1
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024; 264:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Chu Y, Yu A, Wang H, Rajput SA, Yu Q, Qi D. Biological Mechanisms of Aflatoxin B 1-Induced Bile Metabolism Abnormalities in Ducklings. Animals (Basel) 2024; 14:2996. [PMID: 39457926 PMCID: PMC11506432 DOI: 10.3390/ani14202996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the effects and biological mechanisms of aflatoxin B1 (AFB1) on the health and bile metabolism of ducklings. Forty-eight 1-day-old ducklings were randomly assigned to two groups, with six replicates per group. The control group was fed a basic diet, while the AFB1 group received a diet containing 90 µg/kg of AFB1. The experiment lasted for 2 weeks. The results showed that 90 µg/kg AFB1 caused abnormal bile metabolism; damaged liver cell nuclei and mitochondria; and significantly decreased body weight, average daily weight gain, and levels of albumin, total protein, cholesterol, total superoxide dismutase, glutathione peroxidase, and glutathione. It also significantly increased feed conversion efficiency, along with alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bile acids, and malondialdehyde levels. In the liver, the expression levels of CYP7A1, SCD, and other genes were significantly upregulated, while BSEP, FASN, HMGCR, CAT, and other genes were significantly downregulated. In conclusion, AFB1 causes abnormal bile metabolism and impairs the overall health and liver function of ducklings. Its mechanism of action may involve changes in gene expression related to bile acid metabolism, lipid metabolism, oxidative damage, and cancer pathways.
Collapse
Affiliation(s)
- Yihong Chu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Aimei Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Qianqian Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| |
Collapse
|
3
|
Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol 2024; 98:3381-3395. [PMID: 38953992 PMCID: PMC11402862 DOI: 10.1007/s00204-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many industrial applications. Exposure to PFAS is associated with several health risks, including a decrease in infant birth weight, hepatoxicity, disruption of lipid metabolism, and decreased immune response. We used the in vitro cell models to screen six less studied PFAS [perfluorooctane sulfonamide (PFOSA), perfluoropentanoic acid (PFPeA), perfluoropropionic acid (PFPrA), 6:2 fluorotelomer alcohol (6:2 FTOH), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and 8:2 fluorotelomer sulfonic acid (8:2 FTSA)] for their capacity to activate nuclear receptors and to cause differential expression of genes involved in lipid metabolism. Cytotoxicity assays were run in parallel to exclude that observed differential gene expression was due to cytotoxicity. Based on the cytotoxicity assays and gene expression studies, PFOSA was shown to be more potent than other tested PFAS. PFOSA decreased the gene expression of crucial genes involved in bile acid synthesis and detoxification, cholesterol synthesis, bile acid and cholesterol transport, and lipid metabolism regulation. Except for 6:2 FTOH and 8:2 FTSA, all tested PFAS downregulated PPARA gene expression. The reporter gene assay also showed that 8:2 FTSA transactivated the farnesoid X receptor (FXR). Based on this study, PFOSA, 6:2 FTSA, and 8:2 FTSA were prioritized for further studies to confirm and understand their possible effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zhou Y, Chen C, Yuan J, Xue J, Chen H, Liu X, Cai Z, Wu N, Yang W, Cheng J. A study for quality evaluation of Lysimachiae herba from different origins based on fingerprint-activity relationship modeling and multi-component content determination. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117840. [PMID: 38316219 DOI: 10.1016/j.jep.2024.117840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lysimachiae Herba (LH), called Jinqiancao in Chinese, is a commonly used traditional Chinese medicine in clinical practice. Doctors in the Qing Dynasty recorded that it tastes bitter, sour, and slightly cold, and it belongs to the liver, gallbladder, kidney, and bladder meridians. It has the effects of removing dampness and jaundice, eliminating gallstones, and reducing blood stasis. Because of its potent pharmacological effects, it is extensively utilized in the treatment of hepatobiliary and urinary system stones, jaundice, hepatitis, and cholecystitis. Although LH is included in "Sichuan authentic Chinese herbal medicine records", the quality of it from different origins still lacks reliable evaluation methods, which is difficult to reflect the high quality of LH from Sichuan. AIMS OF THE STUDY This study aimed to establish a fingerprint-activity relationship model between the fingerprint of LH and its protective effect on cholestatic liver injury, and to evaluate the quality of LH from Sichuan and Guizhou by multivariate statistical analysis. MATERIALS AND METHODS 20 batches of LH samples were collected from Sichuan and Guizhou. Characteristic fingerprints of samples were established by UHPLC-Triple TOF-MS/MS and the chemical pattern recognition analysis was carried out by HCA. Then, a rat model of cholestatic liver injury was established by intragastric administration of ANIT. Combined with the common peak information of fingerprint and pharmacodynamic index results, GCA and BCA were used to screen the efficacy markers. Finally, based on UHPLC-QTRAP-MS/MS, the content of efficacy markers was simultaneously determined, and the overall quality of LH from two origins was evaluated by PCA and TOPSIS. RESULTS In the fingerprint of 20 batches of LH, 15 common peaks were identified in the negative ion mode, and the similarity was between 0.887 and 0.981. Pharmacological results showed that, compared with the control group, the content of AST, ALT, ALP, TBA, TBIL, and MDA in serum increased, and the content of GSH and SOD activity decreased after 48 h of ANIT administration. In addition, compared to the model group, different doses of LH from the two origins could decrease the serum levels of AST, ALT, ALP, TBA, TBIL, and MDA, raise the levels of GSH and SOD activity, reduce the infiltration range of inflammatory cells, and improve the cholestatic liver injury in rats. Among them, the pharmacodynamic indices of the SCHD group were significantly better. GCA and BCA showed that a total of 7 constituents related to the efficacy were screened, which were proanthocyanidin B1, ferulic acid, hyperoside, astragalin, nicotiflorin, afzelin, and kaempferol. Besides, the content of 7 active constituents in samples from Sichuan was higher than that from Guizhou, indicating that the quality of samples from Sichuan may be better, consistent with the result of the pharmacological experiment. CONCLUSION The quality and efficacy of LH from different origins were stable, and all of them had protective effects on cholestatic liver injury in rats. The method established in this study is accurate and reliable, and it can be used to comprehensively evaluate the internal quality of LH.
Collapse
Affiliation(s)
- Yongyi Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Cuihua Chen
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jiahuan Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haijie Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China.
| | - Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| |
Collapse
|
5
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
6
|
Kamal M, Tokmakjian L, Knox J, Han D, Moshiri H, Magomedova L, Nguyen KCQ, Zheng H, Burns AR, Cooke B, Lacoste J, Yeo M, Hall DH, Cummins CL, Roy PJ. PGP-14 establishes a polar lipid permeability barrier within the C. elegans pharyngeal cuticle. PLoS Genet 2023; 19:e1011008. [PMID: 37930961 PMCID: PMC10653525 DOI: 10.1371/journal.pgen.1011008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 11/16/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Levon Tokmakjian
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Duhyun Han
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Houtan Moshiri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Hong Zheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew R. Burns
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Cooke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - May Yeo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Carolyn L. Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Ning J, Hao J, Guo F, Hou X, Li L, Wang J, Wang S, Gao Y, Zheng X, Gao M. ABCB11 accumulated in immature tertiary lymphoid structures participates in xenobiotic metabolic process and predicts resistance to PD-1/PD-L1 inhibitors in head and neck squamous cell carcinoma. Transl Oncol 2023; 36:101747. [PMID: 37517143 PMCID: PMC10407442 DOI: 10.1016/j.tranon.2023.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are at a high risk of recurrence and multimodal therapy have not significantly improved survival in recent decades. Although immune checkpoint inhibitors (ICIs) are effective in a small proportion of HNSCC patients, the majority do not respond. In this study, we for the first time revealed that xenobiotic metabolic process was significantly associated with resistance to programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors in HNSCC and found that ATP binding cassette subfamily B member 11 (ABCB11) accumulated in immature tertiary lymphoid structures (TLSs) predicted worse progression-free survival (PFS) and overall survival (OS) after PD-1/PD-L1 inhibitors therapy. Moreover, the expression of cytochrome P450 1A2 (CYP1A2), a cytochrome P450 (CYP) enzyme that participates in xenobiotic metabolic process, was significantly upregulated in CD45+ABCB11+ tumor-infiltrating lymphocytes (TILs) compared with CD45+ABCB11-TILs in HNSCC tissues. Whole slide scans of 110 HNSCC tissues with hematoxylin-eosin (HE) and multispectral immuno-fluorescent (mIF) staining revealed that ABCB11 had a high co-expression with CYP1A2 in immature TLSs, and colocalization of ABCB11 and CYP1A2 in immature TLs significantly associated with high infiltration of immunosuppressive T-regulatory (Treg). Our study revealed that ABCB11 accumulated in immature TLSs might upregulate CYP1A2 to mediate xenobiotic metabolic process, thus increase the immunosuppressive Treg infiltration, and induce resistance to PD-1/PD-L1 inhibitors in HNSCC.
Collapse
Affiliation(s)
- Junya Ning
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, China; Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, China; Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fengli Guo
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiukun Hou
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lijuan Li
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jinmiao Wang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, China
| | - Shoujun Wang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, China
| | - Ying Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, China; Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
8
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
9
|
Freitas IN, da Silva Jr JA, de Oliveira KM, Lourençoni Alves B, Dos Reis Araújo T, Camporez JP, Carneiro EM, Davel AP. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol (Lausanne) 2023; 14:1090039. [PMID: 36896173 PMCID: PMC9989466 DOI: 10.3389/fendo.2023.1090039] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.
Collapse
Affiliation(s)
- Israelle Netto Freitas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- *Correspondence: Ana Paula Davel,
| |
Collapse
|
10
|
Li J, Wang S, Tian F, Zhang SQ, Jin H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals (Basel) 2022; 15:ph15091126. [PMID: 36145347 PMCID: PMC9502688 DOI: 10.3390/ph15091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
As the use of herbs has become more popular worldwide, there are increasing reports of herb-drug interactions (HDIs) following the combination of herbs and drugs. The active components of herbs are complex and have a variety of pharmacological activities, which inevitably affect changes in the pharmacokinetics of chemical drugs in vivo. The absorption, distribution, metabolism, and excretion of drugs in vivo are closely related to the expression of drug transporters. When the active components of herbs inhibit or induce the expression of transporters, this can cause changes in substrate pharmacokinetics, resulting in changes in the efficacy and toxicity of drugs. In this article, the tissue distribution and physiological functions of drug transporters are summarized through literature retrieval, and the effects of herbs on drug transporters and the possible mechanism of HDIs are analyzed and discussed in order to provide ideas and a reference for further guiding of safe clinical drug use.
Collapse
Affiliation(s)
- Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fengjie Tian
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
| | - Shuang-Qing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, 29 Nanwei Road, Beijing 100050, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| |
Collapse
|
11
|
Liu J, Liu J, Meng C, Huang C, Liu F, Xia C. Oleanolic acid alleviates ANIT-induced cholestatic liver injury by activating Fxr and Nrf2 pathways to ameliorate disordered bile acids homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154173. [PMID: 35605478 DOI: 10.1016/j.phymed.2022.154173] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cholestasis is a clinical syndrome with high incidence and few effective treatments. Oleanolic acid (OA) is a triterpenoid compound with anti-cholestatic effects. Studies using bile duct ligation or lithocholic acid modeling have shown that the alleviating effect of OA on cholerosis is related to the regulation of nuclear factor erythroid 2 related factor (Nrf2) or farnesoid X receptor (Fxr). PURPOSE This study aims to investigate the underlying mechanism of OA against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury based on Nrf2 and Fxr dual signaling pathways. METHODS The ANIT-induced rats model was used with or without OA treatment. Serum biochemical indexes, liver histopathological changes and glutathione level were examined. Bile acids (BAs) targeted metabolomics based on UHPLC-MS/MS were performed. siRNA, RT-qPCR and western blot analysis were used to prove the role of Fxr and Nrf2 pathway in OA's anti-cholestatic liver injury in vivo and in vitro. RESULTS OA significantly alleviated ANIT-induced liver injury in rats, reduced primary bile acids, accelerated metabolism of BAs and reduced the intrahepatic accumulation of BAs. The expressions of bile salt export pump (Bsep), Na+-taurocholic cotransport polypeptide (Ntcp), UDP-glucuronyl transferase 1a1 (Ugt1a1) and Fxr in rat liver were markedly up-regulated, the activation of Nrf2 was promoted, and the expression of cholesterol 7α-hydroxylase (Cyp7a1) was decreased after OA treatment. Moreover, Fxr or Nrf2 silencing attenuated the regulation of OA on BAs homeostasis related transporters and enzymes in rat primary hepatocytes. CONCLUSION OA may regulate BAs-related transporters and metabolic enzymes by activating Fxr and Nrf2 pathways, thus alleviating the cholestatic liver injury induced by ANIT.
Collapse
Affiliation(s)
- Jianming Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Jiawei Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chao Meng
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chao Huang
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Fanglan Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chunhua Xia
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
12
|
Fu Y, Feng H, Ding X, Meng QH, Zhang SR, Li J, Chao Y, Ji TT, Bi YH, Zhang WW, Chen Q, Zhang YH, Feng YL, Bian HM. Alisol B 23-acetate adjusts bile acid metabolisim via hepatic FXR-BSEP signaling activation to alleviate atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154120. [PMID: 35523117 DOI: 10.1016/j.phymed.2022.154120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Postmenopausal women have a high incidence of atherosclerosis. Phytosterols have been shown to have cholesterol-lowering properties. Alisa B 23-acetate (AB23A) is a biologically active plant sterol isolated from Chinese herbal medicine Alisma. However, the atherosclerosis effect of AB23A after menopause and its possible mechanism have not been reported yet. PURPOSE To explore whether AB23A can prevent atherosclerosis by regulating farnesoid X receptor and subsequently increasing fecal bile acid and cholesterol excretion to reduce plasma cholesterol levels. METHODS Aortic samples from premenopausal and postmenopausal women with ascending aortic arteriosclerosis were analyzed, and bilateral ovariectomized (OVX) female LDLR-/- mice and free fatty acid (FFA)-treated L02 cells were used to analyze the effect of AB23A supplementation therapy. RESULTS AB23A increased fecal cholesterol and bile acids (BAs) excretion dependent on activation of hepatic farnesoid X receptor (FXR) in ovariectomized mice. AB23A inhibited hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) via inducing small heterodimer partner (SHP) expression. On the other hand, AB23A increased the level of hepatic chenodeoxycholic acid (CDCA), and activated the hepatic BSEP signaling. The activation of hepatic FXR-BSEP signaling by AB23A in ovariectomized mice was accompanied by the reduction of liver cholesterol, hepatic lipolysis, and bile acids efflux, and reduced the damage of atherosclerosis. In vitro, AB23A fixed abnormal lipid metabolism in L02 cells and increased the expression of FXR, BSEP and SHP. Moreover, the inhibition and silencing of FXR canceled the regulation of BSEP by AB23A in L02 cells. CONCLUSION Our results shed light into the mechanisms behind the cholesterol-lowering of AB23A, and increasing FXR-BSEP signaling by AB23A may be a potential postmenopausal atherosclerosis therapy.
