1
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
2
|
Jaiswal A, Kaushik N, Acharya TR, Uhm HS, Choi EH, Kaushik NK. Antiaging in a Bottle: Bioactive Competency of Plasma-Generated Nitric Oxide Water for Modulation of Aging-Related Signature in Human Dermal Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59991-60007. [PMID: 39437326 DOI: 10.1021/acsami.4c14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Nitric oxide (NO), a potential therapeutic antiaging molecule, modulates various physiological and cellular processes. However, alterations in endogenous NO levels brought on by aging impact multiple organ systems and heighten susceptibility to age-related skin diseases. This correlation underscores the importance of investigating NO-based antiaging interventions. Nonthermal plasma-generated NO is a promising avenue for cosmetic and regenerative medicine due to its capacity to stimulate cellular growth. Herein, we examine the potential of plasma-generated nitric oxide water (NOW) as a bioactive agent in human dermal fibroblasts, emphasizing gene expression patterns linked to extracellular matrix (ECM) breakdown and cellular senescence. The findings of our study indicate that administering NOW at lower dosages enhances cell migration and proliferation. Moreover, the genetic signatures associated with ECM synthesis, antioxidant defense, and antisenescence pathways have been analyzed in NOW-exposed cells. Notably, the downregulation of ECM-degrading enzyme transcripts─collagenase, elastase, and hyaluronidase─suggests NOW's potential in mitigating the intrinsic skin aging phenomena, emphasizing the promise of NO-based interventions in advancing antiaging strategies within regenerative medicine.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Han Sup Uhm
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
3
|
Abdel Azim S, Whiting C, Friedman AJ. Applications of nitric oxide-releasing nanomaterials in dermatology: Skin infections and wound healing. Nitric Oxide 2024; 146:10-18. [PMID: 38458595 DOI: 10.1016/j.niox.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nitric oxide (NO) is produced in most cells in the skin and is an important regulator of essential cutaneous functions, including responses to UV irradiation, microbial defense, wound healing, melanogenesis and epidermal permeability barrier homeostasis. Harnessing the physiological activities of NO for therapeutic use is difficult because the molecule is highly reactive and unstable. A variety of exogenous NO delivery platforms have been developed and evaluated; however, they have limited clinical applications in dermatology due to instability and poor cutaneous penetration. NO-releasing nanomaterials overcome these limitations, providing targeted tissue delivery, and sustained and controlled NO release. This review provides a comprehensive and up-to-date evaluation of the use of NO-releasing nanomaterials in dermatology for the treatment of skin and soft tissue infections and wound healing.
Collapse
Affiliation(s)
- Sara Abdel Azim
- Georgetown University School of Medicine, Washington, DC, USA
| | - Cleo Whiting
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam J Friedman
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
4
|
Sepordeh S, Jafari AM, Bazzaz S, Abbasi A, Aslani R, Houshmandi S, Rad AH. Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry. Curr Pharm Biotechnol 2024; 25:1245-1263. [PMID: 37702234 DOI: 10.2174/1389201025666230912123849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk. OBJECTIVES With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance. RESULTS Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of largescale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods. CONCLUSION Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.
