemical tool can be generically used for the discovery of kinase inhibitor targets, which may contribute to a more comprehensive understanding of the mechanisms of action of such drugs.
Collapse
Affiliation(s)
- Xin Ku
- Chair for Proteomics and Bioanalytics, Technische Universität München , Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | | | | | | | | |
Collapse
|
29
|
Plaza-Menacho I, Mologni L, McDonald NQ. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal 2014; 26:1743-52. [PMID: 24705026 DOI: 10.1016/j.cellsig.2014.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/30/2014] [Indexed: 11/15/2022]
Abstract
De-regulation of RET signaling by oncogenic mutation, gene rearrangement, overexpression or transcriptional up-regulation is implicated in several human cancers of neuroendocrine and epithelial origin (thyroid, breast, lung). Understanding how RET signaling mechanisms associated with these oncogenic events are deregulated, and their impact in the biological processes driving tumor formation and progression, as well as response to treatment, will be crucial to find and develop better targeted therapeutic strategies. In this review we emphasie the distinct mechanisms of RET signaling in cancer and summarise current knowledge on small molecule inhibitors targeting the tyrosine kinase domain of RET as therapeutic drugs in RET-positive cancers.
Collapse
Affiliation(s)
- I Plaza-Menacho
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK.
| | - L Mologni
- Dept. of Health Sciences, University of Milano-Bicocca, Italy
| | - N Q McDonald
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
30
|
Abstract
The RET receptor tyrosine kinase is crucial for normal development but also contributes to pathologies that reflect both the loss and the gain of RET function. Activation of RET occurs via oncogenic mutations in familial and sporadic cancers - most notably, those of the thyroid and the lung. RET has also recently been implicated in the progression of breast and pancreatic tumours, among others, which makes it an attractive target for small-molecule kinase inhibitors as therapeutics. However, the complex roles of RET in homeostasis and survival of neural lineages and in tumour-associated inflammation might also suggest potential long-term pitfalls of broadly targeting RET.
Collapse
Affiliation(s)
- Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
31
|
Structural modification of an EGFR inhibitor that showed weak off-target activity against RET leading to the discovery of a potent RET inhibitor. Mol Divers 2014; 18:403-9. [PMID: 24515340 DOI: 10.1007/s11030-014-9508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/13/2014] [Indexed: 02/05/2023]
Abstract
Here, we describe the structural optimization of a known EGFR inhibitor (compound 1) that showed weak off-target activity against RET. Twenty-six analogs of 1 were synthesized. SAR analysis led to the discovery of several compounds that showed considerable potency against the RET-dependent thyroid cancer cell line TT. Kinase inhibitory potency was then measured for the most active compound (2u) in the cellular assay. The results showed that 2u is a potent RET inhibitor with an IC(50) value of 7 nM.
Collapse
|
32
|
Lopergolo A, Nicolini V, Favini E, Dal Bo L, Tortoreto M, Cominetti D, Folini M, Perego P, Castiglioni V, Scanziani E, Borrello MG, Zaffaroni N, Cassinelli G, Lanzi C. Synergistic cooperation between sunitinib and cisplatin promotes apoptotic cell death in human medullary thyroid cancer. J Clin Endocrinol Metab 2014; 99:498-509. [PMID: 24276455 DOI: 10.1210/jc.2013-2574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Tyrosine kinase inhibitors represent a new treatment option for patients with advanced medullary thyroid cancer (MTC). However, cures have not been achieved with current available agents used in monotherapy. OBJECTIVE Because RET has been shown to negatively regulate CD95 death receptor activation in preclinical models of RET-dependent MTC, we investigated the potential of the combination approach with the RET-targeting tyrosine kinase inhibitor sunitinib and cisplatin to enhance apoptosis activation through the extrinsic pathway. DESIGN The effects of sunitinib and cisplatin were examined in human MTC cell lines harboring oncogenic RET mutations. Experiments were designed to determine drug effects on RET signaling, cell growth, apoptosis, autophagy, and tumor growth in mice and to investigate the mechanisms of the drug interaction. RESULTS Sunitinib and cisplatin synergistically inhibited the growth of MZ-CRC-1 cells harboring the RET M918T activating mutation. The combination enhanced apoptosis activation through CD95-mediated, caspase-8-dependent pathway. Moreover, sunitinib induced a severe perturbation of the autophagic flux characterized by autophagosome accumulation and a remarkable lysosomal dysfunction, which was further enhanced, with lysosomal leakage induction, by cisplatin. Administration of the drug combination to mice xenografted with MZ-CRC-1 cells improved the antitumor efficacy, as compared with single-agent treatments, inducing complete responses in 30% of the treated mice, a significant increase in caspase-3 activation (P < .01 vs cisplatin, and P < .0005 vs sunitinib) and apoptosis in tumor cells. CONCLUSIONS Addition of cisplatin to sunitinib potentiates apoptotic cell death and has promising preclinical activity in MTCs harboring the RET M918T oncogene.