Collapse
Affiliation(s)
- Yu Fu
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, China
| | - Han Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing-Hai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Rui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting-Ting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Hui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Han Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - You-Long Feng
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, China.
| | - Hui-Min Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Fraxinellone Induces Hepatotoxicity in Zebrafish through Oxidative Stress and the Transporters Pathway. Molecules 2022; 27:molecules27092647. [PMID: 35566003 PMCID: PMC9103149 DOI: 10.3390/molecules27092647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fraxinellone (FRA), a major active component from Cortex Dictamni, produces hepatotoxicity via the metabolization of furan rings by CYP450. However, the mechanism underlying the hepatotoxicity of FRA remains unclear. Therefore, zebrafish larvae at 72 h post fertilization were used to evaluate the metabolic hepatotoxicity of FRA and to explore the underlying molecular mechanisms. The results showed that FRA (10-30 μM) induced liver injury and obvious alterations in the metabolomics of zebrafish larvae. FRA induces apoptosis by increasing the level of ROS and activating the JNK/P53 pathway. In addition, FRA can induce cholestasis by down-regulating bile acid transporters P-gp, Bsep, and Ntcp. The addition of the CYP3A inhibitor ketoconazole (1 μM) significantly reduced the hepatotoxicity of FRA (30 μM), which indicated that FRA induced hepatotoxicity through CYP3A metabolism. Targeted metabolomics analysis indicates the changes in amino acid levels can be combined with molecular biology to clarify the mechanism of hepatotoxicity induced by FRA, and amino acid metabolism monitoring may provide a new method for the prevention and treatment of DILI from FRA.
Collapse
|
14
|
Xu S, Qiao X, Peng P, Zhu Z, Li Y, Yu M, Chen L, Cai Y, Xu J, Shi X, Proud CG, Xie J, Shen K. Da-Chai-Hu-Tang Protects From Acute Intrahepatic Cholestasis by Inhibiting Hepatic Inflammation and Bile Accumulation via Activation of PPARα. Front Pharmacol 2022; 13:847483. [PMID: 35370715 PMCID: PMC8965327 DOI: 10.3389/fphar.2022.847483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is caused by intrahepatic retention of excessive toxic bile acids and ultimately results in hepatic failure. Da-Chai-Hu-Tang (DCHT) has been used in China to treat liver and gallbladder diseases for over 1800 years. Here, we demonstrated that DCHT treatment prevented acute intrahepatic cholestasis with liver injury in response to α-naphthylisothiocyanate (ANIT) not to bile duct ligation (BDL) induced-extrahepatic cholestasis. ANIT (80 mg/kg) increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin (DBiL), total bilirubin (TBiL), and total bile acids (TBA) which was attenuated by DCHT treatment in a dose-dependent manner. DCHT treatment at high dose of 1.875 g/kg restored bile acid homeostasis, as evidenced by the recovery of the transcription of genes implicated in bile acid biosynthesis, uptake and efflux. DCHT treatment (1.875 g/kg) reversed ANIT-evoked disordered glutathione homeostasis (as determined by GSH/GSSG ratio) and increased in the mRNA levels for Il6, Il1b and Tnfa associated with liver inflammation. Using network pharmacology-based approaches, we identified 22 putative targets involved in DCHT treatment for intrahepatic cholestasis not extrahepatic cholestasis. In addition, as evidenced by dual-luciferase reporter assays, compounds from DCHT with high affinity of PPARα increased luciferase levels from a PPARα-driven reporter. PPARα agonist fenofibrate was able to mimic the cytoprotective effect of DCHT on intrahepatic cholestasis, which was abolished by the PPARα antagonist GW6471. KEGG enrichment and western blot analyses showed that signaling axes of JNK/IL-6/NF-κB/STAT3 related to PPARα might be the principal pathway DCHT affects intrahepatic cholestasis. Taken together, the present study provides compelling evidence that DCHT is a promising formula against acute intrahepatic cholestasis with hepatotoxicity which works via PPARα activation.
Collapse
Affiliation(s)
- Shihao Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Qiao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peike Peng
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyi Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaoting Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Fudan University, Shanghai, China
| | - Mengyuan Yu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Long Chen
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jin Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinwei Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Molecular and Biomedical Sciences, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Kaikai Shen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhang B, Kuipers F, de Boer JF, Kuivenhoven JA. Modulation of Bile Acid Metabolism to Improve Plasma Lipid and Lipoprotein Profiles. J Clin Med 2021; 11:jcm11010004. [PMID: 35011746 PMCID: PMC8745251 DOI: 10.3390/jcm11010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
New drugs targeting bile acid metabolism are currently being evaluated in clinical studies for their potential to treat cholestatic liver diseases, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Changes in bile acid metabolism, however, translate into an alteration of plasma cholesterol and triglyceride concentrations, which may also affect cardiovascular outcomes in such patients. This review attempts to gain insight into this matter and improve our understanding of the interactions between bile acid and lipid metabolism. Bile acid sequestrants (BAS), which bind bile acids in the intestine and promote their faecal excretion, have long been used in the clinic to reduce LDL cholesterol and, thereby, atherosclerotic cardiovascular disease (ASCVD) risk. However, BAS modestly but consistently increase plasma triglycerides, which is considered a causal risk factor for ASCVD. Like BAS, inhibitors of the apical sodium-dependent bile acid transporter (ASBTi’s) reduce intestinal bile acid absorption. ASBTi’s show effects that are quite similar to those obtained with BAS, which is anticipated when considering that accelerated faecal loss of bile acids is compensated by an increased hepatic synthesis of bile acids from cholesterol. Oppositely, treatment with farnesoid X receptor agonists, resulting in inhibition of bile acid synthesis, appears to be associated with increased LDL cholesterol. In conclusion, the increasing efforts to employ drugs that intervene in bile acid metabolism and signalling pathways for the treatment of metabolic diseases such as NAFLD warrants reinforcing interactions between the bile acid and lipid and lipoprotein research fields. This review may be considered as the first step in this process.
Collapse
Affiliation(s)
- Boyan Zhang
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (B.Z.); (F.K.)
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (B.Z.); (F.K.)
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (B.Z.); (F.K.)
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Correspondence: (J.F.d.B.); (J.A.K.)
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (B.Z.); (F.K.)
- Correspondence: (J.F.d.B.); (J.A.K.)
| |
Collapse
|
16
|
Ren T, Pang L, Dai W, Wu S, Kong J. Regulatory mechanisms of the bile salt export pump (BSEP/ABCB11) and its role in related diseases. Clin Res Hepatol Gastroenterol 2021; 45:101641. [PMID: 33581308 DOI: 10.1016/j.clinre.2021.101641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023]
Abstract
The bile salt export pump (BSEP/ABCB11) is located on the apical membrane and mediates the secretion of bile salts from hepatocytes into the bile. BSEP-mediated bile salt efflux is the rate-limiting step of bile salt secretion and the main driving force of bile flow. BSEP drives and maintains the enterohepatic circulation of bile salts. In recent years, research efforts have been focused on understanding the physiological and pathological functions and regulatory mechanisms of BSEP. These studies elucidated the roles of farnesoid X receptor (FXR), AMP-activated protein kinase (AMPK), liver receptor homolog-1(LRH-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) in BSEP expression and discovered some regulatory factors which participate in its post-transcriptional regulation. A series of liver diseases have also been shown to be related to BSEP expression and dysfunction, such as cholestasis, drug-induced liver injury, and gallstones. Here, we systematically review and summarize recent literature on BSEP structure, physiological functions, regulatory mechanisms, and related diseases.
