1
|
Nian Z, Wang D, Wang H, Liu W, Ma Z, Yan J, Cao Y, Li J, Zhao Q, Liu Z. Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma. Front Med 2024; 18:690-707. [PMID: 39014137 DOI: 10.1007/s11684-024-1081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 07/18/2024]
Abstract
Neuroblastoma (NB) is one of the most common childhood malignancies. Sixty percent of patients present with widely disseminated clinical signs at diagnosis and exhibit poor outcomes. However, the molecular mechanisms triggering NB metastasis remain largely uncharacterized. In this study, we generated a transcriptomic atlas of 15 447 NB cells from eight NB samples, including paired samples of primary tumors and bone marrow metastases. We used time-resolved analysis to chart the evolutionary trajectory of NB cells from the primary tumor to the metastases in the same patient and identified a common 'starter' subpopulation that initiates tumor development and metastasis. The 'starter' population exhibited high expression levels of multiple cell cycle-related genes, indicating the important role of cell cycle upregulation in NB tumor progression. In addition, our evolutionary trajectory analysis demonstrated the involvement of partial epithelial-to-mesenchymal transition (p-EMT) along the metastatic route from the primary site to the bone marrow. Our study provides insights into the program driving NB metastasis and presents a signature of metastasis-initiating cells as an independent prognostic indicator and potential therapeutic target to inhibit the initiation of NB metastasis.
Collapse
Affiliation(s)
- Zhe Nian
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hao Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenxu Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenyi Ma
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Tas A, Tüzün B, Khalilov AN, Taslimi P, Ağbektas T, Cakmak NK. In vitro cytotoxic effects, in silico studies, some metabolic enzymes inhibition, and vibrational spectral analysis of novel β-amino alcohol compounds. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Jiang Y, Zhang C, Chen Y, Zhao S, He Y, He J. Prognostic risk assessment model for alternative splicing events and splicing factors in malignant pleural mesothelioma. Cancer Med 2023; 12:4895-4906. [PMID: 36031798 PMCID: PMC9972025 DOI: 10.1002/cam4.5174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare and highly malignant thoracic tumor. Although alternative splicing (AS) is associated with tumor prognosis, the prognostic significance of AS in MPM is unknown. METHODS Transcriptomic data, clinical information, and splicing percentage values for MPM were obtained from The Cancer Genome Atlas (TCGA) and TCGA SpliceSeq databases. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox analyses were performed to establish a model affecting the prognosis of MPM. Survival and ROC analyses were used to test the effects of the prognostic model. LASSO/multivariate Cox analysis was used to construct the MPM prognostic splicing factor (SF) model. The SF-AS interaction network was analyzed using Spearman correlation and visualized using Cytoscape. The association between the MPM prognostic SF model and drug sensitivity to chemotherapeutic agents such as cisplatin was analyzed using pRRophetic.R. RESULTS The LASSO/multivariate Cox analysis identified 41 AS events and 2 SFs that were mostly associated with survival. Nine prognostic prediction models (i.e., seven types of AS model, total AS model, and SF model) were developed. An MPM prognostic SF-AS regulatory network was subsequently constructed with decreased drug sensitivity in the SF model high-risk group (p = 0.025). CONCLUSION This study provides the first comprehensive analysis of the prognostic value of AS events and SFs in MPM. The SF-AS regulatory network established in this study and our drug sensitivity analysis using the SF model may provide novel targets for pharmacological studies of MPM.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Chengda Zhang
- Department of Gastroenterology, The Third Hospital of Mian Yang (Sichuan Mental Health Center), Mianyang, China
| | - Yang Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shiyu Zhao
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yipeng He
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jun He
- Department of Oncology, The Third Hospital of Mian Yang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
4
|
El Moukhtari SH, Garbayo E, Fernández-Teijeiro A, Rodríguez-Nogales C, Couvreur P, Blanco-Prieto MJ. Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. J Control Release 2022; 348:553-571. [PMID: 35705114 DOI: 10.1016/j.jconrel.2022.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Embryonal tumors of the nervous system are neoplasms predominantly affecting the pediatric population. Among the most common and aggressive ones are neuroblastoma (NB) and medulloblastoma (MB). NB is a sympathetic nervous system tumor, which is the most frequent extracranial solid pediatric cancer, usually detected in children under two. MB originates in the cerebellum and is one of the most lethal brain tumors in early childhood. Their tumorigenesis presents some similarities and both tumors often have treatment resistances and poor prognosis. High-risk (HR) patients require high dose chemotherapy cocktails associated with acute and long-term toxicities. Nanomedicine and cell therapy arise as potential solutions to improve the prognosis and quality of life of children suffering from these tumors. Indeed, nanomedicines have been demonstrated to efficiently reduce drug toxicity and improve drug efficacy. Moreover, these systems have been extensively studied in cancer research over the last few decades and an increasing number of anticancer nanocarriers for adult cancer treatment has reached the clinic. Among cell-based strategies, the clinically most advanced approach is chimeric-antigen receptor (CAR) T therapy for both pathologies, which is currently under investigation in phase I/II clinical trials. However, pediatric drug research is especially hampered due not only to ethical issues but also to the lack of efficient pre-clinical models and the inadequate design of clinical trials. This review provides an update on progress in the treatment of the main embryonal tumors of the nervous system using nanotechnology and cell-based therapies and discusses key issues behind the gap between preclinical studies and clinical trials in this specific area. Some directions to improve their translation into clinical practice and foster their development are also provided.
Collapse
Affiliation(s)
- Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Fernández-Teijeiro
- Pediatric Onco-Hematology Unit, Hospital Universitario Virgen Macarena, School of Medicine, Universidad de Sevilla, Avenida Dr, Fedriani 3, 41009 Sevilla, Spain; Sociedad Española de Hematología y Oncología Pediátricas (SEHOP), Spain
| | - Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMRCNRS8612,Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
5
|
Yang T, Li J, Zhuo Z, Zeng H, Tan T, Miao L, Zheng M, Yang J, Pan J, Hu C, Zou Y, He J, Xia H. TTF1 suppresses neuroblastoma growth and induces neuroblastoma differentiation by targeting TrkA and the miR-204/TrkB axis. iScience 2022; 25:104655. [PMID: 35811845 PMCID: PMC9263519 DOI: 10.1016/j.isci.2022.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children. We found that TTF1, TrkA, and miR-204 were lowly expressed, whereas TrkB was highly expressed in undifferentiated NB tissues. Meanwhile, TTF1 expression correlated positively with TrkA and miR-204 expression but negatively with TrkB expression. The TTF1 promoter was hypermethylated in undifferentiated NB tissues and SK-N-BE cells, leading to TTF1 downregulation. We also identified miR-204, which directly targets TrkB, as a transcriptional target of TTF1. Functionally, TTF1 suppressed proliferation, migration, and invasion of NB cells, whereas induced cell cycle arrest, apoptosis, and autophagy of NB cells by regulating TrkA and the miR-204-TrkB axis. Furthermore, TTF1 suppressed tumor growth and promoted neurogenic differentiation in a NB xenograft mouse model. Our study demonstrates that TTF1 reduces tumor growth and induces neurogenic differentiation in NB by directly targeting TrkA and the miR-204/TrkB axis. TTF1, TrkA, and miR-204 were lowly expressed in undifferentiated NB tissues TTF1 promoter was hypermethylated in undifferentiated NB tissues and cells TTF1 suppressed proliferation of NB cells by regulating TrkA and the miR-204-TrkB axis TTF1 suppressed tumor growth and promoted neurogenic differentiation in vivo
Collapse
|
6
|
The Pyrazolo[3,4-d]Pyrimidine Derivative Si306 Encapsulated into Anti-GD2-Immunoliposomes as Therapeutic Treatment of Neuroblastoma. Biomedicines 2022; 10:biomedicines10030659. [PMID: 35327462 PMCID: PMC8945814 DOI: 10.3390/biomedicines10030659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Si306, a pyrazolo[3,4-d]pyrimidine derivative recently identified as promising anticancer agent, has shown favorable in vitro and in vivo activity profile against neuroblastoma (NB) models by acting as a competitive inhibitor of c-Src tyrosine kinase. Nevertheless, Si306 antitumor activity is associated with sub-optimal aqueous solubility, which might hinder its further development. Drug delivery systems were here developed with the aim to overcome this limitation, obtaining suitable formulations for more efficacious in vivo use. Si306 was encapsulated in pegylated stealth liposomes, undecorated or decorated with a monoclonal antibody able to specifically recognize and bind to the disialoganglioside GD2 expressed by NB cells (LP[Si306] and GD2-LP[Si306], respectively). Both liposomes possessed excellent morphological and physio-chemical properties, maintained over a period of two weeks. Compared to LP[Si306], GD2-LP[Si306] showed in vitro specific cellular targeting and increased cytotoxic activity against NB cell lines. After intravenous injection in healthy mice, pharmacokinetic profiles showed increased plasma exposure of Si306 when delivered by both liposomal formulations, compared to that obtained when Si306 was administered as free form. In vivo tumor homing and cytotoxic effectiveness of both liposomal formulations were finally tested in an orthotopic animal model of NB. Si306 tumor uptake resulted significantly higher when encapsulated in GD2-LP, compared to Si306, either free or encapsulated into untargeted LP. This, in turn, led to a significant increase in survival of mice treated with GD2-LP[Si306]. These results demonstrate a promising antitumor efficacy of Si306 encapsulated into GD2-targeted liposomes, supporting further therapeutic developments in pre-clinical trials and in the clinic for NB.