Collapse
Affiliation(s)
- Sama Sepordeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Houshmandi
- Department of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Hetta HF, Ramadan YN, Al-Kadmy IMS, Ellah NHA, Shbibe L, Battah B. Nanotechnology-Based Strategies to Combat Multidrug-Resistant Candida auris Infections. Pathogens 2023; 12:1033. [PMID: 37623993 PMCID: PMC10458664 DOI: 10.3390/pathogens12081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
An emerging multidrug-resistant pathogenic yeast called Candida auris has a high potential to spread quickly among hospitalized patients and immunodeficient patients causing nosocomial outbreaks. It has the potential to cause pandemic outbreaks in about 45 nations with high mortality rates. Additionally, the fungus has become resistant to decontamination techniques and can survive for weeks in a hospital environment. Nanoparticles might be a good substitute to treat illnesses brought on by this newly discovered pathogen. Nanoparticles have become a trend and hot topic in recent years to combat this fatal fungus. This review gives a general insight into the epidemiology of C. auris and infection. It discusses the current conventional therapy and mechanism of resistance development. Furthermore, it focuses on nanoparticles, their different types, and up-to-date trials to evaluate the promising efficacy of nanoparticles with respect to C. auris.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq;
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Lama Shbibe
- Faculty of Science, Damascus University, Damascus 97009, Syria;
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, Damascus 36822, Syria
| |
Collapse
|
6
|
Dynamic nitric oxide/drug codelivery system based on polyrotaxane architecture for effective treatment of Candida albicans infection. Acta Biomater 2023; 155:618-634. [PMID: 36371005 DOI: 10.1016/j.actbio.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
The low permeability of antifungal agents to fungal biofilms, which allows the continued survival of the fungus inside, is a key issue that makes fungal infections difficult to cure. Inspired by the unique dynamic molecule motion properties of the polyrotaxane (PR) nanomedicine, herein, a dynamic delivery system Clo@mPRP/NONOate was fabricated by co-loading nitric oxide (NO) and the antifungal drug clotrimazole (Clo) onto the α-cyclodextrin (α-CD) PR modified mesoporous polydopamine (mPDA) nanoparticles, in which pentaethylenehexamine (PEHA) was grafted to α-CDs. The cationic α-CDs endowed this dynamic NO/Clo codelivery system with the ability to effectively attach to fungal biofilms through electrostatic interaction, while the introduction of PRs with flexible molecule motion (slide and rotation of CDs) enhanced the permeability of nanoparticles to biofilms. Meanwhile, NO could effectively inhibit the formation of fungal hyphae, showing an dissipating effect on mature biofilms, and could be further combined with Clo to completely eradicate fungi inside the biofilms. In addition, the dynamic system Clo@mPRP/NONOate could efficiently and synergistically eliminate planktonic Candida albicans (C. albicans) in a safe and no toxic side effect manner, and effectively cured C. albicans-induced vaginal infection in mice. Therefore, this dynamic NO/Clo codelivery system provided an effective solution to the clinical treatment of C. albicans-induced vaginal infection, and the application prospect could even be extended to other microbial infectious diseases. STATEMENT OF SIGNIFICANCE: A dynamic codelivery system based on cationized cyclodextrin polyrotaxane combining nitric oxide and antifungal drugs clotrimazole was prepared to deal with the issue of clinical fungal biofilm infection. This dynamic codelivery system could be attached to the Candida albicans biofilms and penetrate into biofilm via flexible molecular mobility to effectively eradicate the fungi. This dynamic codelivery system could synergistically and efficiently eliminate planktonic-state Candida albicans, but did not show significant cytotoxicity to normal somatic cells.
Collapse
|
7
|
Dolma KG, Khati R, Paul AK, Rahmatullah M, de Lourdes Pereira M, Wilairatana P, Khandelwal B, Gupta C, Gautam D, Gupta M, Goyal RK, Wiart C, Nissapatorn V. Virulence Characteristics and Emerging Therapies for Biofilm-Forming Acinetobacter baumannii: A Review. BIOLOGY 2022; 11:biology11091343. [PMID: 36138822 PMCID: PMC9495682 DOI: 10.3390/biology11091343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Acinetobacter baumannii (A. baumannii) is one of the ESKAPE organisms and has the competency to build biofilms. These biofilms account for the most nosocomial infections all over the world. This review reflects on the various physicochemical and environmental factors such as adhesion, pili expression, growth surfaces, drug-resistant genes, and virulence factors that profoundly affect its resistant forte. Emerging drug-resistant issues and limitations to newer drugs are other factors affecting the hospital environment. Here, we discuss newer and alternative methods that can significantly enhance the susceptibility to Acinetobacter spp. Many new antibiotics are under trials, such as GSK-3342830, The Cefiderocol (S-649266), Fimsbactin, and similar. On the other hand, we can also see the impact of traditional medicine and the secondary metabolites of these natural products’ application in searching for new treatments. The field of nanoparticles has demonstrated effective antimicrobial actions and has exhibited encouraging results in the field of nanomedicine. The use of various phages such as vWUPSU and phage ISTD as an alternative treatment for its specificity and effectiveness is being investigated. Cathelicidins obtained synthetically or from natural sources can effectively produce antimicrobial activity in the micromolar range. Radioimmunotherapy and photodynamic therapy have boundless prospects if explored as a therapeutic antimicrobial strategy. Abstract Acinetobacter species is one of the most prevailing nosocomial pathogens with a potent ability to develop antimicrobial resistance. It commonly causes infections where there is a prolonged utilization of medical devices such as CSF shunts, catheters, endotracheal tubes, and similar. There are several strains of Acinetobacter (A) species (spp), among which the majority are pathogenic to humans, but A. baumannii are entirely resistant to several clinically available antibiotics. The crucial mechanism that renders them a multidrug-resistant strain is their potent ability to synthesize biofilms. Biofilms provide ample opportunity for the microorganisms to withstand the harsh environment and further cause chronic infections. Several studies have enumerated multiple physiological and virulence factors responsible for the production and maintenance of biofilms. To further enhance our understanding of this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.
