1
|
Patra R, Halder S, Saha R, Jana K, Sarkar K. Highly Efficient Photoswitchable Smart Polymeric Nanovehicle for Gene and Anticancer Drug Delivery in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:2299-2323. [PMID: 38551335 DOI: 10.1021/acsbiomaterials.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Over the past few decades, there has been significant interest in smart drug delivery systems capable of carrying multiple drugs efficiently, particularly for treating genetic diseases such as cancer. Despite the development of various drug delivery systems, a safe and effective method for delivering both anticancer drugs and therapeutic genes for cancer therapy remains elusive. In this study, we describe the synthesis of a photoswitchable smart polymeric vehicle comprising a photoswitchable spiropyran moiety and an amino-acid-based cationic monomer-based block copolymer using reversible addition-fragmentation chain transfer (RAFT) polymerization. This system aims at diagnosing triple-negative breast cancer and subsequently delivering genes and anticancer agents. Triple-negative breast cancer patients have elevated concentrations of Cu2+ ions, making them excellent targets for diagnosis. The polymer can detect Cu2+ ions with a low limit of detection value of 9.06 nM. In vitro studies on doxorubicin drug release demonstrated sustained delivery at acidic pH level similar to the tumor environment. Furthermore, the polymer exhibited excellent blood compatibility even at the concentration as high as 500 μg/mL. Additionally, it displayed a high transfection efficiency of approximately 82 ± 5% in MDA-MB-231 triple-negative breast cancer cells at an N/P ratio of 50:1. It is observed that mitochondrial membrane depolarization and intracellular reactive oxygen species generation are responsible for apoptosis and the higher number of apoptotic cells, which occurred through the arrest of the G2/M phase of the cell cycle were observed. Therefore, the synthesized light-responsive cationic polymer may be an effective system for diagnosis, with an efficient anticancer drug and gene carrier for the treatment of triple-negative breast cancer in the future.
Collapse
Affiliation(s)
- Rishik Patra
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Satyajit Halder
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Rima Saha
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
2
|
Yadav G, Srinivasan G, Jain A. Cervical cancer: Novel treatment strategies offer renewed optimism. Pathol Res Pract 2024; 254:155136. [PMID: 38271784 DOI: 10.1016/j.prp.2024.155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Cervical cancer poses a significant global public health issue, primarily affecting women, and stands as one of the four most prevalent cancers affecting woman globally, which includes breast cancer, colorectal cancer, lung cancer and cervical cancer. Almost every instance of cervical cancer is associated with infections caused by the human papillomavirus (HPV). Prevention of this disease hinges on screening and immunization of the patients, yet disparities in cervical cancer occurrence exist between developed and developing nations. Multiple factors contribute to cervical cancer, including sexually transmitted diseases (STDs), reproductive and hormonal influences, genetics, and host-related factors. Preventive programs, lifestyle improvements, smoking cessation, and prompt precancerous lesion treatment can reduce the occurrence of cervical cancer. The persistency and recurrence of the cases are inherited even after the innovative treatments available for cervical cancer. For patient's ineligible for curative surgery or radiotherapy, palliative chemotherapy remains the standard treatment. Novel treatment strategies are emerging to combat the limited effectiveness of chemotherapy. Nanocarriers offer the promise of concurrent chemotherapeutic drug delivery as a beacon of hope in cervical cancer research. The primary aim of this review study is to contribute to a thorough understanding of cervical cancer, fostering awareness and informed decision-making and exploring novel treatment methods such as nanocarriers for the treatment of cervical cancer. This manuscript delves into cutting-edge approaches, exploring the potential of nanocarriers and other innovative treatments. Our study underscores the critical need for global awareness, early intervention, and enhanced treatment options. Novel strategies, such as nanocarriers, offer renewed optimism in the battle against cervical cancer. This research provides compelling evidence for the investigation of these novel therapeutic approaches within the medical field. Cervical cancer remains a formidable adversary, but with ongoing advancements and unwavering commitment, we move closer to a future where it is a preventable and treatable disease, even in the most underserved regions.
Collapse
Affiliation(s)
- Gangotri Yadav
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India.
| | - Ganga Srinivasan
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| | - Ashish Jain
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| |
Collapse
|
3
|
Elango B, Shirley CP, Okram GS, Ramesh T, Seralathan KK, Mathanmohun M. Structural diversity, functional versatility and applications in industrial, environmental and biomedical sciences of polysaccharides and its derivatives - A review. Int J Biol Macromol 2023; 250:126193. [PMID: 37562468 DOI: 10.1016/j.ijbiomac.2023.126193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Recent efforts on the expansion of sustainable and commercial primal matters are essential to enhance the knowledge of their hazards and noxiousness to humans and their environments. For example, polysaccharide materials are widely utilized in food, wound dressing, tissue engineering, industry, targeted drug delivery, environmental, and bioremediation due to their attractive degradability, nontoxicity and biocompatibility. There are numerous easy, quick, and efficient ways to manufacture these materials that include cellulose, starch, chitosan, chitin, dextran, pectin, gums, and pullulan. Further, they exhibit distinctive properties when combined favourably with raw materials from other sources. This review discusses the synthesis and novel applications of these carbohydrate polymers in industrial, environmental and biomedical sciences.
Collapse
Affiliation(s)
- Boojhana Elango
- Department of Microbiology, Muthayammal College of Arts and Science, Rasipuram, Namakkal 637408, Tamil Nadu, India
| | - C P Shirley
- Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Gunadhor Singh Okram
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, Madhya Pradesh, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, South Korea.
| | - Maghimaa Mathanmohun
- Department of Microbiology, Muthayammal College of Arts and Science, Rasipuram, Namakkal 637408, Tamil Nadu, India.
| |
Collapse
|
4
|
Toncheva-Moncheva N, Dimitrov E, Grancharov G, Momekova D, Petrov P, Rangelov S. Cinnamyl-Modified Polyglycidol/Poly(ε-Caprolactone) Block Copolymer Nanocarriers for Enhanced Encapsulation and Prolonged Release of Cannabidiol. Pharmaceutics 2023; 15:2128. [PMID: 37631342 PMCID: PMC10459144 DOI: 10.3390/pharmaceutics15082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The present study describes the development of novel block copolymer nanocarriers of the phytocannabinoid cannabidiol (CBD), designed to enhance the solubility of the drug in water while achieving high encapsulation efficiency and prolonged drug release. Firstly, a well-defined amphiphilic block copolymer consisting of two outer hydrophilic polyglycidol (PG) blocks and a middle hydrophobic block of poly(ε-caprolactone) bearing pendant cinnamyl moieties (P(CyCL-co-CL)) were synthesized by the click coupling reaction of PG-monoalkyne and P(CyCL-co-CL)-diazide functional macroreagents. A non-modified polyglycidol/poly(ε-caprolactone) amphiphilic block copolymer was obtained as a referent system. Micellar carriers based on the two block copolymers were formed via the solvent evaporation method and loaded with CBD following two different protocols-loading during micelle formation and loading into preformed micelles. The key parameters/characteristics of blank and CBD-loaded micelles such as size, size distribution, zeta potential, molar mass, critical micelle concentration, morphology, and encapsulation efficiency were determined by using dynamic and static multiangle and electrophoretic light scattering, transmission electron microscopy, and atomic force microscopy. Embedding CBD into the micellar carriers affected their hydrodynamic radii to some extent, while the spherical morphology of particles was not changed. The nanoformulation based on the copolymer bearing cinnamyl moieties possessed significantly higher encapsulation efficiency and a slower rate of drug release than the non-modified copolymer. The comparative assessment of the antiproliferative effect of micellar CBD vs. the free drug against the acute myeloid leukemia-derived HL-60 cell line and Sezary Syndrome HUT-78 demonstrated that the newly developed systems have pronounced antitumor activity.
