1
|
Ahnaou A, Broadbelt T, Biermans R, Huysmans H, Manyakov NV, Drinkenburg WHIM. The phosphodiesterase-4 and glycine transporter-1 inhibitors enhance in vivo hippocampal theta network connectivity and synaptic plasticity, whereas D-serine does not. Transl Psychiatry 2020; 10:197. [PMID: 32555167 PMCID: PMC7303193 DOI: 10.1038/s41398-020-00875-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Dysfunctional N-methyl-D-aspartate receptors (NMDARs) and cyclic adenosine monophosphate (cAMP) have been associated with deficits in synaptic plasticity and cognition found in neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Therapeutic approaches that indirectly enhance NMDAR function through increases in glycine and/or D-serine levels as well as inhibition of phosphodiesterases that reduces degradation of cAMP, are expected to enhance synaptic strength, connectivity and to potentially impact cognition processes. The present in vivo study investigated effects of subcutaneous administration of D-serine, the glycine transporter 1 (GlyT1) inhibitor SSR504734 and the PDE4 inhibitor rolipram, on network oscillations, connectivity and long-term potentiation (LTP) at the hippocampi circuits in Sprague-Dawley rats. In conscious animals, multichannel EEG recordings assessed network oscillations and connectivity at frontal and hippocampal CA1-CA3 circuits. Under urethane anaesthesia, field excitatory postsynaptic potentials (fEPSPs) were measured in the CA1 subfield of the hippocampus after high-frequency stimulation (HFS) of the Schaffer collateral-CA1 (SC) pathway. SSR504734 and rolipram significantly increased slow theta oscillations (4-6.5 Hz) at the CA1-CA3, slow gamma oscillations (30-50 Hz) in the frontal areas and enhanced coherence in the CA1-CA3 network, which were dissociated from motor behaviour. SSR504734 enhanced short-term potentiation (STP) and fEPSP responses were extended into LTP response, whereas the potentiation of EPSP slope was short-lived to STP with rolipram. Unlike glycine, increased levels of D-serine had no effect on network oscillations and limits the LTP induction and expression. The present data support a facilitating role of glycine and cAMP on network oscillations and synaptic efficacy at the CA3-CA1 circuit in rats, whereas raising endogenous D-serine levels had no such beneficial effects.
Collapse
Affiliation(s)
- A. Ahnaou
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - T. Broadbelt
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - R. Biermans
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - H. Huysmans
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - N. V. Manyakov
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - W. H. I. M. Drinkenburg
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
2
|
Effect of Temperature on Drug Release: Production of 5-FU-Encapsulated Hydroxyapatite-Gelatin Polymer Composites via Spray Drying and Analysis of In Vitro Kinetics. INT J POLYM SCI 2020. [DOI: 10.1155/2020/8017035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study, 5-fluorouracil- (5-FU-) loaded hydroxyapatite-gelatin (HAp-GEL) polymer composites were produced in the presence of a simulated body fluid (SBF) to investigate the effects of temperature and cross-linking agents on drug release. The composites were produced by wet precipitation at pH 7.4 and temperature 37°C using glutaraldehyde (GA) as the cross-linker. The effects of different amounts of glutaraldehyde on drug release profiles were studied. Encapsulation (drug loading) was performed with 5-FU using a spray drier, and the drug release of 5-FU from the HAp-GEL composites was determined at temperatures of 32°C, 37°C, and 42°C. Different mathematical models were used to obtain the release mechanism of the drug. The morphologies and structures of the composites were analyzed by X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results demonstrated that for the HAp-GEL composites, the initial burst decreased with increasing GA content at all three studied temperatures. Further, three kinetic models were investigated, and it was determined that all the composites best fit the Higuchi model. It was concluded that the drug-loaded HAp-GEL composites have the potential to be used in drug delivery applications.
Collapse
|
3
|
Chen YS, Tu YC, Lai YC, Liu E, Yang YC, Kuo CC. Desensitization of NMDA channels requires ligand binding to both GluN1 and GluN2 subunits to constrict the pore beside the activation gate. J Neurochem 2019; 153:549-566. [PMID: 31821563 DOI: 10.1111/jnc.14939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor channels are activated by glutamate (or NMDA) and glycine. The channels also undergo desensitization, which denotes decreased channel availability, after prolonged exposure to the activating ligands. Glycine apparently has a paradoxical negative effect on desensitization, as the increase in ambient glycine in concentrations required for channel activation would increase sustained NMDA receptor currents. We hypothesized that this classical "glycine-dependent desensitization" could be glycine-dependent activation in essence. By performing electrophysiological recordings and biophysical analyses with rat brain NMDA receptors heterogeneously expressed in Xenopus laevis oocytes, we characterized that the channel opened by "only" NMDA (in nominally glycine-free condition probably with the inevitable nanomolar glycine) would undergo a novel form of deactivation rather than desensitization, and is thus fully available for subsequent activation. Moreover, external tetrapentylammonium ions (TPentA), tetrabutylammonium ions, and tetrapropylammonium ions (TPA, in higher concentrations) block the pore and prohibit channel desensitization with a simple "foot-in-the-door" hindrance effect. TpentA and TPA have the same voltage dependence but show different flow dependence in binding affinity, revealing a common binding site at an electrical distance of ~0.7 from the outside yet differential involvement of the flux-coupling region in the external pore mouth. The smaller tetraethylammonium ion and the larger tetrahexylammonium and tetraheptylammonium ions may block the channel but could not affect desensitization. We conclude that NMDA receptor desensitization requires concomitant binding of both glycine and glutamate, and thus movement of both GluN1 and GluN2 subunits. Desensitization gate itself embodies a highly restricted pore reduction with a physical distance of ~4 Å from the charged nitrogen atom of bound tetraalkylammonium ions, and is located very close to the activation gate in the bundle-crossing region in the external pore vestibule.