Collapse
Affiliation(s)
- Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Rachana Khati
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Chamma Gupta
- Department of Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Deepan Gautam
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
8
|
Loloi J, Babar M, Davies KP, Suadicani SO. Nanotechnology as a tool to advance research and treatment of non-oncologic urogenital diseases. Ther Adv Urol 2022; 14:17562872221109023. [PMID: 35924206 PMCID: PMC9340423 DOI: 10.1177/17562872221109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology represents an expanding area of research and innovation in almost every field of science, including Medicine, where nanomaterial-based products have been developed for diagnostic and therapeutic applications. Because of their small, nanoscale size, these materials exhibit unique physical and chemical properties that differ from those of each component when considered in bulk. In Nanomedicine, there is an increasing interest in harnessing these unique properties to engineer nanocarriers for the delivery of therapeutic agents. Nano-based drug delivery platforms have many advantages over conventional drug administration routes as this technology allows for local and transdermal applications of therapeutics that can bypass the first-pass metabolism, improves drug efficacy through encapsulation of hydrophobic drugs, and allows for a sustained and controlled release of encapsulated agents. In Urology, nano-based drug delivery platforms have been extensively investigated and implemented for cancer treatment. However, there is also great potential for use of nanotechnology to treat non-oncologic urogenital diseases. We provide an update on research that is paving the way for clinical translation of nanotechnology in the areas of erectile dysfunction (ED), overactive bladder (OAB), interstitial cystitis/bladder pain syndrome (IC/BPS), and catheter-associated urinary tract infections (CAUTIs). Overall, preclinical and clinical studies have proven the utility of nanomaterials both as vehicles for transdermal and intravesical delivery of therapeutic agents and for urinary catheter formulation with antimicrobial agents to treat non-oncologic urogenital diseases. Although clinical translation will be dependent on overcoming regulatory challenges, it is inevitable before there is universal adoption of this technology to treat non-oncologic urogenital diseases.
Collapse
|
9
|
Nitric oxide releasing nanoparticles reduce inflammation in a small animal model of ARDS. Pharmacotherapy 2022; 148:112705. [DOI: 10.1016/j.biopha.2022.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
|
10
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
11
|
Kumar SB, Arnipalli SR, Ziouzenkova O. Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics (Basel) 2020; 9:antibiotics9100688. [PMID: 33066005 PMCID: PMC7600537 DOI: 10.3390/antibiotics9100688] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.
Collapse
|
12
|
NO Candida auris: Nitric Oxide in Nanotherapeutics to Combat Emerging Fungal Pathogen Candida auris. J Fungi (Basel) 2020; 6:jof6020085. [PMID: 32545506 PMCID: PMC7344485 DOI: 10.3390/jof6020085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Candida auris (C. auris) is an emerging pathogenic fungal species that is especially worrisome due to its high mortality rates and widespread antifungal resistance. Previous studies have demonstrated the efficacy of nitric oxide (NO) nanoparticles on Candida species, and, to our knowledge, this is the first study to investigate the antifungal effects of a NO-generating nanoparticle on C. auris. Six C. auris strains were incubated with a nanoparticle (NAC-SNO-np), which releases N-acetylcysteine S-nitrosothiol (NAC-SNO) and N-acetylcysteine (NAC), and generates NO, through colony forming unit (CFU) assays, and confocal laser scanning microscopy. NAC-SNO-np effectively eradicates planktonic and biofilm C. auris. Across all six strains, 10 mg/mL NAC-SNO-np significantly reduced the number of CFUs (p < 0.05) and demonstrated a >70% decrease in biofilm viability (p < 0.05). NAC-SNO-np effectively eradicates planktonic C. auris and significantly reduces C. auris biofilm formation. Hence, this novel NO-releasing nanoparticle shows promise as a future therapeutic.