Collapse
Affiliation(s)
- Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Georgi Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria;
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| |
Collapse
|
5
|
Li J, Cao Y, Zhang X, An M, Zhang J, Liu Y. Simultaneous assaying of NLG919, tryptophan and kynurenine by ultrahigh performance LC-MS in pharmacokinetics and biodistribution studies. Bioanalysis 2023; 15:315-330. [PMID: 37083471 DOI: 10.4155/bio-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Indocyanine2,3-dioxygenase (IDO) is an enzyme that can catalyze the metabolism of tryptophan (Trp) into kynurenine (Kyn), thus inhibiting the tumor immune microenvironment. Method: Based on its inhibitor, NLG919(NLG), the authors developed a new immunomodulatory polymer micelle and established and verified an ultrahigh performance liquid chromatography-mass spectrometry method for the simultaneous determination of NLG, Trp and Kyn in mouse tumors through the ratio determination of Trp/Kyn tissue distribution and pharmacokinetics. The linear range of the method was 0.001-10 μg/ml. Results: Compared with NLG solution, the immunomodulatory polymeric drug-loaded micelles based on polystyrene-arginine showed higher Trp/Kyn ratio, more tumor aggregation and good pharmacokinetics. Conclusion: This method has been successfully applied to the simultaneous determination of Trp/Kyn and NLG in tumor tissues of mice.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| |
Collapse
|
6
|
Chroni A, Mavromoustakos T, Pispas S. Curcumin-Loaded PnBA- b-POEGA Nanoformulations: A Study of Drug-Polymer Interactions and Release Behavior. Int J Mol Sci 2023; 24:4621. [PMID: 36902057 PMCID: PMC10003461 DOI: 10.3390/ijms24054621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The current study focuses on the development of innovative and highly-stable curcumin (CUR)-based therapeutics by encapsulating CUR in biocompatible poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) micelles. State-of-the-art methods were used to investigate the encapsulation of CUR in PnBA-b-POEGA micelles and the potential of ultrasound to enhance the release of encapsulated CUR. Dynamic light scattering (DLS), attenuated total reflection Fourier transform infrared (ATR-FTIR), and ultraviolet-visible (UV-Vis) spectroscopies confirmed the successful encapsulation of CUR within the hydrophobic domains of the copolymers, resulting in the formation of distinct and robust drug/polymer nanostructures. The exceptional stability of the CUR-loaded PnBA-b-POEGA nanocarriers over a period of 210 days was also demonstrated by proton nuclear magnetic resonance (1H-NMR) spectroscopy studies. A comprehensive 2D NMR characterization of the CUR-loaded nanocarriers authenticated the presence of CUR within the micelles, and unveiled the intricate nature of the drug-polymer intermolecular interactions. The UV-Vis results also indicated high encapsulation efficiency values for the CUR-loaded nanocarriers and revealed a significant influence of ultrasound on the release profile of CUR. The present research provides new understanding of the encapsulation and release mechanisms of CUR within biocompatible diblock copolymers and has significant implications for the advancement of safe and effective CUR-based therapeutics.
Collapse
Affiliation(s)
- Angeliki Chroni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Zografou, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
7
|
Côrte-Real L, Brás AR, Pilon A, Mendes N, Ribeiro AS, Martins TD, Farinha JPS, Oliveira MC, Gärtner F, Garcia MH, Preto A, Valente A. Biotinylated Polymer-Ruthenium Conjugates: In Vitro and In Vivo Studies in a Triple-Negative Breast Cancer Model. Pharmaceutics 2022; 14:1388. [PMID: 35890283 PMCID: PMC9315599 DOI: 10.3390/pharmaceutics14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The need for new therapeutic approaches for triple-negative breast cancer is a clinically relevant problem that needs to be solved. Using a multi-targeting approach to enhance cancer cell uptake, we synthesized a new family of ruthenium(II) organometallic complexes envisaging simultaneous active and passive targeting, using biotin and polylactide (PLA), respectively. All compounds with the general formula, [Ru(η5-CpR)(P)(2,2'-bipy-4,4'-PLA-biotin)][CF3SO3], where R is -H or -CH3 and P is P(C6H5)3, P(C6H4F)3 or P(C6H4OCH3)3, were tested against triple-negative breast cancer cells MDA-MB-231 showing IC50 values between 2.3-14.6 µM, much better than cisplatin, a classical chemotherapeutic drug, in the same experimental conditions. We selected compound 1 (where R is H and P is P(C6H5)3), for further studies as it was the one showing the best biological effect. In a competitive assay with biotin, we showed that cell uptake via SMVT receptors seems to be the main transport route into the cells for this compound, validating the strategy of including biotin in the design of the compound. The effects of the compound on the hallmarks of cancer show that the compound leads to apoptosis, interferes with proliferation by affecting the formation of cell colonies in a dose-dependent manner and disrupts the cell cytoskeleton. Preliminary in vivo assays in N: NIH(S)II-nu/nu mice show that the concentrations of compound 1 used in this experiment (maximum 4 mg/kg) are safe to use in vivo, although some signs of liver toxicity are already found. In addition, the new compound shows a tendency to control tumor growth, although not significantly. In sum, we showed that compound 1 shows promising anti-cancer effects, bringing a new avenue for triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
| | - Ana Rita Brás
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, Edifício 18, 4710-057 Braga, Portugal
| | - Adhan Pilon
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
| | - Nuno Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (N.M.); (A.S.R.); (F.G.)
| | - Ana Sofia Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (N.M.); (A.S.R.); (F.G.)
| | - Tiago D. Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.D.M.); (J.P.S.F.); (M.C.O.)
| | - José Paulo S. Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.D.M.); (J.P.S.F.); (M.C.O.)
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.D.M.); (J.P.S.F.); (M.C.O.)
| | - Fátima Gärtner
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (N.M.); (A.S.R.); (F.G.)
| | - M. Helena Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
| | - Ana Preto
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, Edifício 18, 4710-057 Braga, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
| |
Collapse
|
8
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Wang D, Zhang X, Xu B. PEGylated Doxorubicin Prodrug-Forming Reduction-Sensitive Micelles With High Drug Loading and Improved Anticancer Therapy. Front Bioeng Biotechnol 2021; 9:781982. [PMID: 34869293 PMCID: PMC8640247 DOI: 10.3389/fbioe.2021.781982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023] Open
Abstract
Significant efforts on the design and development of advanced drug delivery systems for targeted cancer chemotherapy continue to be a major challenge. Here, we reported a kind of reduction-responsive PEGylated doxorubicin (DOX) prodrug via the simple esterification and amidation reactions, which self-assembled into the biodegradable micelles in solutions. Since there was an obvious difference in the reduction potentials between the oxidizing extracellular milieu and the reducing intracellular fluids, these PEG-disulfide-DOX micelles were localized intracellularly and degraded rapidly by the stimulus to release the drugs once reaching the targeted tumors, which obviously enhanced the therapeutic efficacy with low side effects. Moreover, these reduction-sensitive micelles could also physically encapsulate the free DOX drug into the polymeric cargo, exhibiting a two-phase programmed drug release behavior. Consequently, it showed a potential to develop an intelligent and multifunctional chemotherapeutic payload transporter for the effective tumor therapy.
Collapse
Affiliation(s)
- Dongdong Wang
- Minimally Invasive Interventional Therapy Center, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
- Department of Oncology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyi Zhang
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Bingbing Xu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
10
|
Liu P, Zhang T, Chen Q, Li C, Chu Y, Guo Q, Zhang Y, Zhou W, Chen H, Zhou Z, Wang Y, Zhao Z, Luo Y, Li X, Song H, Su B, Li C, Sun T, Jiang C. Biomimetic Dendrimer-Peptide Conjugates for Early Multi-Target Therapy of Alzheimer's Disease by Inflammatory Microenvironment Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100746. [PMID: 33998706 DOI: 10.1002/adma.202100746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on β-amyloid (Aβ) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and irreversible impairment of the nervous system in the late stage of AD. Recently, inflammatory responses, manifested in oxidative stress and glial cell activation, have been reported as hallmarks in the early stages of AD. Based on the crosstalk between inflammatory response and brain cells, a reactive oxygen species (ROS)-responsive dendrimer-peptide conjugate (APBP) is devised to target the AD microenvironment and inhibit inflammatory responses at an early stage. With the modification of the targeting peptide, this nanoconjugate can efficiently deliver peptides to the infected regions and restore the antioxidant ability of neurons by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Moreover, this multi-target strategy exhibits a synergistic function of ROS scavenging, promoting Aβ phagocytosis, and normalizing the glial cell phenotype. As a result, the nanoconjugate can reduce ROS level, decrease Aβ burden, alleviate glial cell activation, and eventually enhance cognitive functions in APPswe/PSEN1dE9 model mice. These results indicate that APBP can be a promising candidate for the multi-target treatment of AD.