Collapse
Affiliation(s)
- Alessia Lopergolo
- Molecular Pharmacology Unit (A.L., V.N., E.F., L.D.B., M.T., D.C., M.F., P.P., N.Z., G.C., C.L.) and Molecular Mechanisms Unit (M.G.B.), Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; Department of Veterinary Sciences and Public Health (V.C., E.S.), Università degli Studi di Milano, 20133 Milan, Italy; and Mouse and Animal Pathology Laboratory (V.C., E.S.), Fondazione Filarete, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kohno T, Tsuta K, Tsuchihara K, Nakaoku T, Yoh K, Goto K. RET fusion gene: translation to personalized lung cancer therapy. Cancer Sci 2013; 104:1396-400. [PMID: 23991695 DOI: 10.1111/cas.12275] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/27/2013] [Accepted: 08/21/2013] [Indexed: 01/24/2023] Open
Abstract
Development of lung adenocarcinoma (LADC), the most frequent histological type of lung cancer, depends in many cases on the activation of "driver" oncogenes such as KRAS, epidermal growth factor receptor (EGFR), and anaplastic lymphoma kinase (ALK). Inhibitors that target the EGFR and ALK tyrosine kinases show therapeutic effects against LADCs containing EGFR gene mutations and ALK gene fusions, respectively. Recently, we and others identified the RET fusion gene as a new targetable driver gene in LADC. The RET fusions occur in 1-2% of LADCs. Existing US Food and Drug Administration-approved inhibitors of RET tyrosine kinase show promising therapeutic effects both in vitro and in vivo, as well as in a few patients. Clinical trials are underway to investigate the therapeutic effects of RET tyrosine kinase inhibitors, such as vandetanib (ZD6474) and cabozantinib (XL184), in patients with RET fusion-positive non-small-cell lung cancer.
Collapse
Affiliation(s)
- Takashi Kohno
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan; Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Mologni L, Redaelli S, Morandi A, Plaza-Menacho I, Gambacorti-Passerini C. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol Cell Endocrinol 2013; 377:1-6. [PMID: 23811235 DOI: 10.1016/j.mce.2013.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/03/2023]
Abstract
RET kinase is aberrantly activated in thyroid cancers and in rare cases of lung and colon cancer, and has been validated as a molecular target in these tumors. Vandetanib was recently approved for the treatment of medullary thyroid cancer. However, vandetanib is ineffective in vitro against RET mutants carrying bulky aminoacids at position 804, the gatekeeper residue, similarly to drug-resistant BCR-ABL mutants in chronic myeloid leukemia. Ponatinib is a multi-target kinase inhibitor that was recently approved for treatment-refractory Philadelphia-positive leukemia. We show here potent inhibition of oncogenic RET by ponatinib, including the drug-insensitive V804M/L mutants. Ponatinib inhibited the growth of RET+ and BCR-ABL+ cells with similar potency, while not affecting RET-negative cells. Both in biochemical and in cellular assays ponatinib compared favorably with known RET inhibitors, such as vandetanib, cabozantinib, sorafenib, sunitinib and motesanib, used as reference compounds. We suggest that ponatinib should be considered for the treatment of RET+ tumors, in particular those expressing vandetanib-resistant V804M/L mutations.
Collapse
Affiliation(s)
- Luca Mologni
- Dept. of Health Sciences, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| | | | | | | | | |
Collapse
|