Collapse
Affiliation(s)
- Tengqi Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwei Pang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, Liaoning, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Kinsenoside Alleviates 17α-Ethinylestradiol-Induced Cholestatic Liver Injury in Rats by Inhibiting Inflammatory Responses and Regulating FXR-Mediated Bile Acid Homeostasis. Pharmaceuticals (Basel) 2021; 14:ph14050452. [PMID: 34064649 PMCID: PMC8151897 DOI: 10.3390/ph14050452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cholestasis is an important predisposing factor of liver diseases, such as hepatocyte necrosis, liver fibrosis and primary biliary cirrhosis. In this study, we aimed to investigate the effects of Kinsenoside (KD), a natural active ingredient of Anoectochilus roxburghii, on estrogen-induced cholestatic liver injury in Sprague-Dawley rats and the underlying mechanism. The rats were randomly divided into six groups: control group, model group, low-dose KD group (50 mg/kg body weight, KD-L), medium-dose KD group (100 mg/kg body weight, KD-M), high-dose KD group (200 mg/kg body weight, KD-H) and ursodeoxycholic acid group (40 mg/kg body weight, UDCA). 17α-Ethinylestradiol (EE) was used to establish an experimental animal model of estrogen-induced cholestasis (EIC). The results demonstrated that KD alleviated liver pathologic damage, serum biochemical status and inhibited hepatocellular microstructure disorder and bile duct hyperplasia in EE-induced cholestatic rats. Mechanically, KD alleviated EE-induced cholestatic liver injury by inhibiting inflammatory responses and regulating bile acid homeostasis. Concretely, KD reduced the expression of IL-1β and IL-6 by inhibiting NF-κB p65 to suppress EE-mediated inflammation in rat liver. KD enhanced the expression of FXR and inhibited EE-mediated reduction of FXR in vitro and in vivo. It was the potential mechanism that KD mitigates cholestasis by increasing efflux and inhibiting uptake of bile acids via FXR-mediated induction of bile salt export pump (BSEP) and reduction of Na+-dependent taurocholate cotransport peptide (NTCP) to maintain bile acid homeostasis. Moreover, KD repressed the bile acid synthesis through reducing the expression of synthetic enzyme (CYP7A1), thereby normalizing the expression of metabolic enzyme (SULT2A1) of bile acid. In conclusion, our results revealed that KD may be an effective drug candidate for the treatment of cholestasis.
Collapse
|
18
|
Li J, Liu C, Zhou Z, Dou B, Huang J, Huang L, Zheng P, Fan S, Huang C. Isotschimgine alleviates nonalcoholic steatohepatitis and fibrosis via FXR agonism in mice. Phytother Res 2021; 35:3351-3364. [PMID: 33784797 DOI: 10.1002/ptr.7055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Farnesoid X receptor (FXR) agonist obeticholic acid (OCA) has emerged as a potential therapy for nonalcoholic fatty liver disease (NAFLD). However, the side effects of OCA may limit its application in clinics. We identified previously that isotschimgine (ITG) is a non-steroidal FXR selective agonist and has potent therapeutic effects on NAFLD in mice. Here, we aimed to evaluate the therapeutic effects of ITG on nonalcoholic steatohepatitis (NASH) and fibrosis in mice. We used methionine and choline deficient (MCD) diet-induced NASH mice, bile duct ligation (BDL), and carbon tetrachloride (CCl4 )-treated hepatic fibrosis mice to investigate the effects of ITG on NASH, fibrosis, and cholestatic liver injury. Our results showed that ITG improved steatosis and inflammation in the liver of MCD diet-fed mice, as well as alleviated fibrosis and inflammation in the liver of CCl4 -treated mice. Furthermore, ITG attenuated serum bile acid levels, and reduced vacuolization, inflammatory infiltration, hepatic parenchymal necrosis, and collagen accumulation in the liver of BDL mice. Mechanistically, ITG increased the expression of FXR target genes. These data suggest that ITG is an FXR agonist and may be developed as a novel therapy for NASH, hepatic fibrosis, or primary biliary cholangitis.
Collapse
Affiliation(s)
- Junxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuhe Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baokai Dou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinwen Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Leilei Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Wu SH, Chang MH, Chen YH, Wu HL, Chua HH, Chien CS, Ni YH, Chen HL, Chen HL. The ESCRT-III molecules regulate the apical targeting of bile salt export pump. J Biomed Sci 2021; 28:19. [PMID: 33750401 PMCID: PMC7941988 DOI: 10.1186/s12929-020-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background The bile salt export pump (BSEP) is a pivotal apical/canalicular bile salt transporter in hepatocytes that drives the bile flow. Defects in BSEP function and canalicular expression could lead to a spectrum of cholestatic liver diseases. One prominent manifestation of BSEP-associated cholestasis is the defective canalicular localization and cytoplasmic retention of BSEP. However, the etiology of impaired BSEP targeting to the canalicular membrane is not fully understood. Our goal was to discover what molecule could interact with BSEP and affect its post-Golgi sorting. Methods The human BSEP amino acids (a.a.) 491-630 was used as bait to screen a human fetal liver cDNA library through yeast two-hybrid system. We identified a BSEP-interacting candidate and showed the interaction and colocalization in the co-immunoprecipitation in hepatoma cell lines and histological staining in human liver samples. Temperature shift assays were used to study the post-Golgi trafficking of BSEP. We further determine the functional impacts of the BSEP-interacting candidate on BSEP in vitro. A hydrodynamically injected mouse model was established for in vivo characterizing the long-term impacts on BSEP. Results We identified that charged multivesicular body protein 5 (CHMP5), a molecule of the endosomal protein complex required for transport subcomplex-III (ESCRT-III), interacted and co-localized with BSEP in the subapical compartments (SACs) in developing human livers. Cholestatic BSEP mutations in the CHMP5-interaction region have defects in canalicular targeting and aberrant retention at the SACs. Post-Golgi delivery of BSEP and bile acid secretion were impaired in ESCRT-III perturbation or CHMP5-knockdown hepatic cellular and mouse models. This ESCRT-III-mediated BSEP sorting preceded Rab11A-regulated apical cycling of BSEP. Conclusions Our results showed the first example that ESCRT-III is essential for canalicular trafficking of apical membrane proteins, and provide new targets for therapeutic approaches in BSEP associated cholestasis.
Collapse
Affiliation(s)
- Shang-Hsin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Mei-Hwei Chang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Huey-Huey Chua
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan
| | - Chin-Sung Chien
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan.,Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan.