Collapse
Affiliation(s)
- Yu-Shian Chen
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Chi Tu
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Erin Liu
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Gur M, Golcuk M, Yilmaz SZ, Taka E. Thermodynamic first law efficiency of membrane proteins. J Biomol Struct Dyn 2019; 38:439-449. [PMID: 30727820 DOI: 10.1080/07391102.2019.1577759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proteins are nature's biomolecular machines. Proteins, such as transporters, pumps and motors, have complex function/operating-machinery/mechanisms, comparable to the macro-scaled machines that we encounter in our daily life. These proteins, as it is for their macro-scaled counterparts, convert (part of) other/various forms of energy into work. In this study, we are performing the first law analysis on a set of proteins, including the dopamine transporter, glycine transporters I and II, glutamate transporter, sodium-potassium pump and Ca2+ ATPase. Each of these proteins operates on a thermodynamic/mechanic cycle to perform their function. In each of these cycles, they receive energy from a source, convert part of this energy into work and reject the remaining part of the energy to the environment. Conservation of energy principle was applied to the thermodynamic/mechanic cycle of each protein, and thermodynamic first law efficiency was evaluated for each cycle, which shows how much of the energy input per cycle was converted into useful work. Interestingly, calculations based on experimental data indicate that proteins can operate under a range of efficiencies, which vary based on the extracellular and intracellular ion and substrate concentrations. The lowest observed first law efficiency was 50%, which is a very high value if compared to the efficiency of the macro-scaled heat engines we encounter in our daily lives.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University (ITU), Istanbul, Turkey
| | - Mert Golcuk
- Department of Mechanical Engineering, Istanbul Technical University (ITU), Istanbul, Turkey
| | - Sema Zeynep Yilmaz
- Department of Mechanical Engineering, Istanbul Technical University (ITU), Istanbul, Turkey
| | - Elhan Taka
- Department of Mechanical Engineering, Istanbul Technical University (ITU), Istanbul, Turkey
| |
Collapse
|
5
|
Santora VJ, Almos TA, Barido R, Basinger J, Bellows CL, Bookser BC, Breitenbucher JG, Broadbent NJ, Cabebe C, Chai CK, Chen M, Chow S, Chung DM, Crickard L, Danks AM, Freestone GC, Gitnick D, Gupta V, Hoffmaster C, Hudson AR, Kaplan AP, Kennedy MR, Lee D, Limberis J, Ly K, Mak CC, Masatsugu B, Morse AC, Na J, Neul D, Nikpur J, Peters M, Petroski RE, Renick J, Sebring K, Sevidal S, Tabatabaei A, Wen J, Yan Y, Yoder ZW, Zook D. Design and Synthesis of Novel and Selective Glycine Transporter-1 (GlyT1) Inhibitors with Memory Enhancing Properties. J Med Chem 2018; 61:6018-6033. [DOI: 10.1021/acs.jmedchem.8b00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vincent J. Santora
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Theresa A. Almos
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Richard Barido
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Jillian Basinger
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Chris L. Bellows
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Brett C. Bookser
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - J. Guy Breitenbucher
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Nicola J. Broadbent
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Clifford Cabebe
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Chih-Kun Chai
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Mi Chen
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Stephine Chow
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - De Michael Chung
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Lindsay Crickard
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Anne M. Danks
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Graeme C. Freestone
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Dany Gitnick
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Varsha Gupta
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Christine Hoffmaster
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Andrew R. Hudson
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Alan P. Kaplan
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Michael R. Kennedy
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Dong Lee
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - James Limberis
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Kiev Ly
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Chi Ching Mak
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Brittany Masatsugu
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Andrew C. Morse
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Jim Na
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - David Neul
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - John Nikpur
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Marco Peters
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Robert E. Petroski
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Joel Renick
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Kristen Sebring
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Samantha Sevidal
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Ali Tabatabaei
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Jenny Wen
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Yingzhuo Yan
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Zachary W. Yoder
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Douglas Zook
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| |
Collapse
|
6
|
Basargan T, Erdol-Aydin N, Nasun-Saygili G. Hydroxyapatite-chitosan biocomposites synthesized in the simulated body fluid and their drug loading studies. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:180. [PMID: 28986683 DOI: 10.1007/s10856-017-5961-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Hydroxyapatite (HAp) is a bioceramic applied in the biomedical areas, such as matrices for drug release control. Chitosan (CTS), a natural polymer, is another material has been widely investigated for its potential use in the drug delivery systems. In this study, the composites of HAp-CTS are produced in order to investigate their drug loading and release studies. First of all, HAp-CTS composites are produced in the presence of simulated body fluid (SBF). Analysis confirmed the structure of HAp-CTS composites. Secondly, composites are encapsulated with 5-Fluorouracil (5-FU). The weight ratio of CTS is varied to realize its effect on drug loading of 5-Fluorouracil, a cancer drug, for the ratios of 1:1, 1:2 and 1:4 of HAp-CTS. The weight ratio giving the greatest drug load efficiency is selected for the last step of the study. Crosslinking agent, glutaraldehyde, are changed from 0 to 5% on the selected sample, then, drug loading is examined again in various environment owing different pH. Furthermore, drug release studies are conducted. To understand the structure and morphology of the samples, XRD, FTIR, SEM and Uv-Spectrum are applied. It is observed that weight ratio of polymer and crosslinking agent can be manipulated to adjust drug loading. Release kinetics are shown the Fickian diffusion. This new produced material can be applicable for drug delivery.