Collapse
Affiliation(s)
- Peixin Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Tongyu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yifan Luo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Xuwen Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Haolin Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chufeng Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
11
|
Kazarina OV, Morozov AG, Fedyushkin IL. Acenaphthylene-Bis(arylamide) Complexes of Aluminum and Gallium in the Polymerization of Lactide. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F. Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer. Int J Nanomedicine 2020; 15:5445-5458. [PMID: 32801699 PMCID: PMC7398750 DOI: 10.2147/ijn.s257700] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
5-Fluorouracil (5-FU) has become one of the most widely employed antimetabolite chemotherapeutic agents in recent decades. It is considered a first line antineoplastic agent for the treatment of colorectal cancer. Unfortunately, chemotherapy with 5-FU has several limitations, including its short half-life, high cytotoxicity and low bioavailability. In order to overcome the drawbacks of 5-FU and enhance its therapeutic efficiency, many scientific groups have focused on designing a new delivery system to successfully deliver 5-FU to tumor sites. We provide a comprehensive review on different strategies to design effective delivery systems, including nanoformulations, drug-conjugate formulations and other strategies for the delivery of 5-FU to colorectal cancer. Furthermore, co-delivery of 5-FU with other therapeutics is discussed. This review critically highlights the recent innovations in and literature on various types of carrier system for 5-FU.
Collapse
Affiliation(s)
- Elaheh Entezar-Almahdi
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University, School of Dentistry, Milwaukee, WI, USA
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Mirsafaei R, Varshosaz J. Polyacrylamide-punicic acid conjugate-based micelles for flutamide delivery in PC3 cells of prostate cancer: synthesis, characterisation and cytotoxicity studies. IET Nanobiotechnol 2020; 14:417-422. [PMID: 32691745 PMCID: PMC8676636 DOI: 10.1049/iet-nbt.2020.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/26/2023] Open
Abstract
The aim of the present study was to synthesize a novel biopolymeric micelle based on punicic acid (PA) and polyacrylamide (PAM) for carrying chemotherapeutic drugs used in prostate cancer treatment. A polymer composite micelle was prepared by chemical conjugation between PAM and PA. The micelles were prepared by self-assembly via film casting followed by ultrasonication method. The successful production of PAMPA copolymeric micelles was confirmed using FTIR, 1H-NMR, and TEM. Then, flutamide was loaded in the designed nanomicelles and they were characterized. The cell cytotoxicity of the micelles was studied on PC3 cells of prostate cancer. The prepared nanomicelles showed the particle size of 88 nm, PDI of 0.246, zeta potential of -9 mV, drug loading efficiency of 94.5%, drug release of 85.6% until 10 hours in pH 7.4 and CMC of 74.13 μg/ml. The cell viability in blank nanocarriers was about 70% in PC3 cells at concentration of 25 μM. More significant cytotoxic effects were seen for flutamide loaded micelles at this concentration compared to the free drug. The results suggest that the PAMPA co-polymeric nanomicelles can be utilized as an effective carrier to enhance the cytotoxic effects of flutamide in prostate cancer.
Collapse
Affiliation(s)
- Razieh Mirsafaei
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Jafari A, Yan L, Mohamed MA, Wu Y, Cheng C. Well-Defined Diblock Poly(ethylene glycol)- b-Poly(ε-caprolactone)-Based Polymer-Drug Conjugate Micelles for pH-Responsive Delivery of Doxorubicin. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1510. [PMID: 32224890 PMCID: PMC7177263 DOI: 10.3390/ma13071510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Nanoparticles have emerged as versatile carriers for various therapeutics and can potentially treat a wide range of diseases in an accurate and disease-specific manner. Polymeric biomaterials have gained tremendous attention over the past decades, owing to their tunable structure and properties. Aliphatic polyesters have appealing attributes, including biodegradability, non-toxicity, and the ability to incorporate functional groups within the polymer backbone. Such distinctive properties have rendered them as a class of highly promising biomaterials for various biomedical applications. In this article, well-defined alkyne-functionalized poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL) diblock copolymer was synthesized and studied for pH-responsive delivery of doxorubicin (DOX). The alkyne-functionalized PEG-b-PCL diblock copolymer was prepared by the synthesis of an alkyne-functionalized ε-caprolactone (CL), followed by ring-opening polymerization (ROP) using PEG as the macroinitiator. The alkyne functionalities of PEG-b-PCL were modified through copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction to graft aldehyde (ALD) groups and obtain PEG-b-PCL-g-ALD. Subsequently, DOX was conjugated on PEG-b-PCL-g-ALD through the Schiff base reaction. The resulting PEG-b-PCL-g-DOX polymer-drug conjugate (PDC) self-assembled into a nano-sized micellar structure with facilitated DOX release in acidic pH due to the pH-responsive linkage. The nanostructures of PDC micelles were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). In vitro studies of the PDC micelles, revealed their improved anticancer efficiency towards MCF-7 cells as compared to free DOX.
Collapse
Affiliation(s)
- Amin Jafari
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (M.A.M.)
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (M.A.M.)
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (M.A.M.)
| |
Collapse
|
15
|
Gao M, Deng J, Liu F, Fan A, Wang Y, Wu H, Ding D, Kong D, Wang Z, Peer D, Zhao Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019; 223:119486. [DOI: 10.1016/j.biomaterials.2019.119486] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022]
|
16
|
Munjal S, Deka SR, Yadav S, Goyal P, Sharma AK, Kumar P. Core/shell nanoassembly of amphiphilic naproxen-polyethylene glycol: synthesis, characterisation and evaluation as drug delivery system. IET Nanobiotechnol 2019; 12:814-821. [PMID: 30104456 DOI: 10.1049/iet-nbt.2017.0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small molecule-based amphiphiles self-assemble into nanostructures (micelles) in aqueous medium which are currently being explored as novel drug delivery systems. Here, naproxen-polyethylene glycol (N-PEG), a small molecule-derived amphiphile, has been synthesised, characterised and evaluated as hydrophobic drug carrier. 1H, 13C Nuclear magnetic resonance (NMR), mass spectrometry (MS) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of N-PEG and dynamic light scattering (DLS) revealed the formation of nano-sized structures of ∼228 nm. Transmission electron microscope (TEM) analysis showed aggregation behaviour of the structures with average size of ∼230 nm. Biodegradability aspect of the micellar-structured N-PEG was demonstrated by lipase-mediated degradation studies using DLS and TEM. High encapsulation efficiency followed by release in a sustained manner of a well-known anticancer drug, doxorubicin, demonstrated the feasibility of the new drug delivery system. These results advocate the promising potential of N-PEG micelles as efficient drug delivery system for specific delivery to cancerous cells in vitro and in vivo.
Collapse
Affiliation(s)
- Srishti Munjal
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Smriti R Deka
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Santosh Yadav
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Preeti Goyal
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Ashwani K Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| |
Collapse
|
17
|
Hu G, Guo M, Xu J, Wu F, Fan J, Huang Q, Yang G, Lv Z, Wang X, Jin Y. Nanoparticles Targeting Macrophages as Potential Clinical Therapeutic Agents Against Cancer and Inflammation. Front Immunol 2019; 10:1998. [PMID: 31497026 PMCID: PMC6712945 DOI: 10.3389/fimmu.2019.01998] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
With the development of nanotechnology, significant progress has been made in the design, and manufacture of nanoparticles (NPs) for use in clinical treatments. Recent increases in our understanding of the central role of macrophages in the context of inflammation and cancer have reinvigorated interest in macrophages as drug targets. Macrophages play an integral role in maintaining the steady state of the immune system and are involved in cancer and inflammation processes. Thus, NPs tailored to accurately target macrophages have the potential to transform disease treatment. Herein, we first present a brief background information of NPs as drug carriers, including but not limited to the types of nanomaterials, their biological properties and their advantages in clinical application. Then, macrophage effector mechanisms and recent NPs-based strategies aimed at targeting macrophages by eliminating or re-educating macrophages in inflammation and cancer are summarized. Additionally, the development of nanocarriers targeting macrophages for disease diagnosis is also discussed. Finally, the significance of macrophage-targeting nanomedicine is highlighted, with the goal of facilitating future clinical translation.
Collapse
Affiliation(s)
- Guorong Hu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Xu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jinshuo Fan
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Huang
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Lv
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: A review. Colloids Surf B Biointerfaces 2019; 180:202-211. [DOI: 10.1016/j.colsurfb.2019.04.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
|
19
|
Lynn GM, Laga R, Jewell CM. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Lett 2019; 459:192-203. [PMID: 31185250 DOI: 10.1016/j.canlet.2019.114427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Patients with inadequate anti-cancer T cell responses experience limited benefit from immune checkpoint inhibitors and other immunotherapies that require T cells. Therefore, treatments that induce de novo anti-cancer T cell immunity are needed. One strategy - referred to as in situ vaccination - is to deliver chemotherapeutic or immunostimulatory drugs into tumors to promote cancer cell death and provide a stimulatory environment for priming T cells against antigens already present in the tumor. However, achieving sufficient drug concentrations in tumors without causing dose-limiting toxicities remains a major challenge. To address this challenge, nanomedicines based on nano-sized carriers ('nanocarriers') of chemotherapeutics and immunostimulants are being developed to improve drug accumulation in tumors following systemic (intravenous) administration. Herein, we present the rationale for using systemically administrable nanomedicines to induce anti-cancer T cell immunity via in situ vaccination and provide an overview of synthetic nanomedicines currently used clinically. We also describe general strategies for improving nanomedicine design to increase tumor uptake, including use of micelle- and star polymer-based nanocarriers. We conclude with perspectives for how nanomedicine properties, host factors and treatment combinations can be leveraged to maximize efficacy.