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan. .,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan. .,Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
20
|
Sohail MI, Dönmez-Cakil Y, Szöllősi D, Stockner T, Chiba P. The Bile Salt Export Pump: Molecular Structure, Study Models and Small-Molecule Drugs for the Treatment of Inherited BSEP Deficiencies. Int J Mol Sci 2021; 22:E784. [PMID: 33466755 PMCID: PMC7830293 DOI: 10.3390/ijms22020784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The bile salt export pump (BSEP/ABCB11) is responsible for the transport of bile salts from hepatocytes into bile canaliculi. Malfunction of this transporter results in progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2) and intrahepatic cholestasis of pregnancy (ICP). Over the past few years, several small molecular weight compounds have been identified, which hold the potential to treat these genetic diseases (chaperones and potentiators). As the treatment response is mutation-specific, genetic analysis of the patients and their families is required. Furthermore, some of the mutations are refractory to therapy, with the only remaining treatment option being liver transplantation. In this review, we will focus on the molecular structure of ABCB11, reported mutations involved in cholestasis and current treatment options for inherited BSEP deficiencies.
Collapse
Affiliation(s)
| | - Yaprak Dönmez-Cakil
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, 34857 Istanbul, Turkey;
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, 13A, 1090 Vienna, Austria;
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, 13A, 1090 Vienna, Austria;
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, 10, 1090 Vienna, Austria
| |
Collapse
|
21
|
Bosma PJ, Wits M, Oude-Elferink RPJ. Gene Therapy for Progressive Familial Intrahepatic Cholestasis: Current Progress and Future Prospects. Int J Mol Sci 2020; 22:E273. [PMID: 33383947 PMCID: PMC7796371 DOI: 10.3390/ijms22010273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive Familial Intrahepatic Cholestasis (PFIC) are inherited severe liver disorders presenting early in life, with high serum bile salt and bilirubin levels. Six types have been reported, two of these are caused by deficiency of an ABC transporter; ABCB11 (bile salt export pump) in type 2; ABCB4 (phosphatidylcholine floppase) in type 3. In addition, ABCB11 function is affected in 3 other types of PFIC. A lack of effective treatment makes a liver transplantation necessary in most patients. In view of long-term adverse effects, for instance due to life-long immune suppression needed to prevent organ rejection, gene therapy could be a preferable approach, as supported by proof of concept in animal models for PFIC3. This review discusses the feasibility of gene therapy as an alternative for liver transplantation for all forms of PFIC based on their pathological mechanism. Conclusion: Using presently available gene therapy vectors, major hurdles need to be overcome to make gene therapy for all types of PFIC a reality.
Collapse
Affiliation(s)
- Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AGEM, Amsterdam UMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.W.); (R.P.J.O.-E.)
| | | | | |
Collapse
|
22
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Rosa B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics 2020; 12:pharmaceutics12111064. [PMID: 33171593 PMCID: PMC7695171 DOI: 10.3390/pharmaceutics12111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Xenobiotic transport proteins play an important role in determining drug disposition and pharmacokinetics. Our understanding of the role of these important proteins in humans and pre-clinical animal species has increased substantially over the past few decades, and has had an important impact on human medicine; however, veterinary medicine has not benefitted from the same quantity of research into drug transporters in species of veterinary interest. Differences in transporter expression cause difficulties in extrapolation of drug pharmacokinetic parameters between species, and lack of knowledge of species-specific transporter distribution and function can lead to drug–drug interactions and adverse effects. Horses are one species in which little is known about drug transport and transporter protein expression. The purpose of this mini-review is to stimulate interest in equine drug transport proteins and comparative transporter physiology.
Collapse
Affiliation(s)
- Brielle Rosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, TRW 2D01, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
24
|
Yang F, Takeuchi T, Tsuneyama K, Yokoi T, Oda S. Experimental Evidence of Liver Injury by BSEP-Inhibiting Drugs With a Bile Salt Supplementation in Rats. Toxicol Sci 2020; 170:95-108. [PMID: 30985903 DOI: 10.1093/toxsci/kfz088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The bile salt export pump (BSEP, ABCB11) mediates bile acid efflux from hepatocytes into bile. Although the inhibition of BSEP has been implicated as an important mechanism of drug-induced liver injury (DILI), liver injury caused by BSEP-inhibiting drugs is rarely reproduced in experimental animals, probably due to species differences in bile acid composition between humans and rodents. In this study, we tested whether supplementation with chenodeoxycholic acid (CDCA) sodium, a hydrophobic bile salt, could sensitize rats to liver injury caused by a BSEP-inhibiting drug. A potent BSEP inhibitor, ketoconazole (KTZ), which is associated with clinical DILI, was intragastrically administered simultaneously with CDCA at a nontoxic dose once a day for 3 days. Plasma transaminase levels significantly increased in rats receiving CDCA+KTZ, whereas neither treatment with CDCA alone, KTZ alone nor a combination of CDCA and miconazole, a safe analog to KTZ, induced liver injury. In CDCA+KTZ-treated rats, most bile acid species in the liver significantly increased compared with treatment with vehicle or CDCA alone, suggesting that KTZ administration inhibited bile acid excretion. Furthermore, hepatic mRNA expression levels of a bile acid synthesis enzyme, Cyp7a1, and a basolateral bile salt influx transporter, Ntcp, decreased, whereas a canalicular phosphatidylcholine flippase, Mdr2, increased in the CDCA+KTZ group to compensate for hepatic bile acid accumulation. In conclusion, we found that oral CDCA supplementation predisposed rats to KTZ-induced liver injury due to the hepatic accumulation of bile acids. This method may be useful for assessing the potential of BSEP-inhibiting drugs inducing liver injury in vivo.
Collapse
Affiliation(s)
- Fuhua Yang
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Taiki Takeuchi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koichi Tsuneyama
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
25
|
Török G, Erdei Z, Lilienberg J, Apáti Á, Homolya L. The importance of transporters and cell polarization for the evaluation of human stem cell-derived hepatic cells. PLoS One 2020; 15:e0227751. [PMID: 31971960 PMCID: PMC6977753 DOI: 10.1371/journal.pone.0227751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
One of the most promising applications of human pluripotent stem cells is their utilization for human-based pharmacological models. Despite the fact that membrane transporters expressed in the liver play pivotal role in various hepatic functions, thus far only little attention was devoted to the membrane transporter composition of the stem cell-derived liver models. In the present work, we have differentiated HUES9, a human embryonic stem cell line, toward the hepatic lineage, and monitored the expression levels of numerous differentiation marker and liver transporter genes with special focus on ABC transporters. In addition, the effect of bile acid treatment and polarizing culturing conditions on hepatic maturation has been assessed. We found that most transporter genes crucial for hepatic functions are markedly induced during hepatic differentiation; however, as regards the transporter composition the end-stage cells still exhibited dual, hepatocyte and cholangiocyte character. Although the bile acid treatment and sandwich culturing only slightly influenced the gene expressions, the stimulated cell polarization resulted in formation of bile canaliculi and proper localization of transporters. Our results point to the importance of membrane transporters in human stem cell-derived hepatic models and demonstrate the relevance of cell polarization in generation of applicable cellular models with correctly localized transporters. On the basis of our observations we suggest that conventional criteria for the evaluation of the quality of stem cell-derived hepatocyte-like cells ought to be augmented with additional elements, such as polarized and functional expression of hepatic transporters.