Collapse
Affiliation(s)
- Tugba Basargan
- Chemical Engineering Department, Istanbul Technical University, ITU Ayazaga Kampusu, Maslak, Istanbul, 34469, Turkey.
| | - Nalan Erdol-Aydin
- Chemical Engineering Department, Istanbul Technical University, ITU Ayazaga Kampusu, Maslak, Istanbul, 34469, Turkey
| | - Gulhayat Nasun-Saygili
- Chemical Engineering Department, Istanbul Technical University, ITU Ayazaga Kampusu, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
7
|
Dunayevich E, Buchanan RW, Chen CY, Yang J, Nilsen J, Dietrich JM, Sun H, Marder S. Efficacy and safety of the glycine transporter type-1 inhibitor AMG 747 for the treatment of negative symptoms associated with schizophrenia. Schizophr Res 2017; 182:90-97. [PMID: 27789188 DOI: 10.1016/j.schres.2016.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine the safety and efficacy of AMG 747, an oral inhibitor of glycine transporter type-1 (GlyT1), as an add-on to antipsychotic therapy in clinically stable people with schizophrenia with enduring negative symptoms. METHOD Analysis of pooled data from two phase 2 studies. Adults diagnosed with schizophrenia stabilized on antipsychotic medication randomized (2:2:2:3) to orally receive daily AMG 747 (5mg, 15mg, or 40mg) or placebo. Primary endpoint was Negative Symptom Assessment (NSA)-16 total score change from baseline to week 12. RESULTS Studies were terminated early after a report of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) in one participant (40-mg AMG 747). At termination, 232 participants had enrolled and 153 completed 12weeks of treatment. At week 12, change from baseline NSA-16 total score showed no differences between groups. Mean decrease in Positive and Negative Syndrome Scale (PANSS) Negative Symptom Factor Score (NSFS) and NSA-16 global score were greater with 15-mg AMG 747 than placebo (p<0.05). Changes in PANSS-Positive Symptom Factor Scale were not significantly different for any group. Changes in patient-reported outcomes (Sheehan Disability Scale and Quality of Life Enjoyment and Satisfaction Questionnaire) showed trends consistent with greater efficacy of 15-mg AMG 747 compared with placebo (p≤0.1). Adverse event rates were similar among all groups, with no clear differences observed. CONCLUSIONS Significant treatment effects of 15-mg AMG 747, but not higher or lower doses, were observed on secondary endpoints but not on the primary outcome. These results replicate previous reports of an inverted-U dose response curve and suggest further evaluation of GlyT1 inhibitors in schizophrenia negative symptoms is warranted. TRIAL REGISTRATION Clinicaltrials.govNCT01568216 (https://clinicaltrials.gov/ct2/show/NCT01568216) and NCT01568229 (https://clinicaltrials.gov/ct2/show/NCT01568229?term=NCT01568229&rank=1); EudraCT number 2011-004844-23 and 2011-004845-42.
Collapse
Affiliation(s)
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Jun Yang
- Amgen Inc., Thousand Oaks, CA, United States
| | - Jon Nilsen
- Amgen Inc., Thousand Oaks, CA, United States
| | | | - Hong Sun
- Amgen Inc., Thousand Oaks, CA, United States
| | - Stephen Marder
- Semel Institute for Neuroscience at UCLA, Los Angeles, CA, United States; VA Desert Pacific Mental Illness Research, Education, and Clinical Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Wellendorph P, Jacobsen J, Skovgaard-Petersen J, Jurik A, Vogensen SB, Ecker G, Schousboe A, Krogsgaard-Larsen P, Clausen RP. γ-Aminobutyric Acid and Glycine Neurotransmitter Transporters. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527679430.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petrine Wellendorph
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Julie Jacobsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Jonas Skovgaard-Petersen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Andreas Jurik
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Stine B. Vogensen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Gerhard Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Arne Schousboe
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Povl Krogsgaard-Larsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Rasmus P. Clausen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| |
Collapse
|
9
|
Protons Potentiate GluN1/GluN3A Currents by Attenuating Their Desensitisation. Sci Rep 2016; 6:23344. [PMID: 27000430 PMCID: PMC4802338 DOI: 10.1038/srep23344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/03/2016] [Indexed: 12/04/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are glutamate- and glycine-gated channels composed of two GluN1 and two GluN2 or/and GluN3 subunits. GluN3A expression is developmentally regulated, and changes in this normal pattern of expression, which occur in several brain disorders, alter synaptic maturation and function by unknown mechanisms. Uniquely within the NMDA receptor family, GluN1/GluN3 receptors produce glycine-gated deeply desensitising currents that are insensitive to glutamate and NMDA; these currents remain poorly characterised and their cellular functions are unknown. Here, we show that extracellular acidification strongly potentiated glycine-gated currents from recombinant GluN1/GluN3A receptors, with half-maximal effect in the physiologic pH range. This was largely due to slower current desensitisation and faster current recovery from desensitisation, and was mediated by residues facing the heterodimer interface of the ligand-binding domain. Consistent with the observed changes in desensitisation kinetics, acidic shifts increased the GluN1/GluN3A equilibrium current and depolarized the membrane in a glycine concentration-dependent manner. These results reveal novel modulatory mechanisms for GluN1/GluN3A receptors that further differentiate them from the canonical glutamatergic GluN1/GluN2 receptors and provide a new and potent pharmacologic tool to assist the detection, identification, and the further study of GluN1/GluN3A currents in native preparations.