Collapse
|
7
|
MYCN in Neuroblastoma: "Old Wine into New Wineskins". Diseases 2021; 9:diseases9040078. [PMID: 34842635 PMCID: PMC8628738 DOI: 10.3390/diseases9040078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) has been one of the most studied genes in neuroblastoma. It is known for its oncogenetic mechanisms, as well as its role in the prognosis of the disease and it is considered one of the prominent targets for neuroblastoma therapy. In the present work, we attempted to review the literature, on the relation between MYCN and neuroblastoma from all possible mechanistic sites. We have searched the literature for the role of MYCN in neuroblastoma based on the following topics: the references of MYCN in the literature, the gene's anatomy, along with its transcripts, the protein's anatomy, the epigenetic mechanisms regulating MYCN expression and function, as well as MYCN amplification. MYCN plays a significant role in neuroblastoma biology. Its functions and properties range from the forming of G-quadraplexes, to the interaction with miRNAs, as well as the regulation of gene methylation and histone acetylation and deacetylation. Although MYCN is one of the most primary genes studied in neuroblastoma, there is still a lot to be learned. Our knowledge on the exact mechanisms of MYCN amplification, etiology and potential interventions is still limited. The knowledge on the molecular mechanisms of MYCN in neuroblastoma, could have potential prognostic and therapeutic advantages.
Collapse
|
8
|
Karakus OO, Godugu K, Salaheldin T, Fujioka K, Mousa SA. Norepinephrine transporter analog benzylguanidine-conjugated nanoparticles for the delivery of paclitaxel in neuroblastoma. Nanomedicine (Lond) 2021; 16:2331-2342. [PMID: 34651508 DOI: 10.2217/nnm-2021-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We previously synthesized a polyethylene glycol-based norepinephrine transporter-targeted agent, BG-P-TAT, which has a benzylguanidine and a triazolyl-tetrac group. This targeted conjugate showed suppression of neuroblastoma tumor progression. In this study we aimed to synthesize nanoparticles to encapsulate the chemotherapeutic agent paclitaxel for targeting neuroblastoma tumors by using benzylguanidine so that it can compete with norepinephrine for uptake by neuroendocrine cells. Methods: Biocompatible poly(lactide-co-glycolic acid)-polyethylene glycol was chosen to prepare targeted nanoparticles for safe delivery of the chemotherapy agent paclitaxel. Result: Paclitaxel concentration was 60% higher in neuroblastoma tumors of mice treated with paclitaxel encapsulated in targeted nanoparticles than with non-targeted nanoparticles. Conclusion: These findings support the targeted delivery of paclitaxel as a chemotherapeutic agent for neuroblastoma.
Collapse
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Taher Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Kazutoshi Fujioka
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
9
|
Kasemeier-Kulesa JC, Spengler JA, Muolo CE, Morrison JA, Woolley TE, Schnell S, Kulesa PM. The embryonic trunk neural crest microenvironment regulates the plasticity and invasion of human neuroblastoma via TrkB signaling. Dev Biol 2021; 480:78-90. [PMID: 34416224 DOI: 10.1016/j.ydbio.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/20/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022]
Abstract
Mistakes in trunk neural crest (NC) cell migration may lead to birth defects of the sympathetic nervous system (SNS) and neuroblastoma (NB) cancer. Receptor tyrosine kinase B (TrkB) and its ligand BDNF critically regulate NC cell migration during normal SNS development and elevated expression of TrkB is correlated with high-risk NB patients. However, in the absence of a model with in vivo interrogation of human NB cell and gene expression dynamics, the mechanistic role of TrkB in NB disease progression remains unclear. Here, we study the functional relationship between TrkB, cell invasion and plasticity of human NB cells by taking advantage of our validated in vivo chick embryo transplant model. We find that LAN5 (high TrkB) and SHSY5Y (moderate TrkB) human NB cells aggressively invade host embryos and populate typical NC targets, however loss of TrkB function significantly reduces cell invasion. In contrast, NB1643 (low TrkB) cells remain near the transplant site, but over-expression of TrkB leads to significant cell invasion. Invasive NB cells show enhanced expression of genes indicative of the most invasive host NC cells. In contrast, transplanted human NB cells down-regulate known NB tumor initiating and stem cell markers. Human NB cells that remain within the dorsal neural tube transplant also show enhanced expression of cell differentiation genes, resulting in an improved disease outcome as predicted by a computational algorithm. These in vivo data support TrkB as an important biomarker and target to control NB aggressiveness and identify the chick embryonic trunk neural crest microenvironment as a source of signals to drive NB to a less aggressive state, likely acting at the dorsal neural tube.
Collapse
Affiliation(s)
| | | | - Connor E Muolo
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Cathays, Cardiff, CF24, UK
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
10
|
Gu Y, Hu X, Liu X, Cheng C, Chen K, Wu Y, Wu Z. MCM6 indicates adverse tumor features and poor outcomes and promotes G1/S cell cycle progression in neuroblastoma. BMC Cancer 2021; 21:784. [PMID: 34233647 PMCID: PMC8262023 DOI: 10.1186/s12885-021-08344-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Minichromosome maintenance complex component 6 (MCM6), as an important replication permission factor, is involved in the pathogenesis of various tumors. Here we studied the expression of MCM6 in neuroblastoma and its influence on tumor characteristics and prognosis. Methods Publicly available datasets were used to explore the influence of the differential expression of MCM6 on neuroblastoma tumor stage, risk and prognosis. In cell experiments, human neuroblastoma cell lines SK-N-SH and SK-N-BE [ (2)] were utilized to verify the ability of MCM6 to promote cell proliferation, migration and invasion. We further explored the possible molecular mechanism of MCM6 affecting the phenotype of neuroblastoma cells by mutual verification of RNA-seq and western blotting, and flow cytometry to inquire about its potential specific roles in the cell cycle. Results Through multiple datasets mining, we found that high expression of MCM6 was positively correlated with elevated tumor stage, high risk and poor prognosis in neuroblastoma. At the cellular level, neuroblastoma cell proliferation, migration and invasion were significantly inhibited after MCM6 was interfered by siRNA. Mutual verification of RNA-seq and western blotting suggested that the downstream cell cycle-related genes were differentially expressed after MCM6 interference. Flow cytometric analysis revealed that neuroblastoma cells were blocked in G1/S phase after MCM6 interference. Conclusion MCM6 is considered to be the driving force of G1/S cell cycle progression, and it is also a prognostic marker and a potential novel therapeutic target in neuroblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08344-z.
Collapse
Affiliation(s)
- Yaoyao Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Xiaoxiao Hu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China.,Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Liu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China. .,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China.
| |
Collapse
|
11
|
Karakus OO, Godugu K, Fujioka K, Mousa SA. Design, synthesis, and biological evaluation of novel bifunctional thyrointegrin antagonists for neuroblastoma. Bioorg Med Chem 2021; 42:116250. [PMID: 34118788 DOI: 10.1016/j.bmc.2021.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022]
Abstract
Receptor-mediated cancer therapy has received much attention in the last few decades. Neuroblastoma and other cancers of the sympathetic nervous system highly express norepinephrine transporter (NET) and cell plasma membrane integrin αvβ3. Dual targeting of the NET and integrin αvβ3 receptors using a Drug-Drug Conjugate (DDC) might provide effective treatment strategy in the fight against neuroblastoma and other neuroendocrine tumors. In this work, we synthesized three dual-targeting BG-P400-TAT derivatives, dI-BG-P400-TAT, dM-BG-P400-TAT, and BG-P400-PAT containing di-iodobenzene, di-methoxybenzene, and piperazine groups, respectively. These derivatives utilize to norepinephrine transporter (NET) and the integrin αvβ3 receptor to simultaneously modulate both targets based on evaluation in a neuroblastoma animal model using the neuroblastoma SK-N-F1 cell line. Among the three synthesized agents, the piperazine substituted BG-P400-PAT exhibited potent integrin αvβ3 antagonism and reduced neuroblastoma tumor growth and cancer cell viability by >90%. In conclusion, BG-P400-PAT and derivatives represent a potential therapeutic approach in the management of neuroblastoma.