Collapse
Affiliation(s)
- György Török
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Zsuzsa Erdei
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Julianna Lilienberg
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Ágota Apáti
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - László Homolya
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
- * E-mail:
| |
Collapse
|
26
|
Lu X, Liu L, Shan W, Kong L, Chen N, Lou Y, Zeng S. The Role of the Sodium-taurocholate Co-transporting Polypeptide (NTCP) and Bile Salt Export Pump (BSEP) in Related Liver Disease. Curr Drug Metab 2019; 20:377-389. [PMID: 31258056 DOI: 10.2174/1389200220666190426152830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/10/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sodium Taurocholate Co-transporting Polypeptide (NTCP) and Bile Salt Export Pump (BSEP) play significant roles as membrane transporters because of their presence in the enterohepatic circulation of bile salts. They have emerged as promising drug targets in related liver disease. METHODS We reviewed the literature published over the last 20 years with a focus on NTCP and BSEP. RESULTS This review summarizes the current perception about structure, function, genetic variation, and regulation of NTCP and BSEP, highlights the effects of their defects in some hepatic disorders, and discusses the application prospect of new transcriptional activators in liver diseases. CONCLUSION NTCP and BSEP are important proteins for transportation and homeostasis maintenance of bile acids. Further research is needed to develop new models for determining the structure-function relationship of bile acid transporters and screening for substrates and inhibitors, as well as to gain more information about the regulatory genetic mechanisms involved in the processes of liver injury.
Collapse
Affiliation(s)
- Xiaoyang Lu
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Lin Liu
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Wenya Shan
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Limin Kong
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Na Chen
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Yan Lou
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| |
Collapse
|
27
|
Mózner O, Bartos Z, Zámbó B, Homolya L, Hegedűs T, Sarkadi B. Cellular Processing of the ABCG2 Transporter-Potential Effects on Gout and Drug Metabolism. Cells 2019; 8:E1215. [PMID: 31597297 PMCID: PMC6830335 DOI: 10.3390/cells8101215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
The human ABCG2 is an important plasma membrane multidrug transporter, involved in uric acid secretion, modulation of absorption of drugs, and in drug resistance of cancer cells. Variants of the ABCG2 transporter, affecting cellular processing and trafficking, have been shown to cause gout and increased drug toxicity. In this paper, we overview the key cellular pathways involved in the processing and trafficking of large membrane proteins, focusing on ABC transporters. We discuss the information available for disease-causing polymorphic variants and selected mutations of ABCG2, causing increased degradation and impaired travelling of the transporter to the plasma membrane. In addition, we provide a detailed in silico analysis of an as yet unrecognized loop region of the ABCG2 protein, in which a recently discovered mutation may actually promote ABCG2 membrane expression. We suggest that post-translational modifications in this unstructured loop at the cytoplasmic surface of the protein may have special influence on ABCG2 processing and trafficking.
Collapse
Affiliation(s)
- Orsolya Mózner
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Boglárka Zámbó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
28
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
29
|
In Vitro Evaluation of the Drug Interaction Potential of Doravirine. Antimicrob Agents Chemother 2019; 63:AAC.02492-18. [PMID: 30745395 DOI: 10.1128/aac.02492-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Doravirine is a novel nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus type 1 infection. In vitro studies were conducted to assess the potential for drug interactions with doravirine via major drug-metabolizing enzymes and transporters. Kinetic studies confirmed that cytochrome P450 3A (CYP3A) plays a major role in the metabolism of doravirine, with ∼20-fold-higher catalytic efficiency for CYP3A4 versus CYP3A5. Doravirine was not a substrate of breast cancer resistance protein (BCRP) and likely not a substrate of organic anion transporting polypeptide 1B1 (OATP1B1) or OATP1B3. Doravirine was not a reversible inhibitor of major CYP enzymes (CYP1A2, -2B6, -2C8, -2C9, -2C19, -2D6, and -3A4) or of UGT1A1, nor was it a time-dependent inhibitor of CYP3A4. No induction of CYP1A2 or -2B6 was observed in cultured human hepatocytes; small increases in CYP3A4 mRNA (≤20%) were reported at doravirine concentrations of ≥10 μM but with no corresponding increase in enzyme activity. In vitro transport studies indicated a low potential for interactions with substrates of BCRP, P-glycoprotein, OATP1B1 and OATP1B3, the bile salt extrusion pump (BSEP), organic anion transporter 1 (OAT1) and OAT3, organic cation transporter 2 (OCT2), and multidrug and toxin extrusion 1 (MATE1) and MATE2K proteins. In summary, these in vitro findings indicate that CYP3A4 and CYP3A5 mediate the metabolism of doravirine, although with different catalytic efficiencies. Clinical trials reported elsewhere confirm that doravirine is subject to drug-drug interactions (DDIs) via CYP3A inhibitors and inducers, but they support the notion that DDIs (either direction) are unlikely via other major drug-metabolizing enzymes and transporters.
Collapse
|
30
|
Schmid A, Schlegel J, Thomalla M, Karrasch T, Schäffler A. Evidence of functional bile acid signaling pathways in adipocytes. Mol Cell Endocrinol 2019; 483:1-10. [PMID: 30543876 DOI: 10.1016/j.mce.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM Bile acids (BA) are increasingly recognized as pleiotropic and hormone-like signaling molecules with metabolic and endocrine functions. However, the role of BA in white adipocyte physiology remains somewhat obscure. It was the aim to investigate the BA receptors (FXR, TGR5) and FGFR1 (Fibroblast growth factor receptor 1) as well as Bsep (bile salt export pump) in white adipocytes and in murine and human adipose tissue (AT) and to investigate effects of different BA species in adipocyte physiology. PATIENTS, MATERIAL AND METHODS Receptor mRNA expression was quantified by real-time PCR in mice, humans and during 3T3-L1 pre-adipocyte differentiation. Adipokines were measured by ELISA upon stimulation by several BA. Effects of BA on TNF- and LPS-induced MCP-1 secretion and lipolysis were analyzed. TNF-induced lipolysis was investigated by glycerol assay. RESULTS The present data provide for the first time a detailed expression profile of FXR, TGR5, FGFR1, and Bsep during adipocyte differentiation and in murine and human AT. FGFR1 expression is upregulated in adipose tissue of LPS-injected animals. Several BA regulate secretion of adipokines such as adiponectin and resistin differentially. Importantly, TNF- and LPS-induced MCP-1 release from adipocytes as well as TNF-induced lipolysis can be antagonized by cholic acid (CA) and deoxycholic acid (DCA). CONCLUSIONS The present data provide evidence of functional BA signaling pathways in adipocytes and argue for certain MCP-1 related anti-inflammatory effects of BA in TNF- and LPS-induced inflammation, whereas pro-inflammatory resistin is induced by CA and glycocholic acid (GCA). Systemic bile acids might represent a hormonal network regulating white adipocyte physiology including lipolysis.
Collapse
MESH Headings
- 3T3-L1 Cells
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- Adipocytes, White/cytology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Adipokines/metabolism
- Adult
- Animals
- Bile Acids and Salts/metabolism
- Cell Differentiation/drug effects
- Cells, Cultured
- Female
- Gene Expression Regulation/drug effects
- Humans
- Lipolysis/drug effects
- Lipopolysaccharides/adverse effects
- Male
- Mice
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
Collapse
Affiliation(s)
- Andreas Schmid
- Department of Internal Medicine III, Giessen University Hospital, Germany.
| | - Jutta Schlegel
- Department of Internal Medicine III, Giessen University Hospital, Germany
| | - Miriam Thomalla
- Department of Internal Medicine III, Giessen University Hospital, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III, Giessen University Hospital, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III, Giessen University Hospital, Germany
| |
Collapse
|
31
|
Jain S, Ecker GF. In Silico Approaches to Predict Drug-Transporter Interaction Profiles: Data Mining, Model Generation, and Link to Cholestasis. Methods Mol Biol 2019; 1981:383-396. [PMID: 31016669 DOI: 10.1007/978-1-4939-9420-5_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transport proteins play a crucial role in drug distribution, disposition, and clearance by mediating cellular drug influx and efflux. Inhibition of these transporters may lead to drug-drug interactions or even drug-induced liver injury, such as cholestasis, which comprises a major challenge in drug development process. Thus, computer-based (in silico) models that can predict the pharmacological and toxicological profiles of these small molecules with respect to liver transporters may help in the early prioritization of compounds and hence may lower the high attrition rates. In this chapter, we provide a protocol for in silico prediction of cholestasis by generating validated predictive models. In addition to the two-dimensional molecular descriptors, we include transporter inhibition predictions as descriptors and evaluate the influence of the same on the performance of the cholestasis models.