Collapse
Affiliation(s)
- Geoffrey M Lynn
- Fischell Department of Bioengineering, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; Avidea Technologies, Baltimore, MD, 21205, USA
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague, Czech Republic
| | - Christopher M Jewell
- Fischell Department of Bioengineering, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; United States Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA; Robert E. Fischell Institute for Biomedical Devices, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, Executive Office, Suite N9E17, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
20
|
Yin W, Ke W, Chen W, Xi L, Zhou Q, Mukerabigwi JF, Ge Z. Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release. Biomaterials 2018; 195:63-74. [PMID: 30612064 DOI: 10.1016/j.biomaterials.2018.12.032] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022]
Abstract
In tumor tissues, reactive oxygen species (ROS) level is significantly higher than that in normal tissues, which has been frequently explored as the specific stimulus to trigger drug release. However, the low intrinsic ROS concentration and heterogeneous distribution in tumor tissues hinder the applications as the stimulus for drug delivery. Herein, we developed integrated nanoparticles to remold tumor microenvironment via specific amplification of the tumor oxidative stress and simultaneously realize ROS-responsive drug release. The amphiphilic block copolymer prodrugs composed of poly(ethylene glycol) and polymerized methacrylate monomer containing thioketal-linked camptothecin (CPT) were synthesized and self-assembled to form core-shell micelles for encapsulation of β-lapachone (Lapa@NPs). After tumor accumulation and internalization into tumor cells post systemic administration of Lapa@NPs, Lapa can selectively induce remarkable ROS level increase via the catalysis of NAD(P)H: quinone oxidoreductase-1 (NQO1) enzyme overexpressed in cancer cells. Subsequently, enhanced ROS concentration would trigger the cleavage of thioketal linkers to release drug. The released CPT together with high ROS level achieved a synergistic therapy to suppress tumor growth. Moreover, Lapa@NPs exhibited superior biosafety due to the tumor-specific activation of the cascade reaction. Accordingly, Lapa@NPs represent a novel polymer prodrug design and drug release strategy via tumor-specific oxidative stress amplification and subsequent ROS-responsive drug release.
Collapse
Affiliation(s)
- Wei Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China; Department of Pharmacology, Xin Hua University of Anhui, Hefei, 230088, Anhui, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Weijian Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Longchang Xi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
21
|
Jin X, Asghar S, Zhang M, Chen Z, Huang L, Ping Q, Xiao Y. N-acetylcysteine modified hyaluronic acid-paclitaxel conjugate for efficient oral chemotherapy through mucosal bioadhesion ability. Colloids Surf B Biointerfaces 2018; 172:655-664. [DOI: 10.1016/j.colsurfb.2018.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
|
22
|
Zhang Y, Guo Z, Cao Z, Zhou W, Zhang Y, Chen Q, Lu Y, Chen X, Guo Q, Li C, Liang D, Sun T, Jiang C. Endogenous albumin-mediated delivery of redox-responsive paclitaxel-loaded micelles for targeted cancer therapy. Biomaterials 2018; 183:243-257. [DOI: 10.1016/j.biomaterials.2018.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 11/26/2022]
|
23
|
Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. Int J Mol Sci 2018; 19:E3264. [PMID: 30347840 PMCID: PMC6214025 DOI: 10.3390/ijms19103264] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer represents a group of heterogeneous diseases characterized by uncontrolledgrowth and spread of abnormal cells, ultimately leading to death. Nanomedicine plays a significantrole in the development of nanodrugs, nanodevices, drug delivery systems and nanocarriers. Someof the major issues in the treatment of cancer are multidrug resistance (MDR), narrow therapeuticwindow and undesired side effects of available anticancer drugs and the limitations of anticancerdrugs. Several nanosystems being utilized for detection, diagnosis and treatment such as theranosticcarriers, liposomes, carbon nanotubes, quantum dots, polymeric micelles, dendrimers and metallicnanoparticles. However, nonbiodegradable nanoparticles causes high tissue accumulation andleads to toxicity. MDR is considered a major impediment to cancer treatment due to metastatictumors that develop resistance to chemotherapy. MDR contributes to the failure of chemotherapiesin various cancers, including breast, ovarian, lung, gastrointestinal and hematological malignancies.Moreover, the therapeutic efficiency of anticancer drugs or nanoparticles (NPs) used alone is lessthan that of the combination of NPs and anticancer drugs. Combination therapy has long beenadopted as the standard first-line treatment of several malignancies to improve the clinical outcome.Combination therapy with anticancer drugs has been shown to generally induce synergistic drugactions and deter the onset of drug resistance. Therefore, this review is designed to report andanalyze the recent progress made to address combination therapy using NPs and anticancer drugs.We first provide a comprehensive overview of the angiogenesis and of the different types of NPscurrently used in treatments of cancer; those emphasized in this review are liposomes, polymericNPs, polymeric micelles (PMs), dendrimers, carbon NPs, nanodiamond (ND), fullerenes, carbonnanotubes (CNTs), graphene oxide (GO), GO nanocomposites and metallic NPs used forcombination therapy with various anticancer agents. Nanotechnology has provided the convenienttools for combination therapy. However, for clinical translation, we need continued improvementsin the field of nanotechnology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
24
|
Nerantzaki M, Skoufa E, Adam KV, Nanaki S, Avgeropoulos A, Kostoglou M, Bikiaris D. Amphiphilic Block Copolymer Microspheres Derived from Castor Oil, Poly(ε-carpolactone), and Poly(ethylene glycol): Preparation, Characterization and Application in Naltrexone Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1996. [PMID: 30332793 PMCID: PMC6213069 DOI: 10.3390/ma11101996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022]
Abstract
In the present study, the newly synthesized castor oil-derived thioether-containing ω-hydroxyacid (TEHA) block copolymers with polycaprolactone (TEHA-b-PCL), with methoxypoly(ethylene glycol) (mPEG), (TEHA-b-mPEG) and with poly(ethylene glycol) (PEG) (TEHA-b-PEG-b-TEHA), were investigated as polymeric carriers for fabrication of naltrexone (NLX)-loaded microspheres by the single emulsion solvent evaporation technique. These microspheres are appropriate for the long-term treatment of opioid/alcohol dependence. Physical properties of the obtained microspheres were characterized in terms of size, morphology, drug loading capacity, and drug release. A scanning electron microscopy study revealed that the desired NLX-loaded uniform microspheres with a mean particle size of 5⁻10 µm were obtained in all cases. The maximum percentage encapsulation efficiency was found to be about 25.9% for the microspheres obtained from the TEHA-b-PEG-b-TEHA copolymer. Differential scanning calorimetry and X-ray diffractometry analysis confirmed the drug entrapment within microspheres in the amorphous state. In vitro dissolution studies revealed that all NLX-loaded formulations had a similar drug release profile: An initial burst release after 24 h, followed by a sustained and slower drug release for up to 50 days. The analysis of the release kinetic data, which were fitted into the Korsmeyer⁻Peppas release model, indicated that diffusion is the main release mechanism of NLX from TEHA-b-PCL and TEHA-b-mPEG microspheres, while microspheres obtained from TEHA-b-PEG-b-TEHA exhibited a drug release closer to an erosion process.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Physicochemistry Laboratory of Electrolytes and Interfacial Nanosystems (PHENIX), UMR CNRS 8234, Faculty of Science and Engineering, Sorbonne University, 75252 Paris CEDEX 05, France.
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Eirini Skoufa
- Laboratory of Polymeric Materials, Department of Materials Science and Engineering, University of Ioannina, Administration Building, University Campus Dourouti, 45110 Ioannina, Greece.
| | - Kyriakos-Vasileios Adam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Apostolos Avgeropoulos
- Laboratory of Polymeric Materials, Department of Materials Science and Engineering, University of Ioannina, Administration Building, University Campus Dourouti, 45110 Ioannina, Greece.