Collapse
|
10
|
Cummings KA, Popescu GK. Glycine-dependent activation of NMDA receptors. ACTA ACUST UNITED AC 2015; 145:513-27. [PMID: 25964432 PMCID: PMC4442789 DOI: 10.1085/jgp.201411302] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/14/2015] [Indexed: 12/24/2022]
Abstract
Results from single-molecule and macroscopic electrophysiology and kinetic analysis provide a model for activation of the glutamate-bound NMDA receptor by glycine. N-methyl-d-aspartate (NMDA) receptors are the only neurotransmitter receptors whose activation requires two distinct agonists. Heterotetramers of two GluN1 and two GluN2 subunits, NMDA receptors are broadly distributed in the central nervous system, where they mediate excitatory currents in response to synaptic glutamate release. Pore opening depends on the concurrent presence of glycine, which modulates the amplitude and time course of the glutamate-elicited response. Gating schemes for fully glutamate- and glycine-bound NMDA receptors have been described in sufficient detail to bridge the gap between microscopic and macroscopic receptor behaviors; for several receptor isoforms, these schemes include glutamate-binding steps. We examined currents recorded from cell-attached patches containing one GluN1/GluN2A receptor in the presence of several glycine-site agonists and used kinetic modeling of these data to develop reaction schemes that include explicit glycine-binding steps. Based on the ability to match a series of experimentally observed macroscopic behaviors, we propose a model for activation of the glutamate-bound NMDA receptor by glycine that predicts apparent negative agonist cooperativity and glycine-dependent desensitization in the absence of changes in microscopic binding or desensitization rate constants. These results complete the basic steps of an NMDA receptor reaction scheme for the GluN1/GluN2A isoform and prompt a reevaluation of how glycine controls NMDA receptor activation. We anticipate that our model will provide a useful quantitative instrument to further probe mechanisms and structure–function relationships of NMDA receptors and to better understand the physiological and pathological implications of endogenous fluctuations in extracellular glycine concentrations.
Collapse
Affiliation(s)
- Kirstie A Cummings
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Gabriela K Popescu
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| |
Collapse
|
11
|
mGluR5 positive allosteric modulation and its effects on MK-801 induced set-shifting impairments in a rat operant delayed matching/non-matching-to-sample task. Psychopharmacology (Berl) 2015; 232:251-8. [PMID: 24973895 PMCID: PMC4278949 DOI: 10.1007/s00213-014-3653-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Positive allosteric modulators (PAMs) of type 5 metabotropic glutamate receptors (mGluR5) exert pro-cognitive effects in animal models of various neuropsychiatric diseases. However, few studies to date have examined ability of mGluR5 PAMs to reverse cognitive deficits in operant delayed matching/non-matching-to-sample (DMS/DNMS) tasks. OBJECTIVES This study aims to determine the ability of the mGluR5 PAM 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) to reverse set-shifting deficits induced by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. METHODS Male Sprague-Dawley rats were initially trained to lever press for sucrose reinforcement under either DMS or DNMS conditions. Following successful acquisition of the task, reinforcement conditions were reversed (DNMS → DMS or DMS → DNMS). In Experiment 1, rats were treated daily prior to each session with vehicle/vehicle, vehicle/MK-801 (0.06 mg/kg) simultaneously, CDPPB (20 mg/kg)/MK-801 simultaneously, or CDPPB 30 min prior to MK-801. In Experiment 2, rats were treated with either vehicle/vehicle, vehicle/MK-801, or CDPPB 30 min prior to MK-801 only prior to sessions that followed task reversal. RESULTS In Experiment 1, no group differences in initial task acquisition were observed. Rats treated with vehicle/MK-801 showed significant set-shifting impairments following task reversal, which were partially attenuated by simultaneous administration of CDPPB/MK-801 and completely precluded by administration of CDPPB 30 min prior to MK-801. In Experiment 2, MK-801 did not impair reversal learning, and no other group differences were observed. CONCLUSIONS MK-801-induced deficits in operant set-shifting ability were prevented by pretreatment with CDPPB. MK-801 did not produce deficits in task learning when treatment was initiated following task reversal.