Collapse
Affiliation(s)
- Sankalp Jain
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria.
| |
Collapse
|
32
|
Abstract
Cholestasis is a condition that impairs bile flow, resulting in retention of bile fluid in the liver. It may cause significant morbidity and mortality due to pruritus, malnutrition, and complications from portal hypertension secondary to biliary cirrhosis. The zebrafish (Danio rerio) has emerged as a valuable model organism for studying cholestasis that complements with the in vitro systems and rodent models. Its main advantages include conserved mechanisms of liver development and bile formation, rapid external development, ease of monitoring hepatobiliary morphology and function in live larvae, and accessibility to genetic and chemical manipulations. In this chapter, we provide an overview of the existing zebrafish models of cholestatic liver diseases. We discuss the strengths and limitations of using zebrafish to study cholestasis. We also provide step-by-step descriptions of the methodologies for analyzing cholestatic phenotypes in zebrafish.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
33
|
Besheer T, Arafa M, El-Maksoud MA, Elalfy H, Hasson A, Zalata K, Elkashef W, Elshahawy H, Raafat D, Elemshaty W, Elsayed E, Zaghloul H, Razek AA, El-Bendary M. Diagnosis of cirrhosis in patients with chronic hepatitis C genotype 4: Role of ABCB11 genotype polymorphism and plasma bile acid levels. TURKISH JOURNAL OF GASTROENTEROLOGY 2018; 29:299-307. [PMID: 29755014 DOI: 10.5152/tjg.2018.17570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIMS Chronic hepatitis C (CHC)-related mortality generally results from cirrhosis and subsequent complications. We aimed to investigate the potential role of plasma bile acid levels and ABCB11 1331T > C (V444A, rs2287622) (ATP-binding cassette subfamily B, member 11) gene polymorphism in fibrosis prediction in CHC genotype 4 patients. MATERIALS AND METHODS This case control study included 85 healthy control and the following 225 subjects: 170 adult patients infected with hepatitis C virus (HCV) and categorized into three groups according to liver biopsy; no fibrosis group (F0) (n=33), early fibrosis group (F1-F2) (n=61), and advanced fibrosis group (F3-F4) (n=76). Fasting bile acid levels, hepatitis C virus (HCV) genotyping, and ABCB11 1331T > C gene polymorphism were assessed. RESULTS The frequency of the variant homozygote genotype CC in advanced fibrosis was significantly higher than that in early fibrosis (48.7% vs. 36.1%) (odd ratio, OR =2.58; 95% confidence interval, CI=1.07-6.20; p=0.03). C allele was significantly represented in advanced fibrosis (65.8%) compared with that in early fibrosis (51.6%) (OR=1.80, 95% CI=1.10-2.93, p=0.01). A significant elevation of plasma bile acid levels in advanced fibrosis was observed compared with those in early fibrosis (p≤0.001). Receiver operating characteristic curve for plasma bile acid levels at cutoff value of 75.5 μmol/L had a 59% specificity and 97.4% sensitivity as a predictor of advanced hepatic fibrosis (AUROC=0.78%). CONCLUSION We concluded that Egyptian patients having chronic hepatitis C genotype 4 with CC genotype of ABCB11 SNP 1331T > C and high plasma bile acid levels at cutoff value of 75.5 μmol/L were associated with advanced hepatic fibrosis.
Collapse
Affiliation(s)
- Tarek Besheer
- Department of Tropical Medicine, Mansoura University, Mansoura, Egypt
| | - Mona Arafa
- Department of Tropical Medicine, Mansoura University, Mansoura, Egypt
| | | | - Hatem Elalfy
- Department of Tropical Medicine, Mansoura University, Mansoura, Egypt
| | - Amany Hasson
- Department of Tropical Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled Zalata
- Department of Pathology, Mansoura University, Mansoura, Egypt
| | - Wagdi Elkashef
- Department of Pathology, Mansoura University, Mansoura, Egypt
| | - Heba Elshahawy
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Doaa Raafat
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Wafaa Elemshaty
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Eman Elsayed
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Hosam Zaghloul
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Ahmed Abdel Razek
- Department of Diagnostic Radiology, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
34
|
Humbert L, Rainteau D, Tuvignon N, Wolf C, Seksik P, Laugier R, Carrière F. Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. J Lipid Res 2018; 59:2202-2213. [PMID: 30206181 DOI: 10.1194/jlr.m084830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Bile acid (BA) secretion and circulation in chronic pancreatitis (CP) patients with exocrine pancreatic insufficiency (EPI) were investigated by simultaneously measuring postprandial levels of individual BAs in duodenal contents and blood plasma using LC-MS/MS. CP patients and healthy volunteers (HVs) were intubated with gastric and duodenal tubes prior to the administration of a test meal and continuous aspiration of duodenal contents. Pancreatic lipase outputs in CP patients were very low (0.7 ± 0.2 mg) versus HVs (116.7 ± 68.1 mg; P < 0.005), thus confirming the severity of EPI. Duodenal BA outputs were reduced in CP patients (1.00 ± 0.89 mmol; 0.47 ± 0.42 g) versus HVs (5.52 ± 4.53 mmol; 2.62 ± 2.14 g; P < 0.15). Primary to secondary BA ratio was considerably higher in CP patients (38.09 ± 48.1) than HVs (4.15 ± 2.37; P < 0.15), indicating an impaired transformation of BAs by gut microbiota. BA concentrations were found below the critical micellar concentration in CP patients, while a high BA concentration peak corresponding to gallbladder emptying was evidenced in HVs. Conversely, BA plasma concentration was increased in CP patients versus HVs suggesting a cholangiohepatic shunt of BA secretion. Alterations of BA circulation and levels may result from the main biliary duct stenosis observed in these CP patients and may aggravate the consequences of EPI on lipid malabsorption.