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
25
|
Zabihi F, Graff P, Schumacher F, Kleuser B, Hedtrich S, Haag R. Synthesis of poly(lactide-co-glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery. NANOSCALE 2018; 10:16848-16856. [PMID: 30168550 DOI: 10.1039/c8nr05536j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to the low cutaneous bioavailability of tacrolimus (TAC), penetration enhancers are used to improve its penetration into the skin. However, poor loading capacity, non-biodegradability, toxicity, and in some cases inefficient skin penetration are challenging issues that hamper their applications for the dermal TAC delivery. Here we present poly(lactide-co-glycerol) (PLG) as a water soluble, biodegradable, and biocompatible TAC-carrier with high loading capacity (14.5% w/w for TAC) and high drug delivery efficiencies into the skin. PLG was synthesized by cationic ring-opening copolymerization of a mixture of glycidol and lactide and showed 35 nm and 300 nm average sizes in aqueous solutions before and after loading of TAC, respectively. Delivery experiments on human skin, quantified by fluorescence microscopy and LC-MS/MS, showed a high ability for PLG to deposit Nile red and TAC into the stratum corneum and viable epidermis of skin in comparison with Protopic® (0.03% w/w, TAC ointment). The cutaneous distribution profile of delivered TAC proved that 80%, 16%, and 4% of the cutaneous drug level was deposited in the stratum corneum, viable epidermis, and upper dermis, respectively. TAC delivered by PLG was able to efficiently decrease the IL-2 and TSLP expressions in human skin models. Taking advantage of the excellent physicochemical and biological properties of PLG, it can be used for efficient dermal TAC delivery and potential treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Fatemeh Zabihi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Hussein YHA, Youssry M. Polymeric Micelles of Biodegradable Diblock Copolymers: Enhanced Encapsulation of Hydrophobic Drugs. MATERIALS 2018; 11:ma11050688. [PMID: 29702593 PMCID: PMC5978065 DOI: 10.3390/ma11050688] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
Abstract
Polymeric micelles are potentially efficient in encapsulating and performing the controlled release of various hydrophobic drug molecules. Understanding the fundamental physicochemical properties behind drug⁻polymer systems in terms of interaction strength and compatibility, drug partition coefficient (preferential solubilization), micelle size, morphology, etc., encourages the formulation of polymeric nanocarriers with enhanced drug encapsulating capacity, prolonged circulation time, and stability in the human body. In this review, we systematically address some open issues which are considered to be obstacles inhibiting the commercial availability of polymer-based therapeutics, such as the enhancement of encapsulation capacity by finding better drug⁻polymer compatibility, the drug-release kinetics and mechanisms under chemical and mechanical conditions simulating to physiological conditions, and the role of preparation methods and solvents on the overall performance of micelles.
Collapse
Affiliation(s)
- Yasser H A Hussein
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohamed Youssry
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
27
|
Zhang Y, Lu Y, Zhang Y, He X, Chen Q, Liu L, Chen X, Ruan C, Sun T, Jiang C. Tumor-Targeting Micelles Based on Linear–Dendritic PEG–PTX8 Conjugate for Triple Negative Breast Cancer Therapy. Mol Pharm 2017; 14:3409-3421. [DOI: 10.1021/acs.molpharmaceut.7b00430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yujie Zhang
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yifei Lu
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yu Zhang
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Xi He
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Lisha Liu
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Xinli Chen
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Chunhui Ruan
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Tao Sun
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Chen Jiang
- Key Laboratory of Smart Drug
Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology,
Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Pei Q, Hu X, Wang L, Liu S, Jing X, Xie Z. Cyclodextrin/Paclitaxel Dimer Assembling Vesicles: Reversible Morphology Transition and Cargo Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26740-26748. [PMID: 28763197 DOI: 10.1021/acsami.7b08110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we developed stable supramolecular binary vesicles on the basis of the host-guest interaction between β-cyclodextrins (β-CDs) and paclitaxel (PTX) dimer. The inclusion complexation between PTX dimer and β-CDs in water was studied by proton nuclear magnetic resonance spectroscopy and two-dimensional rotating-frame Overhauser effect spectroscopy. The resulting inclusion complex was amphiphilic and could self-assemble into vesicles with average diameter of 230 nm. The vesicles could evolve to nanoparticles (NPs) by adding competitive binding guest amantadine hydrochloride or by digesting β-CDs through α-amylase. Moreover, this process was reversible, and the NPs could also transform to vesicles by adding enough β-CDs again. The obtained hollow supramolecular vesicles were further explored to load hydrophilic dye indocyanine green molecule or hydrophobic anticancer drug doxorobicin for their controlled release under external stimulus. This work provides a new strategy for the design of supramolecular systems by using prodrug as building blocks.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| |
Collapse
|
29
|
Docetaxel prodrug self-assembled nanosystem: Synthesis, formulation and cytotoxicity. Bioorg Med Chem Lett 2017; 28:826-830. [PMID: 29395972 DOI: 10.1016/j.bmcl.2017.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
Abstract
Conventional drug delivery systems of docetaxel (DTX) are challenged with low drug loading efficiency and potential carriers-induced toxicity. In this work, a docetaxel prodrug self-assembled nanosystem was designed and synthesized by conjugating docetaxel with oleic acid (OA) exploring a thioether as the linker, which is redox-sensitive to the redox environment within tumor cells. Notably, the carrier-free nanomedicine which does not need any carrier has obviously high drug loading that reaches 58%. Moreover, the cytotoxicity of DTX-S-OA maintains an equal level with DTX. The novel prodrug conjugate therefore has a promising perspective as carrier-free nanomedicine for cancer therapy due to its high drug loading property, redox-sensitive release and long circulation mechanism.
Collapse
|
30
|
Omar R, Bardoogo YL, Corem-Salkmon E, Mizrahi B. Amphiphilic star PEG-Camptothecin conjugates for intracellular targeting. J Control Release 2017; 257:76-83. [DOI: 10.1016/j.jconrel.2016.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
|
31
|
Zhou X, Chang C, Zhou Y, Sun L, Xiang H, Zhao S, Ma L, Zheng G, Liu M, Wei H. A comparison study to investigate the effect of the drug-loading site on its delivery efficacy using double hydrophilic block copolymer-based prodrugs. J Mater Chem B 2017; 5:4443-4454. [PMID: 32263972 DOI: 10.1039/c7tb00261k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polymeric delivery vehicles can improve the safety and efficacy of chemotherapy drugs by facilitating preferential tumor delivery. Double hydrophilic block copolymer (DHBC)-based prodrugs are considered as ideal candidates for drug delivery due to the elegant integration of benefits from both structures including polymeric prodrugs' superior protection and minimal premature drug release using covalent links and a DHBC-based "green" self-assembly strategy by a simple stimulus in a pure aqueous phase without the use of any organic solvent. Clearly, the location of drug molecules in the polymeric prodrugs has exerted a significant effect on their therapeutic efficiency. However, there has been no published data so far, to our knowledge, reporting the effect of drug-conjugated sites on its therapeutic efficacy, as well as some basic guidelines that can be followed to direct the future design of polymeric prodrugs. To this end, herein a thermo-sensitive DHBC, poly(N-(2-hydroxypropyl) methacrylamide)-b-poly(N-isopropyl acrylamide) (P(HPMA)-b-P(NIPAAm)), was designed and synthesized by successive reversible addition and fragmentation chain transfer (RAFT) polymerizations, and was chosen as a platform to clarify this issue. An anti-cancer drug, doxorubicin (DOX) was conjugated to the hydrophilic PHPMA block and the temperature-responsive P(NIPAAm) block, respectively, through a pH-liable hydrazone bond to fabricate two different types of polymeric prodrugs with the drug tethered to the micellar hydrophilic PHPMA shell or encapsulated within the hydrophobic P(NIPAAm) core upon temperature elevation above its lower critical solution temperature (LCST). A detailed comparison study was carried out to investigate which structure exhibits better properties and higher therapeutic efficacy in terms of micellar size, stability, cellular uptake, drug loading capacity, drug release behaviors and cell viability. The results showed the self-assembly of both DHBC-based prodrugs into well-dispersed spherical micelles with similar average hydrodynamic diameters (Dh) around 150 nm in phosphate buffer (PBS, pH 7.4) at 37 °C, but a higher drug loading content (DLC), and enhanced pH-mediated drug release, i.e., much accelerated drug release at pH 5.0, while slower at pH 7.4, as well as enhanced cytotoxicity when the drug was conjugated to the hydrophilic shell of the micelles. The guidelines obtained in this study are thus believed to direct the future design and development of polymeric prodrugs for efficient cancer therapy.