Collapse
|
13
|
Wonoputri V, Gunawan C, Liu S, Barraud N, Yee LH, Lim M, Amal R. Ferrous ion as a reducing agent in the generation of antibiofilm nitric oxide from a copper-based catalytic system. Nitric Oxide 2018; 75:8-15. [DOI: 10.1016/j.niox.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/16/2022]
|
14
|
Tan AU, Schlosser BJ, Paller AS. A review of diagnosis and treatment of acne in adult female patients. Int J Womens Dermatol 2017; 4:56-71. [PMID: 29872679 PMCID: PMC5986265 DOI: 10.1016/j.ijwd.2017.10.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/19/2023] Open
Abstract
This review focuses on the treatment options for adult female patients with acne. Acne in adult female patients may start during adolescence and persist or have an onset in adulthood. Acne has various psychosocial effects that impact patients’ quality of life. Treatment of acne in adult women specifically has its challenges due to the considerations of patient preferences, pregnancy, and lactation. Treatments vary widely and treatment should be tailored specifically for each individual woman. We review conventional therapies with high levels of evidence, additional treatments with support from cohort studies and case reports, complementary and/or alternative therapies, and new agents under development for the treatment of patients with acne.
Collapse
Affiliation(s)
- A U Tan
- Northwestern University, Department of Dermatology, Chicago, IL
| | - B J Schlosser
- Northwestern University, Department of Dermatology, Chicago, IL
| | - A S Paller
- Northwestern University, Department of Dermatology, Chicago, IL
| |
Collapse
|
15
|
Hasan S, Thomas N, Thierry B, Prestidge CA. Controlled and Localized Nitric Oxide Precursor Delivery From Chitosan Gels to Staphylococcus aureus Biofilms. J Pharm Sci 2017; 106:3556-3563. [DOI: 10.1016/j.xphs.2017.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
|
16
|
Fleming G, Aveyard J, Fothergill JL, McBride F, Raval R, D'Sa RA. Nitric Oxide Releasing Polymeric Coatings for the Prevention of Biofilm Formation. Polymers (Basel) 2017; 9:E601. [PMID: 30965904 PMCID: PMC6418929 DOI: 10.3390/polym9110601] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 01/14/2023] Open
Abstract
The ability of nitric oxide (NO)-releasing polymer coatings to prevent biofilm formation is described. NO-releasing coatings on (poly(ethylene terephthalate) (PET) and silicone elastomer (SE)) were fabricated using aminosilane precursors. Pristine PET and SE were oxygen plasma treated, followed by immobilisation of two aminosilane molecules: N-(3-(trimethoxysilyl)propyl)diethylenetriamine (DET3) and N-(3-trimethoxysilyl)propyl)aniline (PTMSPA). N-diazeniumdiolate nitric oxide donors were formed at the secondary amine sites on the aminosilane molecules producing NO-releasing polymeric coatings. The NO payload and release were controlled by the aminosilane precursor, as DET3 has two secondary amine sites and PTMSPA only one. The antibacterial efficacy of these coatings was tested using a clinical isolate of Pseudomonas aeruginosa (PA14). All NO-releasing coatings in this study were shown to significantly reduce P. aeruginosa adhesion over 24 h with the efficacy being a function of the aminosilane modification and the underlying substrate. These NO-releasing polymers demonstrate the potential and utility of this facile coating technique for preventing biofilms for indwelling medical devices.
Collapse
Affiliation(s)
- George Fleming
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| | - Jenny Aveyard
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK.
| | - Fiona McBride
- The Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK.
| | - Rasmita Raval
- The Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK.
| | - Raechelle A D'Sa
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| |
Collapse
|
17
|
Tharmalingam S, Alhasawi A, Appanna VP, Lemire J, Appanna VD. Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications. Biol Chem 2017. [PMID: 28622140 DOI: 10.1515/hsz-2017-0152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrosative stress results from an increase in reactive nitrogen species (RNS) within the cell. Though the RNS - nitric oxide (·NO) and peroxynitrite (ONOO-) - play pivotal physiological roles, at elevated concentrations, these moieties can be poisonous to both prokaryotic and eukaryotic cells alike due to their capacity to disrupt a variety of essential biological processes. Numerous microbes are known to adapt to nitrosative stress by elaborating intricate strategies aimed at neutralizing RNS. In this review, we will discuss both the enzymatic systems dedicated to the elimination of RNS as well as the metabolic networks that are tailored to generate RNS-detoxifying metabolites - α-keto-acids. The latter has been demonstrated to nullify RNS via non-enzymatic decarboxylation resulting in the production of a carboxylic acid, many of which are potent signaling molecules. Furthermore, as aerobic energy production is severely impeded during nitrosative stress, alternative ATP-generating modules will be explored. To that end, a holistic understanding of the molecular adaptation to nitrosative stress, reinforces the notion that neutralization of toxicants necessitates significant metabolic reconfiguration to facilitate cell survival. As the alarming rise in antimicrobial resistant pathogens continues unabated, this review will also discuss the potential for developing therapies that target the alternative ATP-generating machinery of bacteria.