Collapse
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Kazutoshi Fujioka
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States.
| |
Collapse
|
12
|
Gan L, Ren Y, Lu J, Ma J, Shen X, Zhuang Z. Synergistic Effect of 3-Bromopyruvate in Combination with Rapamycin Impacted Neuroblastoma Metabolism by Inhibiting Autophagy. Onco Targets Ther 2020; 13:11125-11137. [PMID: 33149623 PMCID: PMC7605667 DOI: 10.2147/ott.s273108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Background Alterations in the cell metabolism, such as enhanced aerobic glycolysis, have been identified as a prominent hallmark of cancer cells. 3-Bromopyruvate (3-BrPA) is a proverbial hexokinase (HK)-II inhibitor, which can inhibit cancer cell energy metabolism. Rapamycin is a new type macrocyclic lactone, which can inhibit the serine/threonine protein kinase mTOR. In order to comprehend the influence of 3-BrPA on autophagy activity in vitro, we conducted a series of experiments using different human neuroblastoma (NB) cell lines. Materials and Methods The human NB cell lines were exposed to 3-BrPA and/or rapamycin, and the proliferation activity of the cells was detected by Cell Counting Kit-8 (CCK-8) assay. The mRNA expression of the cells treated with 3-BrPA and/or rapamycin was analyzed by quantitative real-time polymerase chain reaction (QPCR) assay. The protein expression of the cells was analyzed by Western Blotting (WB) assay. The effects of 3-BrPA and/or rapamycin treatment on cell cycle and cell apoptosis were analyzed by flow cytometry assay. Meanwhile, the cellular glucose absorption rate, lactate secretion rate and ATP content were also analyzed through the relevant metabolic analysis kits. Results Our results showed that 3-BrPA can induce growth inhibition in a dose-dependent pattern by cell apoptosis. 3-BrPA combined with rapamycin played a synergistic suppression role in NB cells, affected the cell apoptosis, cell cycle and the metabolic pathway. Up-regulated LC3-II accumulation was conscious in NB cells incubated with 3-BrPA and rapamycin. Rapamycin individually discourages the mTOR signaling pathway, while combined with 3-BrPA can enhance this phenomenon and influence cell metabolism of the NB cells. Conclusion The results suggested that 3-BrPA combined with rapamycin could induce cell apoptosis in NB cells by inhibiting mTOR activity. In conclusion, our research proposed that the dual inhibitory effect of the mTOR signaling pathway and the glycolytic activity may indicate a valid therapeutic tactic for NB chemoprevention.
Collapse
Affiliation(s)
- Lei Gan
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Yang Ren
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Jicheng Lu
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Junzhe Ma
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Xudong Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| |
Collapse
|
13
|
Gene Expression Signature of Acquired Chemoresistance in Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21186811. [PMID: 32948088 PMCID: PMC7555742 DOI: 10.3390/ijms21186811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/14/2023] Open
Abstract
Drug resistance of childhood cancer neuroblastoma is a serious clinical problem. Patients with relapsed disease have a poor prognosis despite intense treatment. In the present study, we aimed to identify chemoresistance gene expression signatures in vincristine resistant neuroblastoma cells. We found that vincristine-resistant neuroblastoma cells formed larger clones and survived under reduced serum conditions as compared with non-resistant parental cells. To identify the possible mechanisms underlying vincristine resistance in neuroblastoma cells, we investigated the expression profiles of genes known to be involved in cancer drug resistance. This specific gene expression patterns could predict the behavior of a tumor in response to chemotherapy and for predicting the prognosis of high-risk neuroblastoma patients. Our signature could help chemoresistant neuroblastoma patients in avoiding useless and harmful chemotherapy cycles.
Collapse
|
14
|
Aravindan N, Herman T, Aravindan S. Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets 2020; 24:899-914. [PMID: 33021426 PMCID: PMC7554151 DOI: 10.1080/14728222.2020.1790528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB. AREAS COVERED Recent studies (2017-2020) pertinent to NB evolution are selectively reviewed to recognize novel and effective therapeutic targets. The prospective and promising therapeutic targets/strategies for HR-NB are categorized into (a) targeting oncogene-like and/or reinforcing tumor suppressor (TS)-like lncRNAs; (b) targeting oncogene-like microRNAs (miRs) and/or mimicking TS-miRs; (c) targets for immunotherapy; (d) targeting epithelial-to-mesenchymal transition and cancer stem cells; (e) novel and beneficial combination approaches; and (f) repurposing drugs and other strategies in development. EXPERT OPINION It is highly unlikely that agents targeting a single candidate or signaling will be beneficial for an HR-NB cure. We must develop efficient drug deliverables for functional targets, which could be integrated and advance clinical therapy. Fittingly, the looming evidence indicated an aggressive evolution of promising novel and integrative targets, development of efficient drugs, and improvised strategies for HR-NB treatment.
Collapse
Affiliation(s)
| | - Terence Herman
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Stephenson Cancer Center, Oklahoma City, USA
| | | |
Collapse
|
15
|
Alfei S, Marengo B, Zuccari G, Turrini F, Domenicotti C. Dendrimer Nanodevices and Gallic Acid as Novel Strategies to Fight Chemoresistance in Neuroblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1243. [PMID: 32604768 PMCID: PMC7353457 DOI: 10.3390/nano10061243] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/15/2023]
Abstract
Human neuroblastoma (NB), a pediatric tumor inclined to relapse, after an initial response to therapy, usually develops resistance. Since several chemotherapeutics exert anticancer effect by increasing reactive oxygen species (ROS), NB cells overproduce antioxidant compounds becoming drugs-resistant. A strategy to sensitize NB cells to chemotherapy involves reducing their antioxidant defenses and inducing ROS overproduction. Concerning this, although affected by several issues that limit their clinical application, antioxidant/pro-oxidant polyphenols, such as gallic acid (GA), showed pro-oxidant anti-cancer effects and low toxicity for healthy cells, in several kind of tumors, not including NB. Herein, for the first time, free GA, two GA-dendrimers, and the dendrimer adopted as GA reservoir were tested on both sensitive and chemoresistant NB cells. The dendrimer device, administered at the dose previously found active versus sensitive NB cells, induced ROS-mediated death also in chemoresistant cells. Free GA proved a dose-dependent ROS-mediated cytotoxicity on both cell populations. Intriguingly, when administered in dendrimer formulations at a dose not cytotoxic for NB cells, GA nullified any pro-oxidant activity of dendrimer. Unfortunately, due to GA, nanoformulations were inactive on NB cells, but GA resized in nanoparticles showed considerable ability in counteracting, at low dose, ROS production and oxidative stress, herein induced by the dendrimer.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Barbara Marengo
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B., 16132 Genoa, Italy; (B.M.); (C.D.)
| | - Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Federica Turrini
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B., 16132 Genoa, Italy; (B.M.); (C.D.)
| |
Collapse
|
16
|
Targeting uptake transporters for cancer imaging and treatment. Acta Pharm Sin B 2020; 10:79-90. [PMID: 31993308 PMCID: PMC6977162 DOI: 10.1016/j.apsb.2019.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells reprogram their gene expression to promote growth, survival, proliferation, and invasiveness. The unique expression of certain uptake transporters in cancers and their innate function to concentrate small molecular substrates in cells make them ideal targets for selective delivering imaging and therapeutic agents into cancer cells. In this review, we focus on several solute carrier (SLC) transporters known to be involved in transporting clinically used radiopharmaceutical agents into cancer cells, including the sodium/iodine symporter (NIS), norepinephrine transporter (NET), glucose transporter 1 (GLUT1), and monocarboxylate transporters (MCTs). The molecular and functional characteristics of these transporters are reviewed with special emphasis on their specific expressions in cancers and interaction with imaging or theranostic agents [e.g., I-123, I-131, 123I-iobenguane (mIBG), 18F-fluorodeoxyglucose (18F-FDG) and 13C pyruvate]. Current clinical applications and research areas of these transporters in cancer diagnosis and treatment are discussed. Finally, we offer our views on emerging opportunities and challenges in targeting transporters for cancer imaging and treatment. By analyzing the few clinically successful examples, we hope much interest can be garnered in cancer research towards uptake transporters and their potential applications in cancer diagnosis and treatment.