Collapse
|
12
|
Salling MC, Harrison NL. Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated. J Neurophysiol 2014; 112:1169-78. [PMID: 24872538 DOI: 10.1152/jn.00714.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Processing of signals within the cerebral cortex requires integration of synaptic inputs and a coordination between excitatory and inhibitory neurotransmission. In addition to the classic form of synaptic inhibition, another important mechanism that can regulate neuronal excitability is tonic inhibition via sustained activation of receptors by ambient levels of inhibitory neurotransmitter, usually GABA. The purpose of this study was to determine whether this occurs in layer II/III pyramidal neurons (PNs) in the prelimbic region of the mouse medial prefrontal cortex (mPFC). We found that these neurons respond to exogenous GABA and to the α4δ-containing GABAA receptor (GABA(A)R)-selective agonist gaboxadol, consistent with the presence of extrasynaptic GABA(A)R populations. Spontaneous and miniature synaptic currents were blocked by the GABA(A)R antagonist gabazine and had fast decay kinetics, consistent with typical synaptic GABA(A)Rs. Very few layer II/III neurons showed a baseline current shift in response to gabazine, but almost all showed a current shift (15-25 pA) in response to picrotoxin. In addition to being a noncompetitive antagonist at GABA(A)Rs, picrotoxin also blocks homomeric glycine receptors (GlyRs). Application of the GlyR antagonist strychnine caused a modest but consistent shift (∼15 pA) in membrane current, without affecting spontaneous synaptic events, consistent with the tonic activation of GlyRs. Further investigation showed that these neurons respond in a concentration-dependent manner to glycine and taurine. Inhibition of glycine transporter 1 (GlyT1) with sarcosine resulted in an inward current and an increase of the strychnine-sensitive current. Our data demonstrate the existence of functional GlyRs in layer II/III of the mPFC and a role for these receptors in tonic inhibition that can have an important influence on mPFC excitability and signal processing.
Collapse
Affiliation(s)
- Michael C Salling
- Department of Anesthesiology, Columbia University Medical Center, New York, New York;
| | - Neil L Harrison
- Department of Anesthesiology, Columbia University Medical Center, New York, New York; Department of Pharmacology, Columbia University, New York, New York
| |
Collapse
|
13
|
Carland JE, Mansfield RE, Ryan RM, Vandenberg RJ. Oleoyl-L-carnitine inhibits glycine transport by GlyT2. Br J Pharmacol 2013; 168:891-902. [PMID: 22978602 DOI: 10.1111/j.1476-5381.2012.02213.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/27/2012] [Accepted: 09/03/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Concentrations of extracellular glycine in the CNS are regulated by two Na(+)/Cl(-) -dependent glycine transporters, GlyT1 and GlyT2. Selective inhibitors of GlyT1 have been developed for the treatment of schizophrenia, whilst selective inhibitors of GlyT2 are analgesic in animal models of pain. We have assessed a series of endogenous lipids as inhibitors of GlyT1 and GlyT2. EXPERIMENTAL APPROACH Human GlyT1 and GlyT2 were expressed in Xenopus laevis oocytes, and the inhibitory actions of a series of acylcarnitines on glycine transport were measured using electrophysiological techniques. KEY RESULTS Oleoyl-L-carnitine inhibited glycine transport by GlyT2, with an IC(50) of 340 nM, which is 15-fold more potent than the previously identified lipid inhibitor N-arachidonyl-glycine. Oleoyl-L-carnitine had a slow onset of inhibition and a slow washout. Using a series of chimeric GlyT1/2 transporters and point mutant transporters, we have identified an isoleucine residue in extracellular loop 4 of GlyT2 that conferred differences in sensitivity to oleoyl-L-carnitine between GlyT2 and GlyT1. CONCLUSIONS AND IMPLICATIONS Oleoyl-L-carnitine is a potent non-competitive inhibitor of GlyT2. Previously identified GlyT2 inhibitors show potential as analgesics and the identification of oleoyl-L-carnitine as a novel GlyT2 inhibitor may lead to new ways of treating pain.
Collapse
Affiliation(s)
- J E Carland
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
14
|
Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters. Brain Res Bull 2012; 93:110-9. [PMID: 23266673 DOI: 10.1016/j.brainresbull.2012.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic and non-synaptic N-methyl-D-aspartate receptors mediate different neural functions, many of which are not clearly defined at present. Non-synaptic glycine transporter-1 and its blockade by inhibitory drugs may be important in drug therapy interventions, such as for reducing negative symptoms of schizophrenia.
Collapse
|
15
|
Zhang J, Wu J, Toyohara J, Fujita Y, Chen H, Hashimoto K. Pharmacological characterization of [³H]CHIBA-3007 binding to glycine transporter 1 in the rat brain. PLoS One 2011; 6:e21322. [PMID: 21731704 PMCID: PMC3121759 DOI: 10.1371/journal.pone.0021322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/24/2011] [Indexed: 01/28/2023] Open
Abstract
Glycine transporter-1 (GlyT-1) in glial cells regulates extracellular levels of glycine, which acts as an obligatory co-agonist at the N-methyl-D-aspartate (NMDA) receptors in the brain. In the present study, we developed a novel radioligand, [³H]3-chloro-N-((S)-((R)-1-methylpiperidin-2-yl)(thiophen- 3-yl)methyl)-4- (trifluoromethyl)picolinamide ([³H]CHIBA-3007), for studying GlyT-1 in the brain. The presence of a single saturable high-affinity binding component for [³H]CHIBA-3007 binding to the rat brain membranes was detected. Scatchard analysis revealed an apparent equilibrium dissociation constant (K(d)) of 1.61±0.16 nM and a maximal number of binding sites (B(max)) of 692.8±22.8 fmol/mg protein (mean ± SEM, n = 3). The specific binding of [³H]CHIBA-3007 was inhibited by a number of GlyT-1 inhibitors, such as CHIBA-3007, desmethyl-CHIBA-3007, CHIBA-3008, SSR504734, NFPS/ALX5407, LY2365109 and Org24598, consistent with the pharmacological profiles of GlyT-1 inhibitors. Interestingly, the potency of eight GlyT-1 inhibitors (CHIBA-3007, desmethyl-CHIBA-3007, NFPS/ALX5407, LY2365109, Org24598, SSR504734, sarcosine, and glycine) for blocking in vitro specific binding of [³H]CHIBA-3007 was significantly correlated with the potency of these inhibitors for inhibiting [¹⁴C]glycine uptake in the rat brain membranes. In contrast, the GlyT-2 inhibitor ALX1393 exhibited very weak for [³H]CHIBA-3007 binding. Furthermore, the regional distribution of [³H]CHIBA-3007 binding in the rat brain was similar to the previously reported distribution of GlyT-1. The present findings suggest that [³H]CHIBA-3007 would be a useful new radioligand for studying GlyT-1 in the brain.