Collapse
|
18
|
Hasan S, Thomas N, Thierry B, Prestidge CA. Biodegradable nitric oxide precursor-loaded micro- and nanoparticles for the treatment of Staphylococcus aureus biofilms. J Mater Chem B 2017; 5:1005-1014. [PMID: 32263879 DOI: 10.1039/c6tb03290g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteria in biofilms are more difficult to eradicate than planktonic bacteria and result in treatment challenges for many chronic infectious diseases. Nitric oxide (NO) is an endogenous molecule that offers potential as an alternative to conventional antibiotics; however its sustained topical delivery to biofilms is not readily achieved. With this in mind, we report the development of biodegradable poly(lactide-co-glycolide) (PLGA) based microparticles (MP) and nanoparticles (NP) for encapsulation of the NO precursor isosorbide mononitrate (ISMN) and the controlled delivery to Staphylococcus aureus (S. aureus) biofilms. Firstly, water-in-oil-in-water (w/o/w) emulsification/solvent evaporation methods for PLGA NP and MP syntheses were experimentally optimised with respect to particle size and ISMN loading/encapsulation efficiency. The influence of various experiment parameters, such as the volume of inner aqueous phase, concentration of surfactants, mixing time on the particle size, drug loading and encapsulation efficiency were investigated systematically. Both PLGA MP and NP formulations enabled sustained ISMN release in physiological media over 3 to 5 days. PLGA MP with diameters of ∼3 μm and ISMN loading of 2.2% (w/w) were identified as the optimum delivery system and demonstrated significant antibacterial activity in S. aureus biofilms. This behaviour is considered to be due to targeted biofilm delivery through a combination of effective penetration and sustained release of ISMN.
Collapse
Affiliation(s)
- Sayeed Hasan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
19
|
Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model. Antimicrob Agents Chemother 2016; 61:AAC.02020-16. [PMID: 27821454 DOI: 10.1128/aac.02020-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is frequently isolated in the setting of infections of indwelling medical devices, which are mediated by the microbe's ability to form biofilms on a variety of surfaces. Biofilm-embedded bacteria are more resistant to antimicrobial agents than their planktonic counterparts and often cause chronic infections and sepsis, particularly in patients with prolonged hospitalizations. In this study, we demonstrate that sustained nitric oxide-releasing nanoparticles (NO-np) interfere with S. aureus adhesion and prevent biofilm formation on a rat central venous catheter (CVC) model of infection. Confocal and scanning electron microscopy showed that NO-np-treated staphylococcal biofilms displayed considerably reduced thicknesses and bacterial numbers compared to those of control biofilms in vitro and in vivo, respectively. Although both phenotypes, planktonic and biofilm-associated staphylococci, of multiple clinical strains were susceptible to NO-np, bacteria within biofilms were more resistant to killing than their planktonic counterparts. Furthermore, chitosan, a biopolymer found in the exoskeleton of crustaceans and structurally integrated into the nanoparticles, seems to add considerable antimicrobial activity to the technology. Our findings suggest promising development and translational potential of NO-np for use as a prophylactic or therapeutic against bacterial biofilms on CVCs and other medical devices.