Collapse
Key Words
- CT, computed tomography
- Cancer imaging
- DDI, drug–drug interaction
- DTC, differentiated thyroid cancer
- FDA, U.S. Food and Drug Administrations
- FDG, fluorodeoxyglucose
- GLUT, glucose transporter
- IAEA, the International Atomic Energy Agency
- LACC, locally advanced cervical cancer
- LAT, large amino acid transporter
- MCT, monocarboxylate transporter
- MRI, magnetic resonance imaging
- NE, norepinephrine
- NET, norepinephrine transporter
- NIS, sodium/iodine symporter
- Neuroblastoma
- OCT, organic cation transporter
- PET, positron emission tomography
- PHEO, pheochromocytoma
- RA, retinoic acid
- RET, rearranged during transfection
- SLC, solute carrier
- SPECT, single-photon emission computed tomography
- SUV, standardized uptake value
- TFB, tetrafluoroborate
- TSH, thyroid stimulating hormones
- Thyroid cancer
- Uptake transporter
- Warburg effect
- mIBG
- mIBG, iobenguane/meta-iodobenzylguanidine
- vHL, von Hippel-Lindau
Collapse
|
17
|
Hua Z, Zhan Y, Zhang S, Dong Y, Jiang M, Tan F, Liu Z, Thiele CJ, Li Z. P53/PUMA are potential targets that mediate the protection of brain-derived neurotrophic factor (BDNF)/TrkB from etoposide-induced cell death in neuroblastoma (NB). Apoptosis 2019; 23:408-419. [PMID: 29959561 DOI: 10.1007/s10495-018-1467-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The over-expressions of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB have been reported to induce chemo-resistance in neuroblastoma (NB) cells. In this study, we investigated the roles of P53 and BCL2 family members in the protection of BDNF/TrkB from etoposide-induced NB cell death. TB3 and TB8, two tetracycline (TET)-regulated TrkB-expressing NB cell lines, were utilized. The expressions of P53 and BCL2 family members were detected by Western blot or RT-PCR. Transfection of siRNAs was used to knockdown P53 or PUMA. Activated lentiviral was used to over-express PUMA. Cell survival was performed by MTS assay, and the percentage of cell confluence was measured by IncuCyte ZOOM. Our results showed that etoposide treatment induced significant and time-dependent increase of P53, which could be blocked by pre-treatment with BDNF, and knockdown P53 by transfecting siRNA attenuated etoposide-induced TrkB-expressing NB cell death. PUMA was the most significantly changed BCL2 family member after treatment with etoposide, and pre-treatment with BDNF blocked the increased expression of PUMA. Transfection with siRNA inhibited etoposide-induced increased expression of PUMA, and attenuated etoposide-induced NB cell death. We also found that over-expression of PUMA by infection of activated lentiviral induced TrkB-expressing NB cell death in the absence of etoposide, and treatment of BDNF protected NB cells from PUMA-induced cell death. Our results suggested that P53 and PUMA may be potential targets that mediated the protection of BDNF/TrkB from etoposide-induced NB cell death.
Collapse
Affiliation(s)
- Zhongyan Hua
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yue Zhan
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Simeng Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yudi Dong
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Min Jiang
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Fei Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Liu
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carol J Thiele
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijie Li
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
18
|
Pastor ER, Mousa SA. Current management of neuroblastoma and future direction. Crit Rev Oncol Hematol 2019; 138:38-43. [PMID: 31092383 DOI: 10.1016/j.critrevonc.2019.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma is the most common solid extracranial tumor in pediatrics and can regress spontaneously or grow and metastasize with resistance to multiple therapeutic approaches. The prognosis and approach to treatment depends on the tumor presentation and whether it expresses certain drivers such as MYCN, ALK, and TrkB. Expression or mutation of these genes and kinases correlates with high-risk and poor prognosis. Multiple therapeutic approaches are being used to target MYCN, ALK, and TrkB, as well as GD2, a surface antigen present on the surface of neuroblastoma tumor cells. This review discusses the nature of these targets and several current therapies for neuroblastoma. A focus is placed on recent therapeutic developments including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy.
Collapse
Affiliation(s)
- Elizabeth R Pastor
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
19
|
Pastorino F, Brignole C, Di Paolo D, Perri P, Curnis F, Corti A, Ponzoni M. Overcoming Biological Barriers in Neuroblastoma Therapy: The Vascular Targeting Approach with Liposomal Drug Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804591. [PMID: 30706636 DOI: 10.1002/smll.201804591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Neuroblastoma is a rare pediatric cancer characterized by a wide clinical behavior and adverse outcome despite aggressive therapies. New approaches based on targeted drug delivery may improve efficacy and decrease toxicity of cancer therapy. Furthermore, nanotechnology offers additional potential developments for cancer imaging, diagnosis, and treatment. Following these lines, in the past years, innovative therapies based on the use of liposomes loaded with anticancer agents and functionalized with peptides capable of recognizing neuroblastoma cells and/or tumor-associated endothelial cells have been developed. Studies performed in experimental orthotopic models of human neuroblastoma have shown that targeted nanocarriers can be exploited for not only decreasing the systemic toxicity of the encapsulated anticancer drugs, but also increasing their tumor homing properties, enhancing tumor vascular permeability and perfusion (and, consequently, drug penetration), inducing tumor apoptosis, inhibiting angiogenesis, and reducing tumor glucose consumption. Furthermore, peptide-tagged liposomal formulations are proved to be more efficacious in inhibiting tumor growth and metastatic spreading of neuroblastoma than nontargeted liposomes. These findings, herein reviewed, pave the way for the design of novel targeted liposomal nanocarriers useful for multitargeting treatment of neuroblastoma.
Collapse
Affiliation(s)
- Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 16132, Milan, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 16132, Milan, Italy
- Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
20
|
Rapamycin inhibits proliferation and induces autophagy in human neuroblastoma cells. Biosci Rep 2018; 38:BSR20181822. [PMID: 30393233 PMCID: PMC6265625 DOI: 10.1042/bsr20181822] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the effect of Rapamycin on proliferation and autophagy in human neuroblastoma (NB) cell lines and to elucidate the possible mechanism. Methods NB cells were treated with different concentrations of Rapamycin. Cell counting kit-8 (CCK-8) was used to measure proliferation, and flow cytometry (FCM) was used to analyze the cell cycle. EM was used to observe cell morphological changes. Western blotting (WB) was performed to detect the expression of Beclin-1, LC3-I/II, P62, mammalian target of Rapamycin (mTOR), and p-mTOR. Results Rapamycin inhibited the spread of NB cells in a dose- and time-dependent manner and arrested the cell cycle at the G0/G1 phase. EM showed autophagosomes in NB cells treated with Rapamycin. The WB results showed that the expression levels of Beclin-1 and LC3-II/LC3-I were significantly elevated in NB cells treated with Rapamycin, while the expression levels of P62, mTOR, and p-mTOR proteins were significantly reduced compared with the control cells (P<0.05). Conclusion Rapamycin inhibits cell proliferation and induces autophagy in human NB cell lines. The mechanism may be related to suppression of the mTOR signaling pathway.
Collapse
|
21
|
Ponzoni M, Curnis F, Brignole C, Bruno S, Guarnieri D, Sitia L, Marotta R, Sacchi A, Bauckneht M, Buschiazzo A, Rossi A, Di Paolo D, Perri P, Gori A, Sementa AR, Emionite L, Cilli M, Tamma R, Ribatti D, Pompa PP, Marini C, Sambuceti G, Corti A, Pastorino F. Enhancement of Tumor Homing by Chemotherapy-Loaded Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802886. [PMID: 30294852 DOI: 10.1002/smll.201802886] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Targeted delivery of anticancer drugs with nanocarriers can reduce side effects and ameliorate therapeutic efficacy. However, poorly perfused and dysfunctional tumor vessels limit the transport of the payload into solid tumors. The use of tumor-penetrating nanocarriers might enhance tumor uptake and antitumor effects. A peptide containing a tissue-penetrating (TP) consensus motif, capable of recognizing neuropilin-1, is here fused to a neuroblastoma-targeting peptide (pep) previously developed. Neuroblastoma cell lines and cells derived from both xenografts and high-risk neuroblastoma patients show overexpression of neuropilin-1. In vitro studies reveal that TP-pep binds cell lines and cells derived from neuroblastoma patients more efficiently than pep. TP-pep, after coupling to doxorubicin-containing stealth liposomes (TP-pep-SL[doxorubicin]), enhances their uptake by cells and cytotoxic effects in vitro, while increasing tumor-binding capability and homing in vivo. TP-pep-SL[doxorubicin] treatment enhances the Evans Blue dye accumulation in tumors but not in nontumor tissues, pointing to selective increase of vascular permeability in tumor tissues. Compared to pep-SL[doxorubicin], TP-pep-SL[doxorubicin] shows an increased antineuroblastoma activity in three neuroblastoma animal models mimicking the growth of neuroblastoma in humans. The enhancement of drug penetration in tumors by TP-pep-targeted nanoparticles may represent an innovative strategy for neuroblastoma.
Collapse
Affiliation(s)
- Mirco Ponzoni
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Flavio Curnis
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Leopoldo Sitia
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Laboratory, Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Angelina Sacchi
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Andrea Rossi
- Department of Pathology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Alessandro Gori
- Dipartimento di Scienze Chimiche e Tecnologie dei Materiali, Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, 20131, Milan, Italy
| | - Angela R Sementa
- Department of Pathology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCSS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCSS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124, Bari, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131, Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, 20133, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131, Genoa, Italy
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| |
Collapse
|
22
|
Pacenta HL, Macy ME. Entrectinib and other ALK/TRK inhibitors for the treatment of neuroblastoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3549-3561. [PMID: 30425456 PMCID: PMC6204873 DOI: 10.2147/dddt.s147384] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RTK plays important roles in many cellular signaling processes involved in cancer growth and development. ALK, TRKA, TRKB, TRKC, and ROS1 are RTKs involved in several canonical pathways related to oncogenesis. These proteins can be genetically altered in malignancies, leading to receptor activation and constitutive signaling through their respective downstream pathways. Neuroblastoma (NB) is the most common extracranial solid tumor in childhood, and despite intensive therapy, there is a high mortality rate in cases with a high-risk disease. Alterations of ALK and differential expression of TRK proteins are reported in a proportion of NB. Several inhibitors of ALK or TRKA/B/C have been evaluated both preclinically and clinically in the treatment of NB. These agents have had variable success and are not routinely used in the treatment of NB. Entrectinib (RXDX-101) is a pan-ALK, TRKA, TRKB, TRKC, and ROS1 inhibitor with activity against tumors with ALK, NTRK1, NTRK2, NTRK3, and ROS1 alterations in Phase I clinical trials in adults. Entrectinib’s activity against both ALK and TRK proteins suggests a possible role in NB treatment, and it is currently under investigation in both pediatric and adult oncology patients.