Collapse
Affiliation(s)
- Jichun Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jin Wu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jun Toyohara
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Hongxian Chen
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
- * E-mail:
| |
Collapse
|
16
|
Toyohara J, Ishiwata K, Sakata M, Wu J, Nishiyama S, Tsukada H, Hashimoto K. In vivo evaluation of carbon-11-labelled non-sarcosine-based glycine transporter 1 inhibitors in mice and conscious monkeys. Nucl Med Biol 2011; 38:517-27. [PMID: 21531289 DOI: 10.1016/j.nucmedbio.2010.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/16/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
17
|
Varnes JG, Forst JM, Hoerter TN, Holmquist CR, Wilkins DE, Tian G, Jonak G, Wang X, Potts WM, Wood MW, Alhambra C, Brugel TA, Albert JS. Identification of N-(2-(azepan-1-yl)-2-phenylethyl)-benzenesulfonamides as novel inhibitors of GlyT1. Bioorg Med Chem Lett 2010; 20:4878-81. [PMID: 20637614 DOI: 10.1016/j.bmcl.2010.06.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/13/2010] [Accepted: 06/15/2010] [Indexed: 11/23/2022]
Abstract
A novel series of glycine transporter 1 (GlyT1) inhibitors is described. Scoping of the heterocycle moiety of hit 4-chlorobenzenesulfonamide 1 led to replacement of the piperidine with an azepane for a modest increase in potency. Phenyl sulfonamides proved superior to alkyl and non-phenyl aromatic sulfonamides, while subsequent ortho substitution of the 2-(azepan-1-yl)-2-phenylethanamine aromatic ring yielded 39 (IC(50) 37 nM, solubility 14 microM), the most potent GlyT1 inhibitor in this series. Favorable brain-plasma ratios were observed for select compounds in pharmacokinetic studies to evaluate CNS penetration.
Collapse
Affiliation(s)
- Jeffrey G Varnes
- CNS Discovery Research, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hashimoto K. Glycine transport inhibitors for the treatment of schizophrenia. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2010; 4:10-9. [PMID: 21253021 PMCID: PMC3023951 DOI: 10.2174/1874104501004010010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 01/07/2023]
Abstract
Multiple lines of evidence indicate that hypofunction of glutamatergic neurotransmission via N-methyl-D-aspartate (NMDA) receptors might be implicated in the pathophysiology of schizophrenia, suggesting that increasing NMDA receptor function via pharmacological manipulation could provide a new strategy for the management of schizophrenia. Currently, the glycine modulatory sites on NMDA receptors present the most attractive therapeutic targets for the treatment of schizophrenia. One means of enhancing NMDA receptor neurotransmission is to increase the availability of the obligatory co-agonist glycine at modulatory sites on the NMDA receptors through the inhibition of glycine transporter-1 (GlyT-1) on glial cells. Clinical studies have demonstrated that the GlyT-1 inhibitor sarcosine (N-methyl glycine) shows antipsychotic activity in patients with schizophrenia. Accordingly, a number of pharmaceutical companies have developed novel and selective GlyT-1 inhibitors for the treatment of schizophrenia. This paper provides an overview of the various GlyT-1 inhibitors and their therapeutic potential.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic, Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan
| |
Collapse
|
19
|
Hashimoto K, Fujita Y, Ishima T, Chaki S, Iyo M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and D-serine. Eur Neuropsychopharmacol 2008; 18:414-21. [PMID: 17804206 DOI: 10.1016/j.euroneuro.2007.07.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 07/26/2007] [Accepted: 07/31/2007] [Indexed: 11/16/2022]
Abstract
Accumulating evidence suggests that the glycine modulatory site on the NMDA receptor could be potential therapeutic target for cognitive deficits in schizophrenia. The present study was undertaken to examine the effects of the glycine transporter-1 (GlyT-1) inhibitor, (R)-(N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (NFPS), on cognitive deficits in mice after repeated administration of the NMDA receptor antagonist phencyclidine (PCP). PCP (10 mg/kg/day for 10 days)-induced cognitive deficits were significantly improved by subsequent subchronic (2-week) administration of NFPS (1.0 and 3.0 mg/kg/day) or D-serine (600 mg/kg/day). However, PCP-induced cognitive deficits were not improved by a single administration of NFPS (3.0 mg/kg). Furthermore, Western blot analysis revealed that levels of GlyT-1 in the hippocampus, but not frontal cortex, of the PCP (10 mg/kg/day for 10 days)-treated mice were significantly higher than those of saline-treated mice. An in vivo microdialysis study revealed that repeated PCP administration significantly decreased the extracellular levels of glycine in the hippocampus, but not frontal cortex, of mice. These findings suggest that repeated PCP administration increased the density of GlyT-1 in the hippocampus of mouse brain, and that the GlyT-1 inhibitor NFPS could ameliorate cognitive deficits in mice after repeated administration of PCP.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, Japan.