Collapse
|
20
|
Wonoputri V, Gunawan C, Liu S, Barraud N, Yee LH, Lim M, Amal R. Iron Complex Facilitated Copper Redox Cycling for Nitric Oxide Generation as Nontoxic Nitrifying Biofilm Inhibitor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30502-30510. [PMID: 27759365 DOI: 10.1021/acsami.6b10357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we developed poly(vinyl chloride) (PVC)-solvent casted mixed metal copper and iron complexes capable of catalytic generation of the antibiofilm nitric oxide (NO) from endogenous nitrite. In the absence of additional reducing agent, we demonstrated that the presence of iron complex facilitates a redox cycling, converting the copper(II) complex to active copper(I) species, which catalyzes the generation of NO from nitrite. Assessed by protein assay and surface coverage analyses, the presence of the mixed metal complexes in systems containing water industry-relevant nitrite-producing nitrifying biofilms was shown to result in a "nontoxic mode" of biofilm suppression, while confining the bacterial growth to the free-floating planktonic phase. Addition of an NO scavenger into the mixed metal system eliminated the antibiofilm effects, therefore validating first, the capability of the mixed metal complexes to catalytically generate NO from the endogenously produced nitrite and second, the antibiofilm effects of the generated NO. The work highlights the development of self-sustained antibiofilm materials that features potential for industrial applications. The novel NO-generating antibiofilm technology diverts from the unfavorable requirement of adding a reducing agent and importantly, the less tendency for development of bacterial resistance.
Collapse
Affiliation(s)
- Vita Wonoputri
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Cindy Gunawan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
- ithree Institute, University of Technology Sydney , Sydney, New South Wales 2007, Australia
| | - Sanly Liu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Nicolas Barraud
- Genetics of Biofilms Unit, Department of Microbiology, Institut Pasteur , 75015 Paris, France
| | - Lachlan H Yee
- Marine Ecology Research Centre in the School of Environment, Science and Engineering, Southern Cross University , Lismore, New South Wales 2480, Australia
| | - May Lim
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
21
|
Xiao Y, Ahadian S, Radisic M. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:9-26. [PMID: 27405960 DOI: 10.1089/ten.teb.2016.0200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.
Collapse
Affiliation(s)
- Yun Xiao
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Samad Ahadian
- 2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Milica Radisic
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
22
|
DeMarino C, Schwab A, Pleet M, Mathiesen A, Friedman J, El-Hage N, Kashanchi F. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection. J Neuroimmune Pharmacol 2016; 12:31-50. [PMID: 27372507 DOI: 10.1007/s11481-016-9692-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Abstract
Despite the significant advances in neurological medicine, it remains difficult to treat ailments directly involving the brain. The blood brain barrier (BBB) is a tightly regulated, selectively permeable barrier that restricts access from the blood into the brain extracellular fluid (BEF). Many conditions such as tumors or infections in the brain are difficult to treat due to the fact that drugs and other therapeutic agents are unable to easily pass through this relatively impermeable barrier. Human Immunodeficiency Virus (HIV) presents a particular problem as it is able to remain dormant in the brain for years protected from antiretroviral drugs by the BBB. The development of nanoscale carriers over the past few decades has made possible the delivery of therapies with the potential to overcome membrane barriers and provide specific, targeted delivery. This review seeks to provide a comprehensive overview of the various aspects of nanoparticle formulation and their applications in improving the delivery efficiency of drugs, specifically antiretroviral therapeutics to the brain to treat HIV.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Angela Schwab
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Allison Mathiesen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Joel Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
23
|
Sustained Nitric Oxide-Releasing Nanoparticles Induce Cell Death in Candida albicans Yeast and Hyphal Cells, Preventing Biofilm Formation In Vitro and in a Rodent Central Venous Catheter Model. Antimicrob Agents Chemother 2016; 60:2185-94. [PMID: 26810653 DOI: 10.1128/aac.02659-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/19/2016] [Indexed: 01/01/2023] Open
Abstract
Candida albicansis a leading nosocomial pathogen. Today, candidal biofilms are a significant cause of catheter infections, and such infections are becoming increasingly responsible for the failure of medical-implanted devices.C. albicansforms biofilms in which fungal cells are encased in an autoproduced extracellular polysaccharide matrix. Consequently, the enclosed fungi are protected from antimicrobial agents and host cells, providing a unique niche conducive to robust microbial growth and a harbor for recurring infections. Here we demonstrate that a recently developed platform comprised of nanoparticles that release therapeutic levels of nitric oxide (NO-np) inhibits candidal biofilm formation, destroys the extracellular polysaccharide matrices of mature fungal biofilms, and hinders biofilm development on surface biomaterials such as the lumen of catheters. We found NO-np to decrease both the metabolic activity of biofilms and the cell viability ofC. albicansin vitroandin vivo Furthermore, flow cytometric analysis found NO-np to induce apoptosis in biofilm yeast cellsin vitro Moreover, NO-np behave synergistically when used in combination with established antifungal drug therapies. Here we propose NO-np as a novel treatment modality, especially in combination with standard antifungals, for the prevention and/or remediation of fungal biofilms on central venous catheters and other medical devices.