Collapse
Affiliation(s)
- Holly L Pacenta
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| |
Collapse
|
23
|
Sakka L, Delétage N, Chalus M, Aissouni Y, Sylvain-Vidal V, Gobron S, Coll G. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation. Oncotarget 2018; 8:42789-42807. [PMID: 28467792 PMCID: PMC5522106 DOI: 10.18632/oncotarget.17050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10−7), -24.1 (p<5.6 10−9) and -17.7 (p<1.2 10−7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram.
Collapse
Affiliation(s)
- Laurent Sakka
- Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.,Service de Neurochirurgie, Pole RMND, CHU de Clermont-Ferrand, Hôpital Gabriel-Montpied, 63003 Clermont-Ferrand Cedex, France
| | - Nathalie Delétage
- Neuronax SAS, Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France
| | - Maryse Chalus
- Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Youssef Aissouni
- Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | | | - Stéphane Gobron
- Neuronax SAS, Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France
| | - Guillaume Coll
- Service de Neurochirurgie, Pole RMND, CHU de Clermont-Ferrand, Hôpital Gabriel-Montpied, 63003 Clermont-Ferrand Cedex, France
| |
Collapse
|
24
|
A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment. Cell Death Differ 2018. [PMID: 29515255 PMCID: PMC6261943 DOI: 10.1038/s41418-018-0080-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here, we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3–6 µM PCI-34051 or 10 µM 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05 µM (ALK-amplified) to 0.8 µM (wildtype ALK). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort (n = 88) and the German Neuroblastoma Trial cohort (n = 649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.
Collapse
|
25
|
Colla R, Izzotti A, De Ciucis C, Fenoglio D, Ravera S, Speciale A, Ricciarelli R, Furfaro AL, Pulliero A, Passalacqua M, Traverso N, Pronzato MA, Domenicotti C, Marengo B. Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oncotarget 2018; 7:70715-70737. [PMID: 27683112 PMCID: PMC5342585 DOI: 10.18632/oncotarget.12209] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma, a paediatric malignant tumor, is initially sensitive to etoposide, a drug to which many patients develop chemoresistance. In order to investigate the molecular mechanisms responsible for etoposide chemoresistance, HTLA-230, a human MYCN-amplified neuroblastoma cell line, was chronically treated with etoposide at a concentration that in vitro mimics the clinically-used dose. The selected cells (HTLA-Chr) acquire multi-drug resistance (MDR), becoming less sensitive than parental cells to high doses of etoposide or doxorubicin. MDR is due to several mechanisms that together contribute to maintaining non-toxic levels of H2O2. In fact, HTLA-Chr cells, while having an efficient aerobic metabolism, are also characterized by an up-regulation of catalase activity and higher levels of reduced glutathione (GSH), a thiol antioxidant compound. The combination of such mechanisms contributes to prevent membrane lipoperoxidation and cell death. Treatment of HTLA-Chr cells with L-Buthionine-sulfoximine, an inhibitor of GSH biosynthesis, markedly reduces their tumorigenic potential that is instead enhanced by the exposure to N-Acetylcysteine, able to promote GSH synthesis. Collectively, these results demonstrate that GSH and GSH-related responses play a crucial role in the acquisition of MDR and suggest that GSH level monitoring is an efficient strategy to early identify the onset of drug resistance and to control the patient's response to therapy.
Collapse
Affiliation(s)
- Renata Colla
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genova, Genova, Italy.,IRCCS AOU San Martino IST Genova, Genova, Italy
| | - Chiara De Ciucis
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Silvia Ravera
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Andrea Speciale
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Nicola Traverso
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
26
|
Costa RA, Seuánez HN. Investigation of major genetic alterations in neuroblastoma. Mol Biol Rep 2018; 45:287-295. [PMID: 29455316 DOI: 10.1007/s11033-018-4161-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. This malignancy shows a wide spectrum of clinical outcome and its prognosis is conditioned by manifold biological and genetic factors. We investigated the tumor genetic profile and clinical data of 29 patients with NB by multiplex ligation-dependent probe amplification (MLPA) to assess therapeutic risk. In 18 of these tumors, MYCN status was assessed by fluorescence in situ hybridization (FISH). Copy number variation was also determined for confirming MLPA findings in two 6p loci. We found 2p, 7q and 17q gains, and 1p and 11q losses as the most frequent chromosome alterations in this cohort. FISH confirmed all cases of MYCN amplification detected by MLPA. In view of unexpected 6p imbalance, copy number variation of two 6p loci was assessed for validating MLPA findings. Based on clinical data and genetic profiles, patients were stratified in pretreatment risk groups according to international consensus. MLPA proved to be effective for detecting multiple genetic alterations in all chromosome regions as requested by the International Neuroblastoma Risk Group (INRG) for therapeutic stratification. Moreover, this technique proved to be cost effective, reliable, only requiring standard PCR equipment, and attractive for routine analysis. However, the observed 6p imbalances made PKHD1 and DCDC2 inadequate for control loci. This must be considered when designing commercial MLPA kits for NB. Finally, four patients showed a normal MLPA profile, suggesting that NB might have a more complex genetic pattern than the one assessed by presently available MLPA kits.
Collapse
Affiliation(s)
- Régis Afonso Costa
- Genetics Program, Instituto Nacional de Câncer, Rua André Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil.,Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Héctor N Seuánez
- Genetics Program, Instituto Nacional de Câncer, Rua André Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil. .,Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Heimburg T, Kolbinger FR, Zeyen P, Ghazy E, Herp D, Schmidtkunz K, Melesina J, Shaik TB, Erdmann F, Schmidt M, Romier C, Robaa D, Witt O, Oehme I, Jung M, Sippl W. Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity. J Med Chem 2017; 60:10188-10204. [DOI: 10.1021/acs.jmedchem.7b01447] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tino Heimburg
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Fiona R. Kolbinger
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Preclinical Program, Hopp Children’s Cancer Center at NCT Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Patrik Zeyen
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Ehab Ghazy
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Daniel Herp
- Institute
of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Karin Schmidtkunz
- Institute
of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Jelena Melesina
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Tajith Baba Shaik
- Département
de Biologie Structurale Intégrative, Institut de Génétique
et Biologie Moléculaire et Cellulaire (IGBMC), Université
de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Frank Erdmann
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Matthias Schmidt
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Christophe Romier
- Département
de Biologie Structurale Intégrative, Institut de Génétique
et Biologie Moléculaire et Cellulaire (IGBMC), Université
de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Dina Robaa
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Olaf Witt
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Preclinical Program, Hopp Children’s Cancer Center at NCT Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Department
of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center, 69120 Heidelberg, Germany
| | - Ina Oehme
- Clinical
Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Preclinical Program, Hopp Children’s Cancer Center at NCT Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Institute
of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| |
Collapse
|
28
|
Improved therapy for neuroblastoma using a combination approach: superior efficacy with vismodegib and topotecan. Oncotarget 2017; 7:15215-29. [PMID: 26934655 PMCID: PMC4924781 DOI: 10.18632/oncotarget.7714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant activation/expression of pathways/molecules including NF-kB, mTOR, hedgehog and polo-like-kinase-1 (PLK1) are correlated with poor-prognosis neuroblastoma. Therefore, to identify a most efficacious treatment for neuroblastoma, we investigated the efficacy of NF-kB/mTOR dual-inhibitor 13-197, hedgehog inhibitor vismodegib and PLK1 inhibitor BI2536 alone or combined with topotecan against high-risk neuroblastoma. The in vitro efficacy of the inhibitors alone or combined with topotecan on cell growth/apoptosis and molecular mechanism(s) were investigated. Results showed that as single agents 13-197, BI2536 and vismodegib significantly decreased neuroblastoma cell growth and induced apoptosis by targeting associated pathways/molecules. In combination with topotecan, 13-197 did not show significant additive/synergistic effects against neuroblastoma. However, BI2536 or vismodegib further significantly decreased neuroblastoma cell growth/survival. These results clearly showed that vismodegib combination with topotecan was synergistic and more efficacious compared with BI2536 in combination. Together, in vitro data demonstrated that vismodegib was most efficacious in potentiating topotecan-induced antineuroblastoma effects. Therefore, we tested the combined efficacy of vismodegib and topotecan against neuroblastoma in vivo using NSG mice. This resulted in significantly (p<0.001) reduced tumor growth and increased survival of mice. Together, the combination of vismodegib and topotecan showed a significant enhanced antineuroblastoma efficacy by targeting associated pathways/molecules which warrants further preclinical evaluation for translation to the clinic.