Collapse
Affiliation(s)
- Lydie Humbert
- Sorbonne Universités, UPMC, INSERM ERL1157, CNRS UMR 7203 LBM, CHU Saint Antoine, Paris, France
| | - Dominique Rainteau
- Sorbonne Universités, UPMC, INSERM ERL1157, CNRS UMR 7203 LBM, CHU Saint Antoine, Paris, France .,Assistance Publique-Hôpitaux de Paris, PM2 Peptidomique and Métabolomique Hôpital Saint Antoine, Paris, France
| | - Noshine Tuvignon
- CNRS, Aix-Marseille Université, UMR 7281 Bioénergétique et Ingénerie des Protéines, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Service d'Hépato-gastroentérologie, Hôpital de la Timone, Marseille, France
| | | | - Philippe Seksik
- Sorbonne Universités, UPMC, INSERM ERL1157, CNRS UMR 7203 LBM, CHU Saint Antoine, Paris, France.,Service d'Hépato-gastroentérologie, Hôpital Saint Antoine, Paris, France
| | - René Laugier
- CNRS, Aix-Marseille Université, UMR 7281 Bioénergétique et Ingénerie des Protéines, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Service d'Hépato-gastroentérologie, Hôpital de la Timone, Marseille, France
| | - Frédéric Carrière
- CNRS, Aix-Marseille Université, UMR 7281 Bioénergétique et Ingénerie des Protéines, Marseille, France
| |
Collapse
|
35
|
Petrov PD, Fernández-Murga ML, López-Riera M, Goméz-Lechón MJ, Castell JV, Jover R. Predicting drug-induced cholestasis: preclinical models. Expert Opin Drug Metab Toxicol 2018; 14:721-738. [PMID: 29888962 DOI: 10.1080/17425255.2018.1487399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and can widely be classified in experimental animals and in vitro models. Expert opinion: Drugs are a growing cause of cholestasis, but the progress made in explaining mechanisms and differences in susceptibility is not growing at the same rate. We need reliable models able to recapitulate the features of DIC, particularly its idiosyncrasy. The homogeneity and the species-specific differences move animal models away from a fair predictability. However, in vitro human models are improving and getting closer to the real hepatocyte phenotype, and they will likely be the choice in the near future. Progress in this area will not only need reliable predictive models but also mechanistic insights.
Collapse
Affiliation(s)
- Petar D Petrov
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - M Leonor Fernández-Murga
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - Mireia López-Riera
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - M José Goméz-Lechón
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Jose V Castell
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| | - Ramiro Jover
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
36
|
Ellis JL, Bove KE, Schuetz EG, Leino D, Valencia CA, Schuetz JD, Miethke A, Yin C. Zebrafish abcb11b mutant reveals strategies to restore bile excretion impaired by bile salt export pump deficiency. Hepatology 2018; 67:1531-1545. [PMID: 29091294 PMCID: PMC6480337 DOI: 10.1002/hep.29632] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
UNLABELLED Bile salt export pump (BSEP) adenosine triphosphate-binding cassette B11 (ABCB11) is a liver-specific ABC transporter that mediates canalicular bile salt excretion from hepatocytes. Human mutations in ABCB11 cause progressive familial intrahepatic cholestasis type 2. Although over 150 ABCB11 variants have been reported, our understanding of their biological consequences is limited by the lack of an experimental model that recapitulates the patient phenotypes. We applied CRISPR/Cas9-based genome editing technology to knock out abcb11b, the ortholog of human ABCB11, in zebrafish and found that these mutants died prematurely. Histological and ultrastructural analyses showed that abcb11b mutant zebrafish exhibited hepatocyte injury similar to that seen in patients with progressive familial intrahepatic cholestasis type 2. Hepatocytes of mutant zebrafish failed to excrete the fluorescently tagged bile acid that is a substrate of human BSEP. Multidrug resistance protein 1, which is thought to play a compensatory role in Abcb11 knockout mice, was mislocalized to the hepatocyte cytoplasm in abcb11b mutant zebrafish and in a patient lacking BSEP protein due to nonsense mutations in ABCB11. We discovered that BSEP deficiency induced autophagy in both human and zebrafish hepatocytes. Treatment with rapamycin restored bile acid excretion, attenuated hepatocyte damage, and extended the life span of abcb11b mutant zebrafish, correlating with the recovery of canalicular multidrug resistance protein 1 localization. CONCLUSIONS Collectively, these data suggest a model that rapamycin rescues BSEP-deficient phenotypes by prompting alternative transporters to excrete bile salts; multidrug resistance protein 1 is a candidate for such an alternative transporter. (Hepatology 2018;67:1531-1545).
Collapse
Affiliation(s)
- Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin E. Bove
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Erin G. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daniel Leino
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - C. Alexander Valencia
- Program and Division of Human Genetics, Molecular Genetics Laboratory, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alexander Miethke
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Wu G, Wen M, Sun L, Li H, Liu Y, Li R, Wu F, Yang R, Lin Y. Mechanistic insights into geniposide regulation of bile salt export pump (BSEP) expression. RSC Adv 2018; 8:37117-37128. [PMID: 35557817 PMCID: PMC9089303 DOI: 10.1039/c8ra06345a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Geniposide (GE) is a major component isolated from Gardenia jasminoides Ellis, which has been used to treat cholestasis liver diseases. Our previous study has shown that GE could notably increase mRNA and protein expressions of BSEP in cholestatic rats. BSEP plays a critical role in maintenance of the enterohepatic circulation of bile acids. BSEP could be regulated by the transactivation pathway of farnesoid X receptor (FXR) and nuclear factor erythroid 2-related factor (Nrf2). Here the mechanisms for BSEP regulation by GE were investigated. GE induced the mRNA levels of BSEP in HepG2 cells and cholestatic mice, and knockdown of FXR and Nrf2 reduced the mRNA expression of BSEP at varying degrees after treatment of GE. FXR acts as the major regulator of BSEP transcription. The involvement of FXR regulated BSEP expression by GE was further investigated. An enhancement was observed in FXR-dependent BSEP promoter activation using luciferase assay. ChIP assay further confirmed the interaction between FXR and BSEP after GE treatment. Using siRNA and ChIP assays, we demonstrated that peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α) and co-activator-associated arginine methyltransferase 1 (CARM1) were predominantly recruited to the BSEP promoter upon FXR activation by GE. In conclusion, GE regulated the expression of BSEP through FXR and Nrf2 signaling pathway. The FXR transactivation pathway was enhanced by increasing recruitment of coactivators PGC-1α and CARM1 upon GE treatment, coupled with an increased binding of FXR to the BSEP promoter. PGC-1α and CARM1 interact with FXR to increase FXR-dependent BSEP expression upon GE treatment.![]()
Collapse
Affiliation(s)
- Guixin Wu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Min Wen
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Lin Sun
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Huitao Li
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Yubei Liu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Rui Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Rong Yang
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Yining Lin
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| |
Collapse
|
38
|
Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model. Sci Rep 2016; 6:38694. [PMID: 27934920 PMCID: PMC5146671 DOI: 10.1038/srep38694] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-induced cholestasis is a leading cause of drug withdrawal. However, the use of primary human hepatocytes (PHHs), the gold standard for predicting cholestasis in vitro, is limited by their high cost and batch-to-batch variability. Mature hepatocyte characteristics have been observed in human induced hepatocytes (hiHeps) derived from human fibroblast transdifferentiation. Here, we evaluated whether hiHeps could biosynthesize and excrete bile acids (BAs) and their potential as PHH alternatives for cholestasis investigations. Quantitative real-time PCR (qRT-PCR) and western blotting indicated that hiHeps highly expressed BA synthases and functional transporters. Liquid chromatography tandem mass spectrometry (LC-MS/MS) showed that hiHeps produced normal intercellular unconjugated BAs but fewer conjugated BAs than human hepatocytes. When incubated with representative cholestatic agents, hiHeps exhibited sensitive drug-induced bile salt export pump (BSEP) dysfunction, and their response to cholestatic agent-mediated cytotoxicity correlated well with that of PHHs (r2 = 0.8032). Deoxycholic acid (DCA)-induced hepatotoxicity in hiHeps was verified by elevated aspartate aminotransferase (AST) and γ-glutamyl-transferase (γ-GT) levels. Mitochondrial damage and cell death suggested DCA-induced toxicity in hiHeps, which were attenuated by hepatoprotective drugs, as in PHHs. For the first time, hiHeps were reported to biosynthesize and excrete BAs, which could facilitate predicting cholestatic hepatotoxicity and screening potential therapeutic drugs against cholestasis.
Collapse
|