Collapse
|
24
|
Shah SU, Socha M, Fries I, Gibaud S. Synthesis of S-nitrosoglutathione-alginate for prolonged delivery of nitric oxide in intestines. Drug Deliv 2015; 23:2927-2935. [DOI: 10.3109/10717544.2015.1122676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Shefaat Ullah Shah
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan (KPK), Pakistan
| | - Marie Socha
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
| | - Isabelle Fries
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
| | | |
Collapse
|
25
|
Kang Y, Kim J, Lee YM, Im S, Park H, Kim WJ. Nitric oxide-releasing polymer incorporated ointment for cutaneous wound healing. J Control Release 2015; 220:624-30. [DOI: 10.1016/j.jconrel.2015.08.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/10/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
|
26
|
Abstract
BACKGROUND Antimicrobial coatings have a great potential in the treatment and prevention of periprosthetic joint infection. OBJECTIVE To present established and novel concepts of antimicrobial coatings. METHODS A literature review and discussion of published concepts in basic research, pre-clinical animal studies, and clinical practice were carried out. RESULTS To date there has been a wide range of technical solutions (anti-adhesive surfaces, bioactive surfaces with antimicrobial effects, surfaces releasing antimicrobial substances, nanostructures, bioactive surfaces affecting biofilm development) demonstrating a high potential in pre-clinical studies. Only a few with the bactericidal activity of silver ions have been prepared for the market. Conclusive results with regard to biocompatibility and toxicity are lacking. DISCUSSION Despite the great potential of antimicrobial coatings, no conclusive decisions can be made because of the limited data and the lack of evidence of their clinical efficacy on the basis of prospective controlled clinical studies. In addition to their unlimited biocompatibility, innovative concepts have to be feasible in everyday clinical routine.
Collapse
Affiliation(s)
- S Gravius
- Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Deutschland.
| | - D C Wirtz
- Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Deutschland
| |
Collapse
|
27
|
Qin M, Landriscina A, Rosen JM, Wei G, Kao S, Olcott W, Agak GW, Paz KB, Bonventre J, Clendaniel A, Harper S, Adler BL, Krausz AE, Friedman JM, Nosanchuk JD, Kim J, Friedman AJ. Nitric Oxide-Releasing Nanoparticles Prevent Propionibacterium acnes-Induced Inflammation by Both Clearing the Organism and Inhibiting Microbial Stimulation of the Innate Immune Response. J Invest Dermatol 2015; 135:2723-2731. [PMID: 26172313 PMCID: PMC4640998 DOI: 10.1038/jid.2015.277] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/15/2015] [Accepted: 06/20/2015] [Indexed: 12/13/2022]
Abstract
Propionibacterium acnes induction of IL-1 cytokines through the NLRP3 (NLR, nucleotide oligomerization domain-like receptor) inflammasome was recently highlighted as a dominant etiological factor for acne vulgaris. Therefore, therapeutics targeting both the stimulus and the cascade would be ideal. Nitric oxide (NO), a potent biological messenger, has documented broad-spectrum antimicrobial and immunomodulatory properties. To harness these characteristics to target acne, we used an established nanotechnology capable of generating/releasing NO over time (NO-np). P. acnes was found to be highly sensitive to all concentrations of NO-np tested, although human keratinocyte, monocyte, and embryonic zebra fish assays revealed no cytotoxicity. NO-np significantly suppressed IL-1β, tumor necrosis factor-α (TNF-α), IL-8, and IL-6 from human monocytes, and IL-8 and IL-6 from human keratinocytes, respectively. Importantly, silencing of NLRP3 expression by small interfering RNA did not limit NO-np inhibition of IL-1 β secretion from monocytes, and neither TNF-α nor IL-6 secretion, nor inhibition by NO-np was found to be dependent on this pathway. The observed mechanism by which NO-np impacts IL-1β secretion was through inhibition of caspase-1 and IL-1β gene expression. Together, these data suggest that NO-np can effectively prevent P. acnes-induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response.