| | | | | | | | | |
Collapse
|
20
|
Zeng Z, O'Brien JA, Lemaire W, O'Malley SS, Miller PJ, Zhao Z, Wallace MA, Raab C, Lindsley CW, Sur C, Williams DL. A novel radioligand for glycine transporter 1: characterization and use in autoradiographic and in vivo brain occupancy studies. Nucl Med Biol 2008; 35:315-25. [DOI: 10.1016/j.nucmedbio.2007.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/24/2007] [Accepted: 12/05/2007] [Indexed: 11/26/2022]
|
21
|
Walter MW, Hoffman BJ, Gordon K, Johnson K, Love P, Jones M, Man T, Phebus L, Reel JK, Rudyk HC, Shannon H, Svensson K, Yu H, Valli MJ, Porter WJ. Discovery and SAR studies of novel GlyT1 inhibitors. Bioorg Med Chem Lett 2007; 17:5233-8. [PMID: 17629697 DOI: 10.1016/j.bmcl.2007.06.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 11/16/2022]
Abstract
Inhibition of the glycine transporter GlyT1 is a potential strategy for the treatment of schizophrenia. A novel series of GlyT1 inhibitors and their structure-activity relationships (SAR) are described. Members of this series are highly potent and selective transport inhibitors which are shown to elevate glycine levels in cerebrospinal fluid.
Collapse
Affiliation(s)
- Magnus W Walter
- Lilly Research Laboratories, Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Papp A, Juranyi Z, Nagymajtenyi L, Matyus P, Harsing LG. The synaptic and nonsynaptic glycine transporter type-1 inhibitors Org-24461 and NFPS alter single neuron firing rate in the rat dorsal raphe nucleus. Further evidence for a glutamatergic-serotonergic interaction and its role in antipsychotic action. Neurochem Int 2007; 52:130-4. [PMID: 17669555 DOI: 10.1016/j.neuint.2007.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
Single neuron firing rate was recorded from dorsal raphe nucleus of anesthetized rats. The firing rate of raphe neurons varied from 4 to 8 discharge per second before drug administration and this neuronal activity was decreased by L-701,324 (2 mg/kg i.v. injection), a competitive antagonist of glycineB binding site of N-methyl-D-aspartate (NMDA) receptors. The glycine transporter type-1 (GlyT1) antagonists Org-24461 (10 mg/kg i.v.) and NFPS (3 mg/kg i.v.) reversed the inhibitory effect of L-701,324 on single neuron activity recorded from dorsal raphe nucleus of the rat. Org-24461 and NFPS both tended to increase the raphe neuronal firing rate also when given alone but their effect was not significant. This finding serves further evidence that glutamate released from axon terminals of the cortico-striatal projection neurons stimulates serotonergic neurons in the raphe nuclei and this effect is mediated at least in part by postsynaptic NMDA receptors. Thus, GlyT1 inhibitors are able to reverse the hypofunctional state of NMDA receptors, suggesting that these drugs may have beneficial therapeutic effects in neurological and psychiatric disorders characterized with impaired NMDA receptor-mediated transmission.
Collapse
Affiliation(s)
- Andras Papp
- Department of Public Health, Szent-Gyorgyi Medical University, Szeged, Hungary
| | | | | | | | | |
Collapse
|
23
|
Thomson CG, Duncan K, Fletcher SR, Huscroft IT, Pillai G, Raubo P, Smith AJ, Stead D. Sarcosine based indandione hGlyT1 inhibitors. Bioorg Med Chem Lett 2006; 16:1388-91. [PMID: 16321523 DOI: 10.1016/j.bmcl.2005.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 11/10/2005] [Accepted: 11/10/2005] [Indexed: 11/18/2022]
Abstract
A series of sarcosine based indandione hGlyT1 inhibitors has been developed. Optimization of substitution around the indandione and sarcosine moieties has led to highly potent inhibitors at hGlyT1, which show selectivity over a number of other receptors.