Collapse
Affiliation(s)
- Xufeng Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release 2017; 261:352-366. [PMID: 28163211 DOI: 10.1016/j.jconrel.2017.01.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
In the past few years, substantial efforts have been made in the design and preparation of polymeric micelles as novel drug delivery vehicles. Typically, polymeric micelles possess a spherical core-shell structure, with a hydrophobic core and a hydrophilic shell. Consequently, poorly water-soluble drugs can be effectively solubilized within the hydrophobic core, which can significantly boost their drug loading in aqueous media. This leads to new opportunities for some bioactive compounds that have previously been abandoned due to their low aqueous solubility. Even so, the payload of small molecular drugs is still not often satisfactory due to low drug loading and premature release, which makes it difficult to meet the requirements of in vivo studies. This problem has been a major focus in recent years. Following an analysis of the published literature in this field, several strategies towards achieving polymeric micelles with high drug loading and stability are presented in this review, in order to ensure adequate drug levels reach target sites.
Collapse
|
33
|
Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Acta Biomater 2017; 49:444-455. [PMID: 27940163 DOI: 10.1016/j.actbio.2016.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
Challenges remain to load and deliver two or multiple drugs of complementary effects for synergistic cancer therapies. In the current study, multiarmed amphiphilic copolymers of 4-arm poly(ethylene glycol) (PEG) and polyaspartate (PAsp) are created for conjugation of camptothecin (CPT) and condensation with tumor necrosis factor-α (TNF) plasmids. Diethylenetriamine (DET) is grafted on PAsp, and CPT is conjugated onto PAsp(DET) by disulfide linkages to form hydrophobic cores of micelles, followed by condensation with TNF plasmids to form micelleplexes. The cis-aconitic linkers are introduced between PEG and PAsp(DET) to remove PEG shells in response to acidic pH, resulting in destabilized micelleplexes and prompted endosomal escape into the cytosol. The micelleplex disintegration in response to reductive stimuli in the cytosol leads to an efficient CPT release and pDNA disassociation. The co-delivery of CPT with TNF plasmids enhances the gene transfection of micelleplexes at low N/P ratios, and shows synergetic cytotoxicities to tumor cells with 2.5 and 8 folds lower IC50s compared with those after treatment with CPT or TNF alone, respectively. The micelleplex treatment on 4T1 tumor models dramatically extends the animal survival and suppresses the tumor growth with 2.3 and 3 folds lower in volume compared with CPT or TNF treatment alone, respectively. Histological and biochemical analyses display TNF expressions in tumor tissues after micelleplex treatment, resulting in significantly larger necrotic regions in tumors, higher cell apoptosis rates, and no obvious sign of tumor metastasis in lungs compared with other treatment. Therefore, the multifunctional micelleplexes based on multiarmed PEG-PAsp(DET) copolymers offer the targeted drug/gene delivery, dually responsive drug/gene release and synergistic antitumor efficacy, holding great promises for combination therapies. STATEMENT OF SIGNIFICANCE Micelleplexes are constructed from multiarmed amphiphilic copolymers with conjugation of captothecin (CPT) and condensation of tumor necrosis factor-α (TNF) plasmid. The pH/redox stimuli realize co-delivery of CPT and pDNA in a sequential manner of folate-mediated endocytosis, endosomal escape induced by PEG cleavage, reduction-sensitive release of CPT in cytosol, and pDNA release from disintegrated polyplexes after CPT release. Compared with CPT or TNF treatment alone, the micelleplexes achieve 2.5 and 8 folds higher cytotoxicities to tumor cells, and suppress the tumor growth with 2.3 and 3 folds lower in volume, respectively. It demonstrates a feasible strategy to develop multifunctional micelleplexes with simultaneous drug conjugation and pDNA condensation, dually responsive drug/gene release and synergistic antitumor efficacy, holding great promise for combinational therapies.
Collapse
|
34
|
Yang R, Mondal G, Ness RA, Arnst K, Mundra V, Miller DD, Li W, Mahato RI. Polymer conjugate of a microtubule destabilizer inhibits lung metastatic melanoma. J Control Release 2017; 249:32-41. [PMID: 28130039 DOI: 10.1016/j.jconrel.2017.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Melanoma is the most aggressive type of skin cancer. It is highly metastatic, migrating through lymph nodes to distant sites of the body, especially to lungs, liver and brain. Systemic chemotherapy remains the mainstay of treatment; however, the development of multidrug resistance (MDR) restricts the efficacy of current chemotherapeutic drugs. We synthesized a series of microtubule destabilizers, substituted methoxybenzoyl-ary-thiazole (SMART) compounds, which inhibited tubulin polymerization and effectively circumvented MDR. Due to poor water solubility of SMART compounds, co-solvent delivery is required for their systemic administration, which is usually associated with hepatotoxicity, nephrotoxicity and hemolysis. To solve this problem and also to increase circulation time, we synthesized a new SMART analogue, SMART-OH, and its polymer-drug conjugate, methoxy-poly (ethylene glycol)-block-poly (2-methyl-2-carboxyl-propylene carbonate-graft-SMART-graft-dodecanol) (abbreviated as P-SMART), with 14.3±2.8% drug payload of SMART-OH. Similar to its parent drug, P-SMART showed significant anticancer activity against melanoma cells in cytotoxicity, colony formation, and cell invasion studies. In addition, P-SMART treatment led to cell cycle arrest at G2/M phase and cell accumulation in sub-G1 phase. We established a model of metastatic melanoma to the lung in C57/BL6 albino mice to determine in vivo efficacy of P-SMART and SMART-OH at the dose of 20mg/kg. P-SMART treatment resulted in significant inhibition of tumor growth and prolonged mouse median survival. In conclusion, P-SMART, a novel polymer-microtubule destabilizer conjugate, has the potential to treat metastatic melanoma.
Collapse
Affiliation(s)
- Ruinan Yang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rachel A Ness
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Kinsie Arnst
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Vaibhav Mundra
- Department of Pharmaceutical Sciences, Manchester University, North Manchester, IN 46962, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
35
|
Song X, Zhu JL, Wen Y, Zhao F, Zhang ZX, Li J. Thermoresponsive supramolecular micellar drug delivery system based on star-linear pseudo-block polymer consisting of β-cyclodextrin-poly(N-isopropylacrylamide) and adamantyl-poly(ethylene glycol). J Colloid Interface Sci 2016; 490:372-379. [PMID: 27914336 DOI: 10.1016/j.jcis.2016.11.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022]
Abstract
Chemotherapy is facing several limitations such as low water solubility of anticancer drugs and multidrug resistance (MDR) in cancer cells. To overcome these limitations, a thermoresponsive micellar drug delivery system formed by a non-covalently connected supramolecular block polymer was developed. The system is based on the host-guest interaction between a well-defined β-cyclodextrin (β-CD) based poly(N-isopropylacrylamide) star host polymer and an adamantyl-containing poly(ethylene glycol) (Ad-PEG) guest polymer. The structures of the host and guest polymers were characterized by 1H and 13C NMR, GPC and FTIR. Subsequently, they formed a pseudo-block copolymer via inclusion complexation between β-CD core and adamantyl-moiety, which was confirmed by 2D NMR. The thermoresponsive micellization of the copolymer was investigated by UV-vis spectroscopy, DLS and TEM. At 37°C, the copolymer at a concentration of 0.2mg/mL in PBS formed micelles with a hydrodynamic diameter of ca. 282nm. The anticancer drug, doxorubicin (DOX), was successfully loaded into the core of the micelles with a loading level of 6% and loading efficiency of 17%. The blank polymer micelles showed good biocompatibility in cell cytotoxicity studies. Moreover, the DOX-loaded micelles demonstrated superior therapeutic effects in AT3B-1-N (MDR-) and AT3B-1 (MDR+) cell lines as compared to free DOX control, overcoming MDR in cancer cells.