Collapse
|
29
|
Sun W, Rojas Y, Wang H, Yu Y, Wang Y, Chen Z, Rajapakshe K, Xu X, Huang W, Agarwal S, Patel RH, Woodfield S, Zhao Y, Jin J, Zhang H, Major A, Hicks MJ, Shohet JM, Vasudevan SA, Coarfa C, Yang J, Nuchtern JG. EWS-FLI1 and RNA helicase A interaction inhibitor YK-4-279 inhibits growth of neuroblastoma. Oncotarget 2017; 8:94780-94792. [PMID: 29212266 PMCID: PMC5706912 DOI: 10.18632/oncotarget.21933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
Treatment failure in high risk neuroblastoma (NB) is largely due to the development of chemotherapy resistance. We analyzed the gene expression changes associated with exposure to chemotherapy in six high risk NB tumors with the aid of the Connectivity Map bioinformatics platform. Ten therapeutic agents were predicted to have a high probability of reversing the transcriptome changes associated with neoadjuvant chemotherapy treatment. Among these agents, initial screening showed the EWS-FLI1 and RNA helicase A interaction inhibitor YK-4-279, had obvious cytotoxic effects on NB cell lines. Using a panel of NB cell lines, including MYCN nonamplified (SK-N-AS, SH-SY5Y, and CHLA-255), and MYCN amplified (NB-19, NGP, and IMR-32) cell lines, we found that YK-4-279 had cytotoxic effects on all lines tested. In addition, YK-4-279 also inhibited cell proliferation and anchorage-independent growth and induced cell apoptosis of these cells. YK-4-279 enhanced the cytotoxic effect of doxorubicin (Dox). Moreover, YK-4-279 was able to overcome the established chemoresistance of LA-N-6 NB cells. In an orthotopic xenograft NB mouse model, YK-4-279 inhibited NB tumor growth and induced apoptosis in tumor cells through PARP and Caspase 3 cleavage in vivo. While EWS-FLI1 fusion protein is not frequently found in NB, using the R2 public database of neuroblastoma outcome and gene expression, we found that high expression of EWSR1 was associated with poor patient outcome. Knockdown of EWSR1 inhibited the oncogenic potential of neuroblastoma cell lines. Taken together, our results indicate that YK-4-279 might be a promising agent for treatment of NB that merits further exploration.
Collapse
Affiliation(s)
- Wenjing Sun
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yesenia Rojas
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hao Wang
- Department of Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yang Yu
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongfeng Wang
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenghu Chen
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Xu
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Huang
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saurabh Agarwal
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roma H Patel
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Woodfield
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingling Jin
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Zhang
- Department of Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angela Major
- Department of Pathology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - M John Hicks
- Department of Pathology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason M Shohet
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjeev A Vasudevan
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhua Yang
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jed G Nuchtern
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Delloye-Bourgeois C, Bertin L, Thoinet K, Jarrosson L, Kindbeiter K, Buffet T, Tauszig-Delamasure S, Bozon M, Marabelle A, Combaret V, Bergeron C, Derrington E, Castellani V. Microenvironment-Driven Shift of Cohesion/Detachment Balance within Tumors Induces a Switch toward Metastasis in Neuroblastoma. Cancer Cell 2017; 32:427-443.e8. [PMID: 29017055 DOI: 10.1016/j.ccell.2017.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/22/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. Disseminated forms have high frequency of multiple tumoral foci whose etiology remains unknown; NB embryonic origin limits investigations in patients and current models. We developed an avian embryonic model driving human NB tumorigenesis in tissues homologous to patients. We found that aggressive NBs display a metastatic mode, secondary dissemination via peripheral nerves and aorta. Through tumor transcriptional profiling, we found that NB dissemination is induced by the shutdown of a pro-cohesion autocrine signal, SEMA3C, which constrains the tumoral mass. Lowering SEMA3C levels shifts the balance toward detachment, triggering NB cells to collectively evade the tumor. Together with patient cohort analysis, this identifies a microenvironment-driven pro-metastatic switch for NB.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Lorette Bertin
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Karine Thoinet
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Loraine Jarrosson
- OncoFactory SAS, L'Atrium, 43 boulevard du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Karine Kindbeiter
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Thomas Buffet
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Servane Tauszig-Delamasure
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Muriel Bozon
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Aurélien Marabelle
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus (GRCC), INSERM U1015, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Valérie Combaret
- Laboratory of Translational Research, Léon Bérard Centre, 28 rue Laennec, 69008 Lyon, France
| | - Christophe Bergeron
- Departments of Oncology and Clinical Research, Centre Léon Berard and Institut d'Hématologie et d'Oncologie Pédiatrique, 1 Place Professeur Joseph Renaut, 69008 Lyon, France
| | - Edmund Derrington
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France
| | - Valérie Castellani
- University of Lyon, University of Lyon 1 Claude Bernard Lyon1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, 16 rue Raphael Dubois, F-69000 Lyon, France.
| |
Collapse
|
31
|
Cao Y, Jin Y, Yu J, Wang J, Yan J, Zhao Q. Research progress of neuroblastoma related gene variations. Oncotarget 2017; 8:18444-18455. [PMID: 28055978 PMCID: PMC5392342 DOI: 10.18632/oncotarget.14408] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor among children, is an embryonal tumor originating from undifferentiated neural crest cell. Neuroblastomas are highly heterogeneous, represented by the wide range of clinical presentations and likelihood of cure, ranging from spontaneous regression to relentless progression despite rigorous multimodal treatments. Approximately, 50% of cases are high-risk with overall survival rates less than 40%. With the efforts to collect large numbers of clinically annotated specimens and the advancements in technologies, researchers have revealed numerous genetic alterations that may drive tumor growth. However, the most lack mutations in genes that are recurrently mutated, which inspires researchers to identify disrupted pathways instead of single mutated genes to unearth biological systems perturbed in neuroblastoma. Stratification of patients and target therapy based on their molecular signatures have been the center of focus. This review provides a comprehensive summary of the recent advances in identification of candidate genes variations, targeted approaches to high-risk neuroblastoma and evaluates the methods utilized for detection, which will provide new avenues to develop therapies and further genetic researches.
Collapse
Affiliation(s)
- Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Jingfu Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| |
Collapse
|
32
|
Tümmler C, Snapkov I, Wickström M, Moens U, Ljungblad L, Maria Elfman LH, Winberg JO, Kogner P, Johnsen JI, Sveinbjørnsson B. Inhibition of chemerin/CMKLR1 axis in neuroblastoma cells reduces clonogenicity and cell viability in vitro and impairs tumor growth in vivo. Oncotarget 2017; 8:95135-95151. [PMID: 29221117 PMCID: PMC5707011 DOI: 10.18632/oncotarget.19619] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 07/06/2017] [Indexed: 02/06/2023] Open
Abstract
Pro-inflammatory cells, cytokines, and chemokines are essential in promoting a tumor supporting microenvironment. Chemerin is a chemotactic protein and a natural ligand for the receptors CMKLR1, GPR1, and CCRL2. The chemerin/CMKLR1 axis is involved in immunity and inflammation, and it has also been implicated in obesity and cancer. In neuroblastoma, a childhood tumor of the peripheral nervous system we identified correlations between high CMKLR1 and GPR1 expression and reduced overall survival probability. CMKLR1, GPR1, and chemerin RNA and protein were detected in neuroblastoma cell lines and neuroblastoma primary tumor tissue. Chemerin induced calcium mobilization, increased MMP-2 synthesis as well as MAP-kinase- and Akt-mediated signaling in neuroblastoma cells. Stimulation of neuroblastoma cells with serum, TNFα or IL-1β increased chemerin secretion. The small molecule CMKLR1 antagonist α-NETA reduced the clonogenicity and viability of neuroblastoma cell lines indicating the chemerin/CMKLR1 axis as a promoting factor in neuroblastoma tumorigenesis. Furthermore, nude mice carrying neuroblastoma SK-N-AS cells as xenografts showed impaired tumor growth when treated daily with α-NETA from day 1 after tumor cell injection. This study demonstrates the potential of the chemerin/CMKLR1 axis as a prognostic factor and possible therapeutic target in neuroblastoma.