Collapse
Affiliation(s)
- Christopher G Thomson
- Department of Medicinal Chemistry, Merck Sharp and Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Leonetti M, Desvignes C, Bougault I, Souilhac J, Oury-Donat F, Steinberg R. 2-Chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission. Neuroscience 2006; 137:555-64. [PMID: 16289893 DOI: 10.1016/j.neuroscience.2005.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 09/02/2005] [Accepted: 09/07/2005] [Indexed: 01/02/2023]
Abstract
2-Chloro-N-S-phenyl 2S-piperidin-2-yl methyl]-3-trifluoromethyl benzamide, monohydrochloride (SSR504734) is a potent and selective inhibitor of the glycine transporter type 1, which increases central N-methyl-D aspartate glutamatergic tone. Since glutamate has been shown to play a role in the regulation of the dopaminergic system in dopamine-related disorders, such as schizophrenia, we investigated the possibility that SSR504734 may modify the basolateral amygdala-elicited stimulation of dopamine release in the nucleus accumbens via an augmentation of glutamate receptor-mediated neurotransmission. First, our data confirmed that SSR504734 is an inhibitor of GlytT1. In the nucleus accumbens of anesthetized rat, SSR504734 (10 mg/kg, i.p.) induced an increase of extracellular levels of glycine as measured by microdialysis coupled with capillary electrophoresis with laser-induced fluorescence detection. Second, the data demonstrated that SSR504734 (10 mg/kg, i.p.) enhanced the facilitatory influence of glutamatergic afferents on dopamine neurotransmission in the nucleus accumbens. Using an electrochemical technique, we measured dopamine release in the nucleus accumbens evoked by an electrical stimulation of the basolateral amygdala. SSR504734 facilitated dopamine release evoked by a 20 or a 40 Hz frequency basolateral amygdala stimulation. This facilitatory effect was dependent on glutamatergic tone, as intra-nucleus accumbens application of 6-7-dinitroquinoxaline-2,3-dione (10(-3) M) or DL-2-amino-5-phosphonopentanoic acid (10(-3) M), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and N-methyl-D aspartate receptors antagonists, respectively, inhibited dopamine release evoked by basolateral amygdala stimulation. Furthermore DL-2-amino-5-phosphonopentanoic acid co-administrated with SSR504734 hampered the dopamine-evoked release facilitation. These data underline the in vivo implication of the glycine uptake mechanism in the control of subcortical glutamate/dopamine interactions.
Collapse
Affiliation(s)
- M Leonetti
- Sanofi-Aventis, 371 rue du Professeur Joseph Blayac, 34184 Montpellier Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
25
|
Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vigé X, Biton B, Steinberg R, Françon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrié P, Scatton B. Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 2005; 30:1963-85. [PMID: 15956994 DOI: 10.1038/sj.npp.1300772] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 microM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.
Collapse
|
26
|
Martina M, B-Turcotte ME, Halman S, Tsai G, Tiberi M, Coyle JT, Bergeron R. Reduced glycine transporter type 1 expression leads to major changes in glutamatergic neurotransmission of CA1 hippocampal neurones in mice. J Physiol 2005; 563:777-93. [PMID: 15661817 PMCID: PMC1665613 DOI: 10.1113/jphysiol.2004.080655] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To investigate the effects of persistent elevation of synaptic glycine at Schaffer collateral-CA1 synapses of the hippocampus, we studied the glutamatergic synaptic transmission in acute brain slices from mice with reduced expression of glycine transporter type 1 (GlyT1+/-) as compared to wild type (WT) littermates using whole-cell patch-clamp recordings of CA1 pyramidal cells. We observed faster decay kinetics, reduced ifenprodil sensitivity and increased zinc-induced antagonism in N-methyl-d-aspartate receptor (NMDAR) currents of GlyT1+/- mice. Moreover, the ratio alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)/NMDAR was decreased in mutants compared to WT. Surprisingly, this change was associated with a reduction in the number of AMPARs expressed at the CA1 synapses in the mutants compared to WT. Overall, these findings highlight the importance of GlyT1 in regulating glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Marzia Martina
- Departments of Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
27
|
Mallorga PJ, Williams JB, Jacobson M, Marques R, Chaudhary A, Conn PJ, Pettibone DJ, Sur C. Pharmacology and expression analysis of glycine transporter GlyT1 with [3H]-(N-[3-(4'-fluorophenyl)-3-(4'phenylphenoxy)propyl])sarcosine. Neuropharmacology 2003; 45:585-93. [PMID: 12941372 DOI: 10.1016/s0028-3908(03)00227-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the central nervous system, re-uptake of the neurotransmitter glycine is mediated by two different glycine transporters, GlyT1 and GlyT2. GlyT2 is found in brainstem and spinal cord, whereas GlyT1 is expressed in rat forebrain regions where it is responsible for most glycine transport activity. Initially, GlyT1 and GlyT2 were pharmacologically differentiated by sarcosine, a weak selective inhibitor of GlyT1. The recently described selective and potent GlyT1 antagonist, NFPS/ALX-5407 provided an important additional tool to further characterize GlyT1 pharmacology. In the present study, we have radiolabeled the racemic form of NFPS (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (also known as ALX-5407) to investigate its interaction with GlyT1, as well as define GlyT1 expression in the rat central nervous system. Kinetic studies indicated that [3H]NFPS binds rapidly to rat forebrain membranes and dissociates with a t(1/2) of 28 +/- 5 min. [3H]NFPS labeled a saturable population of sites in rat forebrain with a Kd of 7.1+/-1.3 nM and a B(max) of 3.14 +/- 0.26 pmol/mg protein. Bound [3H]NFPS was fully and potently displaced by unlabeled NFPS, whereas glycine and sarcosine were weak, Na+-dependent inhibitors with IC50 of 1,008 and 190 microM, respectively. Additional saturation experiments indicated that glycine and sarcosine were non-competitive antagonists of [3H]NFPS binding. Functional studies revealed that NFPS was a non-competitive inhibitor of [3H]glycine uptake and does not interact with Na+ and Cl- binding sites of GlyT1. Overall, this work shows that [3H]NFPS is a valuable tool in studying GlyT1 expression and pharmacology and that NFPS interacts with GlyT1 at a site different from the transporter translocation and ion binding sites.
Collapse
Affiliation(s)
- Pierre J Mallorga
- Merck and Co. Inc., Department of Neuroscience, West Point, WP26A-3000, P.O. Box 4, West Point, PA 19486, USA
| | | | | | | | | | | | | | | |
Collapse
|