Collapse
Affiliation(s)
- Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Jing-Ling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Feng Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Zhong-Xing Zhang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore.
| |
Collapse
|
36
|
Zhang X, Li C, Zheng H, Song H, Li L, Xiong F, Yang J, Qiu T. Glutathione-dependent micelles based on carboxymethyl chitosan for delivery of doxorubicin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1824-1840. [PMID: 27707353 DOI: 10.1080/09205063.2016.1238128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel glutathione (GSH)-dependent micelles based on carboxymethyl chitosan (CMCS) were developed for triggered intracellular release of doxorubicin (DOX). DOX-33'-Dithiobis (N-hydroxysuccinimidyl propionate)-CMCS (DOX-DSP-CMCS) prodrugs were synthesized. DOX was attached to the amino group on CMCS via disulfide bonds and drug-loaded micelles were formed by self-assembly. The micelles formed core-shell structure with CMCS and DOX as the shell and core, respectively, in aqueous media. The structure of the prodrugs was confirmed by IR and proton nuclear magnetic resonance (1H NMR) spectroscopy. The drug-loading capacity determined by UV spectrophotometry was 4.96% and the critical micelle concentration of polymer prodrugs determined by pyrene fluorescence was 0.089 mg/mL. Micelles were spherical and the mean size of the nanoparticles was 174 nm, with a narrow polydispersity index of 0.106. Moreover, in vitro drug release experiments showed that the micelles were highly GSH-sensitive owing to the reductively degradable disulfide bonds. Cell counting kit (CCK-8) assays revealed that DOX-DSP-CMCS micelles exhibited effective cytotoxicity against HeLa cells. Moreover, confocal laser scanning microscopy (CLSM) demonstrated that DOX-DSP-CMCS micelles could efficiently deliver and release DOX in the cancer cells. In conclusion, the DOX-DSP-CMCS nanosystem is a promising drug delivery vehicle for cancer therapy.
Collapse
Affiliation(s)
- Xueqiong Zhang
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Chunfu Li
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Hua Zheng
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Haoyuan Song
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Lianghong Li
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Fuliang Xiong
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Jin Yang
- b School of Traditional Chinese Medicine , Hubei University for Nationalities , Enshi , China
| | - Tong Qiu
- c Biomedical Materials and Engineering Center , Wuhan University of Technology , Wuhan , China
| |
Collapse
|
37
|
|
38
|
Yang R, Mondal G, Wen D, Mahato RI. Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:391-401. [PMID: 27520724 DOI: 10.1016/j.nano.2016.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/24/2023]
Abstract
Repeated treatments with chemotherapeutic agent(s) fail due to cancer stem cells (CSCs) and chemoresistance regulated by microRNAs (miRNA) whose expression alters owing to dysfunctional signaling pathways including Hedgehog (Hh) signaling. We previously demonstrated the combination of Hh inhibitor cyclopamine (CYP) and paclitaxel (PTX) effectively inhibit PTX-resistant cells and side population, a cell fraction rich in CSCs. In this study, we synthesized mPEG-b-PCC-g-PTX-g-DC (P-PTX) and mPEG-b-PCC-g-CYP-g-DC (P-CYP) polymer-drug conjugates, which they self-assembled into micelles. The combination of P-PTX and P-CYP alleviated PTX resistance and suppressed tumor colony formation. Further, combination therapy inhibited Hh signaling and up-regulated tumor suppressor miRNAs. We established orthotopic prostate tumor in nude mice and there was significant tumor growth inhibition in the group treated with the combination therapy of P-PTX and P-CYP compared with monotherapy. In conclusion, this combination therapy of P-PTX and P-CYP has the potential to treat chemoresistant prostate cancer.
Collapse
Affiliation(s)
- Ruinan Yang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Di Wen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
39
|
Liu Y, Xu Y, Wu M, Fan L, He C, Wan JB, Li P, Chen M, Li H. Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity. Int J Nanomedicine 2016; 11:3167-78. [PMID: 27471384 PMCID: PMC4948723 DOI: 10.2147/ijn.s103556] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitoxantrone (MIT) is a chemotherapeutic agent with promising anticancer efficacy. In this study, Pluronic F68-vitamine E succinate (F68-VES) amphiphilic polymer micelles were developed for delivering MIT and enhancing its anticancer activity. MIT-loaded F68–VES (F68–VES/MIT) micelles were prepared via the solvent evaporation method with self-assembly under aqueous conditions. F68–VES/MIT micelles were found to be of optimal particle size with the narrow size distribution. Transmission electron microscopy images of F68–VES/MIT micelles showed homogeneous spherical shapes and smooth surfaces. F68–VES micelles had a low critical micelle concentration value of 3.311 mg/L, as well as high encapsulation efficiency and drug loading. Moreover, F68–VES/MIT micelles were stable in the presence of fetal bovine serum for 24 hours and maintained sustained drug release in vitro. Remarkably, the half maximal inhibitory concentration (IC50) value of F68–VES/MIT micelles was lower than that of free MIT in both MDA-MB-231 and MCF-7 cells (two human breast cancer cell lines). In addition, compared with free MIT, there was an increased trend of apoptosis and cellular uptake of F68–VES/MIT micelles in MDA-MB-231 cells. Taken together, these results indicated that F68–VES polymer micelles were able to effectively deliver MIT and largely improve its potency in cancer therapy.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yingqi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Minghui Wu
- Department of Cell Biology and Anatomy, School of Medicine, University of Florida, Gainesville, FL, USA
| | - Lijiao Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
40
|
Lu L, Zheng Y, Weng S, Zhu W, Chen J, Zhang X, Lee RJ, Yu B, Jia H, Qin L. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles. Colloids Surf B Biointerfaces 2016; 142:417-423. [DOI: 10.1016/j.colsurfb.2016.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/27/2015] [Accepted: 02/16/2016] [Indexed: 01/14/2023]
|
41
|
Xue P, Liu D, Wang J, Zhang N, Zhou J, Li L, Guo W, Sun M, Han X, Wang Y. Redox-Sensitive Citronellol–Cabazitaxel Conjugate: Maintained in Vitro Cytotoxicity and Self-Assembled as Multifunctional Nanomedicine. Bioconjug Chem 2016; 27:1360-72. [DOI: 10.1021/acs.bioconjchem.6b00155] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peng Xue
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Dan Liu
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jing Wang
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Na Zhang
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiahua Zhou
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Lin Li
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Weiling Guo
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Mengchi Sun
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiangfei Han
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yongjun Wang
- School
of Pharmacy and ‡Key Laboratory of Structure-Based
Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
42
|
Li M, Gao M, Fu Y, Chen C, Meng X, Fan A, Kong D, Wang Z, Zhao Y. Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery. Colloids Surf B Biointerfaces 2016; 140:11-18. [DOI: 10.1016/j.colsurfb.2015.12.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 01/17/2023]
|
43
|
Karami Z, Sadighian S, Rostamizadeh K, Parsa M, Rezaee S. Naproxen conjugated mPEG-PCL micelles for dual triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:665-73. [PMID: 26838895 DOI: 10.1016/j.msec.2015.12.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 10/26/2015] [Accepted: 12/28/2015] [Indexed: 01/08/2023]
Abstract
A conjugate of the NSAIDs drug, naproxen, with diblock methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) copolymer was synthesized by the reaction of copolymer with naproxen in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The naproxen conjugated copolymers were characterized with different techniques including (1)HNMR, FTIR, and DSC. The naproxen conjugated mPEG-PCL copolymers were self-assembled into micelles in aqueous solution. The TEM analysis revealed that the micelles had the average size of about 80 nm. The release behavior of conjugated copolymer was investigated in two different media with the pH values of 7.4 and 5.2. In vitro release study showed that the drug release rate was dependant on pH as it was higher at lower pH compared to neutral pH. Another feature of the conjugated micelles was a more sustained release profile compared to the conjugated copolymer. The kinetic of the drug release from naproxen conjugated micelles under different values of pH was also investigated by different kinetic models such as first-order, Makoid-Banakar, Weibull, Logistic, and Gompertz.