Collapse
Affiliation(s)
- Conny Tümmler
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Igor Snapkov
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Linda Ljungblad
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Helena Maria Elfman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jan-Olof Winberg
- Tumor Biology Research Group, Department of Medical Biology, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Science, University of Tromsø, Tromsø, Norway.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Pajtler KW, Sadowski N, Ackermann S, Althoff K, Schönbeck K, Batzke K, Schäfers S, Odersky A, Heukamp L, Astrahantseff K, Künkele A, Deubzer HE, Schramm A, Sprüssel A, Thor T, Lindner S, Eggert A, Fischer M, Schulte JH. The GSK461364 PLK1 inhibitor exhibits strong antitumoral activity in preclinical neuroblastoma models. Oncotarget 2017; 8:6730-6741. [PMID: 28036269 PMCID: PMC5351666 DOI: 10.18632/oncotarget.14268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that promotes G2/M-phase transition, is expressed in elevated levels in high-risk neuroblastomas and correlates with unfavorable patient outcome. Recently, we and others have presented PLK1 as a potential drug target for neuroblastoma, and reported that the BI2536 PLK1 inhibitor showed antitumoral actvity in preclinical neuroblastoma models. Here we analyzed the effects of GSK461364, a competitive inhibitor for ATP binding to PLK1, on typical tumorigenic properties of preclinical in vitro and in vivo neuroblastoma models. GSK461364 treatment of neuroblastoma cell lines reduced cell viability and proliferative capacity, caused cell cycle arrest and massively induced apoptosis. These phenotypic consequences were induced by treatment in the low-dose nanomolar range, and were independent of MYCN copy number status. GSK461364 treatment strongly delayed established xenograft tumor growth in nude mice, and significantly increased survival time in the treatment group. These preclinical findings indicate PLK1 inhibitors may be effective for patients with high-risk or relapsed neuroblastomas with upregulated PLK1 and might be considered for entry into early phase clinical trials in pediatric patients.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Republic of Korea
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK Core Center Heidelberg), Germany
| | - Natalie Sadowski
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Sandra Ackermann
- Department of Pediatric Oncology and Hematology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Kristina Althoff
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Kerstin Schönbeck
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Katharina Batzke
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Simon Schäfers
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Andrea Odersky
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Lukas Heukamp
- NEO New Oncology, Cologne, Germany
- Institute for Hematopathology, Hamburg, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Annika Sprüssel
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
| | - Theresa Thor
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK Essen), Germany
- Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines. Int J Mol Sci 2016; 17:ijms17121995. [PMID: 27916824 PMCID: PMC5187795 DOI: 10.3390/ijms17121995] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023] Open
Abstract
Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.
Collapse
|
35
|
Matas-Rico E, van Veen M, Leyton-Puig D, van den Berg J, Koster J, Kedziora KM, Molenaar B, Weerts MJA, de Rink I, Medema RH, Giepmans BNG, Perrakis A, Jalink K, Versteeg R, Moolenaar WH. Glycerophosphodiesterase GDE2 Promotes Neuroblastoma Differentiation through Glypican Release and Is a Marker of Clinical Outcome. Cancer Cell 2016; 30:548-562. [PMID: 27693046 DOI: 10.1016/j.ccell.2016.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/06/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is a pediatric embryonal malignancy characterized by impaired neuronal differentiation. A better understanding of neuroblastoma differentiation is essential for developing new therapeutic approaches. GDE2 (encoded by GDPD5) is a six-transmembrane-domain glycerophosphodiesterase that promotes embryonic neurogenesis. We find that high GDPD5 expression is strongly associated with favorable outcome in neuroblastoma. GDE2 induces differentiation of neuroblastoma cells, suppresses cell motility, and opposes RhoA-driven neurite retraction. GDE2 alters the Rac-RhoA activity balance and the expression of multiple differentiation-associated genes. Mechanistically, GDE2 acts by cleaving (in cis) and releasing glycosylphosphatidylinositol-anchored glypican-6, a putative co-receptor. A single point mutation in the ectodomain abolishes GDE2 function. Our results reveal GDE2 as a cell-autonomous inducer of neuroblastoma differentiation with prognostic significance and potential therapeutic value.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michiel van Veen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Daniela Leyton-Puig
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Katarzyna M Kedziora
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bas Molenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Marjolein J A Weerts
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Iris de Rink
- Deep Sequencing Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ben N G Giepmans
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter H Moolenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Iyer R, Wehrmann L, Golden RL, Naraparaju K, Croucher JL, MacFarland SP, Guan P, Kolla V, Wei G, Cam N, Li G, Hornby Z, Brodeur GM. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett 2016; 372:179-86. [PMID: 26797418 DOI: 10.1016/j.canlet.2016.01.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is one of the most common and deadly childhood solid tumors. These tumors are characterized by clinical heterogeneity, from spontaneous regression to relentless progression, and the Trk family of neurotrophin receptors plays an important role in this heterogeneous behavior. We wanted to determine if entrectinib (RXDX-101, Ignyta, Inc.), an oral Pan-Trk, Alk and Ros1 inhibitor, was effective in our NB model. In vitro effects of entrectinib, either as a single agent or in combination with the chemotherapeutic agents Irinotecan (Irino) and Temozolomide (TMZ), were studied on an SH-SY5Y cell line stably transfected with TrkB. In vivo growth inhibition activity was studied in NB xenografts, again as a single agent or in combination with Irino-TMZ. Entrectinib significantly inhibited the growth of TrkB-expressing NB cells in vitro, and it significantly enhanced the growth inhibition of Irino-TMZ when used in combination. Single agent therapy resulted in significant tumor growth inhibition in animals treated with entrectinib compared to control animals [p < 0.0001 for event-free survival (EFS)]. Addition of entrectinib to Irino-TMZ also significantly improved the EFS of animals compared to vehicle or Irino-TMZ treated animals [p < 0.0001 for combination vs. control, p = 0.0012 for combination vs. Irino-TMZ]. We show that entrectinib inhibits growth of TrkB expressing NB cells in vitro and in vivo, and that it enhances the efficacy of conventional chemotherapy in in vivo models. Our data suggest that entrectinib is a potent Trk inhibitor and should be tested in clinical trials for NBs and other Trk-expressing tumors.
Collapse
Affiliation(s)
- Radhika Iyer
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lea Wehrmann
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca L Golden
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Koumudi Naraparaju
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jamie L Croucher
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Suzanne P MacFarland
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peng Guan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Venkatadri Kolla
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ge Wei
- The Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Cam
- The Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gang Li
- The Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zachary Hornby
- The Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Ignyta Inc., San Diego, CA 92121, USA.
| |
Collapse
|
37
|
Cossu I, Bottoni G, Loi M, Emionite L, Bartolini A, Di Paolo D, Brignole C, Piaggio F, Perri P, Sacchi A, Curnis F, Gagliani MC, Bruno S, Marini C, Gori A, Longhi R, Murgia D, Sementa AR, Cilli M, Tacchetti C, Corti A, Sambuceti G, Marchiò S, Ponzoni M, Pastorino F. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials 2015; 68:89-99. [PMID: 26276694 DOI: 10.1016/j.biomaterials.2015.07.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022]
Abstract
Selective tumor targeting is expected to enhance drug delivery and to decrease toxicity, resulting in an improved therapeutic index. We have recently identified the HSYWLRS peptide sequence as a specific ligand for aggressive neuroblastoma, a childhood tumor mostly refractory to current therapies. Here we validated the specific binding of HSYWLRS to neuroblastoma cell suspensions obtained either from cell lines, animal models, or Schwannian-stroma poor, stage IV neuroblastoma patients. Binding of the biotinylated peptide and of HSYWLRS-functionalized fluorescent quantum dots or liposomal nanoparticles was dose-dependent and inhibited by an excess of free peptide. In animal models obtained by the orthotopic implant of either MYCN-amplified or MYCN single copy human neuroblastoma cell lines, treatment with HSYWLRS-targeted, doxorubicin-loaded Stealth Liposomes increased tumor vascular permeability and perfusion, enhancing tumor penetration of the drug. This formulation proved to exert a potent antitumor efficacy, as evaluated by bioluminescence imaging and micro-PET, leading to (i) delay of tumor growth paralleled by decreased tumor glucose consumption, and (ii) abrogation of metastatic spreading, accompanied by absence of systemic toxicity and significant increase in the animal life span. Our findings are functional to the design of targeted nanocarriers with potentiated therapeutic efficacy towards the clinical translation.
Collapse
Affiliation(s)
- Irene Cossu
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Monica Loi
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Alice Bartolini
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute-IRCCS, Candiolo, Italy
| | | | | | | | - Patrizia Perri
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy
| | - Angelina Sacchi
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Flavio Curnis
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Genoa Section, CNR Institute of Bioimages and Molecular Physiology, Milan, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Daniele Murgia
- Department of Pathology, Istituto G. Gaslini, Genoa, Italy
| | | | - Michele Cilli
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Experimental Imaging Center, Scientific Institute San Raffaele, Milan, Italy
| | - Angelo Corti
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Serena Marchiò
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute-IRCCS, Candiolo, Italy; Department of Oncology, University of Torino, Italy
| | - Mirco Ponzoni
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy.
| | - Fabio Pastorino
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy.
| |
Collapse
|
38
|
Bell JL, Turlapati R, Liu T, Schulte JH, Hüttelmaier S. IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma. J Clin Oncol 2015; 33:1285-93. [PMID: 25753434 DOI: 10.1200/jco.2014.55.9880] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Chromosomal 17q21-ter gain in neuroblastoma is both a common and prognostically significant event. The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) gene is located near the proximal edge of this region. Here, its prognostic value is evaluated in neuroblastoma. METHODS The mRNA expression of IGF2BP family members was first evaluated by microarray data sets. In addition, in a separate cohort of 69 tumors, IGF2BP1 gene copy number, mRNA, and protein abundance were determined and compared with clinical parameters. RESULTS In two independent microarray data sets, 77% to 100% of tumors had substantial IGF2BP1 mRNA levels measured. High IGF2BP1 transcript abundance was significantly associated with stage 4 tumors (P < .001) and decreased patient survival (P < .001). IGF2BP1 was also associated with MYCN gene amplification and MYCN mRNA abundance. In the 69 neuroblastoma samples, IGF2BP1 DNA copy number (increased in 84% of tumors), mRNA, and protein abundance were significantly higher in stage 4 compared with stage 1 tumors. Importantly, IGF2BP1 protein levels were associated with lower overall patient survival (P = .012) and positively correlated with MYCN mRNA, even when excluding MYCN-amplified tumors. Moreover, IGF2BP1 clearly affected MYCN expression and neuroblastoma cell survival in vitro. CONCLUSION In neuroblastoma, IGF2BP1 was expressed in the majority of neuroblastoma specimens analyzed and was associated with lower overall patient survival and MYCN abundance. These data demonstrate that IGF2BP1 is a potential oncogene and an independent negative prognostic factor in neuroblastoma.