Collapse
Affiliation(s)
- Zahra Karami
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Sadighian
- Department of Pharmaceutical biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Maliheh Parsa
- Department of Toxicology & Pharmacology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Rezaee
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
44
|
Pharmacokinetics and antitumor efficacy of micelles assembled from multiarmed amphiphilic copolymers with drug conjugates in comparison with drug-encapsulated micelles. Eur J Pharm Biopharm 2015; 98:9-19. [PMID: 26523356 DOI: 10.1016/j.ejpb.2015.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 11/21/2022]
Abstract
The premature drug release and structural dissociation before reaching pathological sites have posed major challenges for self-assembled micelles. To address these challenges, star-shaped amphiphilic copolymers derived from 4-armed poly(ethylene glycol) (PEG) were proposed for chemical conjugation of chemotherapeutic drugs and assembly into drug-conjugated micelles (DCM) with reductive sensitivity. The current study aimed to elucidate the in vitro and in vivo performance of DCM and a comparison with conventional drug-encapsulated micelles (DEM) was initially launched. DEM carriers were constructed with a similar structure to DCM from 4-armed PEG, and disulfide linkages were located between the hydrophilic and hydrophobic segments. Both DCM and DEM had an average size of around 130 nm, camptothecin (CPT) loadings of around 7.7% and critical micelle concentrations of around 0.95 μg/ml. Compared with DEM, DCM showed a lower initial drug release, a lower sensitivity of drug release to glutathione, and a higher structural stability after incubation with human serum albumin (HSA). The CPT derivatives (CPT-SH) released from DCM indicated cytotoxicities similar to CPT and remained a higher lactone stability than CPT in the presence of HSA. DCM showed slightly higher cytotoxicities to 4T1 cells and significantly lower cytotoxicities to normal cells than DEM. Pharmacokinetic analyses after intravenous administration of DCM indicated around 2.65 folds higher AUC0-∞, 2.66 folds lower clearance, and 1.87 folds higher tumor accumulation than those of DEM. In addition to a less disturbance to hematological and biochemical parameters and a lower acute toxicity to small intestines, DCM showed more significant tumor suppression efficacy and less tumor metastasis to lungs than DEM. It is suggested that DCM could overcome the limitation of conventional micelles by alleviating the premature drug release during blood circulation, relieving the systemic toxicity and promoting the therapeutic efficacy.
Collapse
|
45
|
Hu X, Guan X, Li J, Pei Q, Liu M, Xie Z, Jing X. Hybrid polymer micelles capable of cRGD targeting and pH-triggered surface charge conversion for tumor selective accumulation and promoted uptake. Chem Commun (Camb) 2015; 50:9188-91. [PMID: 24995506 DOI: 10.1039/c4cc04056b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents both tumor-targeting ligands (cRGD) and pH-activated surface charge-conversional moiety (imidazole) decorated micelles for Dox delivery. cRGD is expected to induce preferential tumor accumulation, while imidazole switches on positive charge in a tumor acid environment, which leads to enhanced micelle uptake by tumor cells.
Collapse
Affiliation(s)
- Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Cai Y, Sun Z, Fang X, Fang X, Xiao F, Wang Y, Chen M. Synthesis, characterization and anti-cancer activity of Pluronic F68-curcumin conjugate micelles. Drug Deliv 2015; 23:2587-2595. [PMID: 26066393 DOI: 10.3109/10717544.2015.1037970] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Curcumin (CUR), a nontoxic polyphenol derived from the rhizome of turmeric (Curcuma longa), has been recognized as an anti-cancer and chemo-preventative agent. However, its clinical application for cancer treatment has been greatly limited due to its poor water-solubility and low bioavailability. To tackle this problem, Pluronic F68-CUR (F68-CUR) conjugate micelles, which are amphiphilic copolymers, were designed and synthesized in this study. These highly stable micelles with CUR concentrated in the core were formulated using the solvent evaporation method and were confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Physicochemical characterization of F68-CUR conjugate micelles revealed that high drug loading content (DL%; 0.248 mg CUR/1 mg F68) was achieved, and the average particle size of micelles was 115.2 ± 3.0 nm. Compared with free CUR, a significantly higher cytotoxicity against human breast cancer cell line MDA-MB-231 was observed in F68-CUR conjugate micelles. The IC50 value of F68-CUR conjugate micelles was 1.95-fold lower than that of free CUR, indicating that the anti-cancer activity of CUR was significantly improved in the micelles. Furthermore, apoptotic studies demonstrated that F68-CUR conjugate micelles induced more cell apoptosis than that of free CUR. Taken together, these results demonstrate that F68-CUR conjugate micelles are promising to improve the clinical effectiveness of CUR in cancer treatment.
Collapse
Affiliation(s)
- Yuee Cai
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China
| | - Zhongqing Sun
- b Department of Pharmacology , School of Medicine, Jinan University , Guangzhou , P.R. China , and
| | - Xiaobin Fang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China
| | - Xiefan Fang
- c Department of Pediatrics , College of Medicine, University of Florida , Gainesville , FL , USA
| | - Fei Xiao
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China.,b Department of Pharmacology , School of Medicine, Jinan University , Guangzhou , P.R. China , and
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China
| | - Meiwan Chen
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China
| |
Collapse
|
47
|
Ping Y, Guo J, Ejima H, Chen X, Richardson JJ, Sun H, Caruso F. pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2032-6. [PMID: 25556334 DOI: 10.1002/smll.201403343] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 05/11/2023]
Abstract
A new class of pH-responsive capsules based on metal-phenolic networks (MPNs) for anticancer drug loading, delivery and release is reported. The fabrication of drug-loaded MPN capsules, which is based on the formation of coordination complexes between natural polyphenols and metal ions over a drug-coated template, represents a rapid strategy to engineer robust and versatile drug delivery carriers.
Collapse
Affiliation(s)
- Yuan Ping
- ARC Centre of Excellence in Convergent Bio-Nano, Science and Technologyand Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Thitiwuthikiat P, Ii M, Saito T, Asahi M, Kanokpanont S, Tabata Y. A vascular patch prepared from Thai silk fibroin and gelatin hydrogel incorporating simvastatin-micelles to recruit endothelial progenitor cells. Tissue Eng Part A 2015; 21:1309-19. [PMID: 25517108 DOI: 10.1089/ten.tea.2014.0237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Delayed re-endothelialization is one of the major disadvantages in synthetic vascular grafts, especially in small-diameter grafts (inner diameter <6 mm), leading to thrombosis and stenosis of the grafts. Simvastatin, a serum cholesterol-lowering drug, has promotional effects on endothelial progenitor cell (EPC) mobilization from bone marrow and recruitment to sites of vascular injury exhibiting acceleration of re-endothelialization. In this study, we prepared double-layer vascular patches from Thai silk fibroin/gelatin with gelatin hydrogel incorporating simvastatin-micelles (SM) for sustained release of simvastatin to recruit circulation EPCs. To enhance simvastatin solubility, simvastatin was entrapped in micelles of l-lactic acid oligomer-grafted gelatin. The drug loading efficiency was at 4.1 ± 0.5 μg/mg micelles. SM had a chemoattractive effect on EPCs comparable to nonmodified simvastatin. Gelatin hydrogel incorporating SM at 100 μM of simvastatin (GSM100) could enhance in vitro EPC activities of adhesion and proliferation. In vitro results showed the initial cell adhesion of 86%, specific growth rate of 15.33×10(-3) h(-1), and population doubling time of 46.21 h. In vivo implantation of the patches incorporating SM significantly increased the recruitment of circulating EPCs. From the results of immunofluorescence staining, they demonstrated the complete re-endothelialization on the implanted patches containing SM at 2 weeks after implantation in rat carotid arteries. The gelatin hydrogel incorporating SM could be an effective inner layer of multifunctional vascular grafts to accelerate re-endothelialization in vascular tissue engineering.
Collapse
Affiliation(s)
- Piyanuch Thitiwuthikiat
- 1 Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University , Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
49
|
Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:691-707. [PMID: 25683687 DOI: 10.1002/wnan.1332] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/16/2014] [Accepted: 11/21/2014] [Indexed: 01/01/2023]
Abstract
Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers, are widely considered as convenient nano-carriers for a variety of applications, such as diagnostic imaging, and drug and gene delivery. They have demonstrated a variety of favorable properties including biocompatibility, longevity, high stability in vitro and in vivo, capacity to effectively solubilize a variety of poorly soluble drugs, changing the release profile of the incorporated pharmaceutical agents, and the ability to accumulate in the target zone based on the enhanced permeability and retention effect. Moreover, additional functions can be imparted to the micelle-based delivery systems by engineering their surface for specific applications. Various targeting ligands can be attached for cell or intracellular accumulation at a site of interest. Also, the chelation or incorporation of imaging moieties into the micelle structure enables in vivo biodistribution studies. Moreover, pH-, thermo-, ultrasound-, enzyme- and light-sensitive block-copolymers allow for controlled micelle dissociation and triggered drug release in response to the pathological environment-specific stimuli and/or externally applied signals. The combination of these approaches can further improve specificity and efficacy of micelle-based drug delivery to promote the development of smart multifunctional micelles.
Collapse
Affiliation(s)
- Sara Movassaghian
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| |
Collapse
|
50
|
Wang Z, Chen C, Zhang Q, Gao M, Zhang J, Kong D, Zhao Y. Tuning the architecture of polymeric conjugate to mediate intracellular delivery of pleiotropic curcumin. Eur J Pharm Biopharm 2015; 90:53-62. [DOI: 10.1016/j.ejpb.2014.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|