Collapse
Affiliation(s)
- Jessica L Bell
- Jessica L. Bell, Raseswari Turlapati, and Stefan Hüttelmaier, Martin Luther University Halle-Wittenberg, Halle; Johannes H. Schulte, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, and University Children's Hospital Essen, Essen; Johannes H. Schulte, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany; and Tao Liu, Children's Cancer Institute Australia for Medical Research and University of New South Wales, Randwick, New South Wales, Australia
| | - Raseswari Turlapati
- Jessica L. Bell, Raseswari Turlapati, and Stefan Hüttelmaier, Martin Luther University Halle-Wittenberg, Halle; Johannes H. Schulte, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, and University Children's Hospital Essen, Essen; Johannes H. Schulte, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany; and Tao Liu, Children's Cancer Institute Australia for Medical Research and University of New South Wales, Randwick, New South Wales, Australia
| | - Tao Liu
- Jessica L. Bell, Raseswari Turlapati, and Stefan Hüttelmaier, Martin Luther University Halle-Wittenberg, Halle; Johannes H. Schulte, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, and University Children's Hospital Essen, Essen; Johannes H. Schulte, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany; and Tao Liu, Children's Cancer Institute Australia for Medical Research and University of New South Wales, Randwick, New South Wales, Australia
| | - Johannes H Schulte
- Jessica L. Bell, Raseswari Turlapati, and Stefan Hüttelmaier, Martin Luther University Halle-Wittenberg, Halle; Johannes H. Schulte, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, and University Children's Hospital Essen, Essen; Johannes H. Schulte, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany; and Tao Liu, Children's Cancer Institute Australia for Medical Research and University of New South Wales, Randwick, New South Wales, Australia
| | - Stefan Hüttelmaier
- Jessica L. Bell, Raseswari Turlapati, and Stefan Hüttelmaier, Martin Luther University Halle-Wittenberg, Halle; Johannes H. Schulte, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, and University Children's Hospital Essen, Essen; Johannes H. Schulte, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany; and Tao Liu, Children's Cancer Institute Australia for Medical Research and University of New South Wales, Randwick, New South Wales, Australia.
| |
Collapse
|
39
|
Iyer R, Croucher JL, Chorny M, Mangino JL, Alferiev IS, Levy RJ, Kolla V, Brodeur GM. Nanoparticle delivery of an SN38 conjugate is more effective than irinotecan in a mouse model of neuroblastoma. Cancer Lett 2015; 360:205-12. [PMID: 25684664 DOI: 10.1016/j.canlet.2015.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common and deadly solid tumor in children. The majority of NB patients have advanced stage disease with poor prognosis, so more effective, less toxic therapy is needed. We developed a novel nanocarrier-based strategy for tumor-targeted delivery of a prodrug of SN38, the active metabolite of irinotecan. We formulated ultrasmall-sized (<100 nm) biodegradable poly(lactide)-poly(ethylene glycol) based nanoparticles (NPs) containing SN38 conjugated to tocopherol succinate (SN38-TS). Alternative dosing schedules of SN38-TS NPs were compared to irinotecan. Comparison of SN38-TS NPs (2 doses) with irinotecan (20 doses) showed equivalent efficacy but no cures. Comparison of SN38-TS NPs (8, 8, and 16 doses, respectively) to irinotecan (40 doses) showed that all SN38-TS NP regimens were far superior to irinotecan, and "cures" were obtained in all NP arms. SN38-TS NP delivery resulted in 200× the amount of SN38 in NB tumors at 4 hr post-treatment, compared to SN38 detected for the irinotecan arm; no toxicity was seen with NPs. We conclude that this SN38-TS NP formulation improved delivery, retention, and efficacy, without causing systemic toxicity.
Collapse
Affiliation(s)
- Radhika Iyer
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Jamie L Croucher
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Michael Chorny
- Division of Cardiology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer L Mangino
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Ivan S Alferiev
- Division of Cardiology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Division of Cardiology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Venkatadri Kolla
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
41
|
Croucher JL, Iyer R, Li N, Molteni V, Loren J, Gordon WP, Tuntland T, Liu B, Brodeur GM. TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol 2014; 75:131-41. [PMID: 25394774 DOI: 10.1007/s00280-014-2627-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50-60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance. METHODS We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino-TMZ). RESULTS GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC₅₀ around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino-TMZ, p < 0.0071 compared to Irino-TMZ alone). CONCLUSIONS Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino-TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.
Collapse
Affiliation(s)
- Jamie L Croucher
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang J, Gu S, Huang J, Chen S, Zhang Z, Xu M. Inhibition of autophagy potentiates the efficacy of Gli inhibitor GANT-61 in MYCN-amplified neuroblastoma cells. BMC Cancer 2014; 14:768. [PMID: 25323222 PMCID: PMC4210511 DOI: 10.1186/1471-2407-14-768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022] Open
Abstract
Background Aberrant Hedgehog (Hh) signaling is often associated with neuroblastoma (NB), a childhood malignancy with varying clinical outcomes due to different molecular characteristics. Inhibition of Hh signaling with small molecule inhibitors, particularly with GANT-61, significantly suppresses NB growth. However, NB with MYCN amplification is less sensitive to GANT-61 than those without MYCN amplification. Methods Autophagic process was examined in two MYCN amplified and two MYCN non-amplified NB cells treated with GANT-61. Subsequently, chemical and genetic approaches were applied with GANT-61 together to evaluate the role of autophagy in GANT-61 induced cell death. Results Here we show that GANT-61 enhanced autophagy in MYCN amplified NB cells. Both an autophagic inhibitor 3-methyladenine (3-MA) and genetic disruption of ATG5 or ATG7 expression suppressed GANT-61 induced autophagy and significantly increased apoptotic cell death, whereas pre-treatment with an apoptotic inhibitor, Z-VAD-FMK, rescued GANT-61 induced cell death and had no effect on the autophagic process. In the other hand, GANT-61 barely induced autophagy in MYCN non-amplified NB cells, but overexpression of MYCN in MYCN non-amplified NB cells recapitulated GANT-61 induced autophagy seen in MYCN amplified NB cells, suggesting that the level of GANT-61 induced autophagy in NB cells is related to MYCN expression level in cells. Conclusion Aberrant Hh signaling activation as an oncogenic driver in NB renders inhibition of Hh signaling an effective measure to suppress NB growth. However, our data suggest that enhanced autophagy concomitant with Hh signaling inhibition acts as a pro-survival factor to maintain cell viability, which reduces GANT-61 efficacy. Besides, MYCN amplification is likely involved in the induction of the pro-survival autophagy. Overall, simultaneous inhibition of both Hh signaling and autophagy could be a better way to treat MYCN amplified NB. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-768) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Zhen Zhang
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | | |
Collapse
|
43
|
Kolla V, Zhuang T, Higashi M, Naraparaju K, Brodeur GM. Role of CHD5 in human cancers: 10 years later. Cancer Res 2014; 74:652-8. [PMID: 24419087 DOI: 10.1158/0008-5472.can-13-3056] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CHD5 was first identified because of its location on 1p36 in a region of frequent deletion in neuroblastomas. CHD5 (chromodomain-helicase-DNA-binding-5) is the fifth member of a family of chromatin remodeling proteins, and it probably functions by forming a nucleosome remodeling and deacetylation (NuRD) complex that regulates transcription of particular genes. CHD5 is preferentially expressed in the nervous system and testis. On the basis of its position, pattern of expression, and function in neuroblastoma cells and xenografts, CHD5 was identified as a tumor suppressor gene (TSG). Evidence soon emerged that CHD5 also functioned as a TSG in gliomas and a variety of other tumor types, including breast, colon, lung, ovary, and prostate cancers. Although one copy of CHD5 is deleted frequently, inactivating mutations of the remaining allele are rare. However, DNA methylation of the CHD5 promoter is found frequently, and this epigenetic mechanism leads to biallelic inactivation. Furthermore, low CHD5 expression is strongly associated with unfavorable clinical and biologic features as well as outcome in neuroblastomas and many other tumor types. Thus, based on its likely involvement as a TSG in neuroblastomas, gliomas, and many common adult tumors, CHD5 may play an important developmental role in many other tissues besides the nervous system and testis.
Collapse
Affiliation(s)
- Venkatadri Kolla
- Authors' Affiliations: Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia; and The University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|