Collapse
Affiliation(s)
- Min Qin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Angelo Landriscina
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Jamie M Rosen
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Gabrielle Wei
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Stephanie Kao
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - William Olcott
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - George W Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Karin B Paz
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Josephine Bonventre
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Alicea Clendaniel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA; School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Brandon L Adler
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Aimee E Krausz
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Joel M Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jenny Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Dermatology, Greater Los Angeles Healthcare Service Veterans Affairs, Los Angeles, California, USA
| | - Adam J Friedman
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Dermatology, George Washington School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
28
|
Yang Y, Qi P, Yang Z, Huang N. Nitric oxide based strategies for applications of biomedical devices. BIOSURFACE AND BIOTRIBOLOGY 2015. [DOI: 10.1016/j.bsbt.2015.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Abstract
Blood transfusions are used to treat reduced O2-carrying capacity consequent to anemia. In many cases anemia is caused by a major blood loss, which also creates a state of hypovolemia. Whereas O2 transport capacity is restored by increasing levels of circulating Hb, transfusion does not resolve the hypoperfusion, the hypoxia and the inflammatory cascades initiated during the anemia and hypovolemia. This explains why blood transfusion is not always an effective treatment and why transfusion of stored blood has been associated with increased morbidity and mortality, especially in patient populations receiving multiple transfusions. Epidemiologic data indicate that adverse events after transfusion are relatively common, having a great impact on the patients outcome and on the costs of public health. In this chapter, we explain why classical transfusion strategies target the reversal of hypoxia only, but do not address the inflammatory cascades initiated during anemic states and the importance of the flow and vascular endothelium interactions. We also establish the relation between red blood cells storage lesions, limited NO bioavailability and transfusion-associated adverse events. Lastly, we explain the potential use of long-lived sources of bioactive NO to reverse the hypoxic inflammatory cascades, promote a sustained increase in tissue perfusion and thereby allow transfusions to achieve their intended goal. The underlying premise is that adverse effects associated with transfusions are intimately linked to vascular dysfunction. Understanding of these mechanisms would lead to novel transfusion medicine strategies to preserve red cell function and to correct for functional changes induced by hemoglobinopathies that affect cell structure and function.
Collapse
|
30
|
Tar M, Cabrales P, Navati M, Adler B, Nacharaju P, Friedman AJ, Friedman J, Davies KP. Topically applied NO-releasing nanoparticles can increase intracorporal pressure and elicit spontaneous erections in a rat model of radical prostatectomy. J Sex Med 2014; 11:2903-14. [PMID: 25302850 DOI: 10.1111/jsm.12705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Patients undergoing radical prostatectomy (RP) suffer from erectile dysfunction (ED) refractory to phosphodiesterase 5 inhibitors, which act downstream of cavernous nerve (CN)-mediated release of nitric oxide (NO). Direct delivery of NO to the penis could potentially circumvent this limitation. AIM This study aimed to determine if topically applied NO-releasing nanoparticles (NO-NPs) could elicit erections in a rat model of RP through increased blood flow. METHODS Twenty-six Sprague Dawley rats underwent bilateral transection of the CN. One week later, NO-NPs were applied topically to the penile shaft in dimethylsulfoxide (DMSO) gel (10 animals) or coconut oil (6 animals). Control animals were treated with empty NPs. Erectile function was determined through the intracorporal pressure/blood pressure ratio (ICP/BP). The effect of the NO-NPs on blood flow was determined using a hamster dorsal window chamber. MAIN OUTCOME MEASURES Animals were investigated for spontaneous erections, onset and duration of erectile response, and basal ICP/BP ratio. Microcirculatory blood flow was determined through measurements of arteriolar and venular diameter and red blood cell velocity. RESULTS Eight of 10 animals treated with NO-NPs suspended in DMSO gel had significant increases in basal ICP/BP, and 6 out of these 10 animals demonstrated spontaneous erections of approximately 1 minute in duration. Time to onset of spontaneous erections ranged from 5 to 37 minutes, and they occurred for at least 45 minutes. Similar results were observed with NO-NPs applied in coconut oil. No erectile response was observed in control animal models treated with empty NPs. The hamster dorsal window chamber experiment demonstrated that NO-NPs applied as a suspension in coconut oil caused a significant increase in the microcirculatory blood flow, sustained over 90 minutes. CONCLUSIONS Topically applied NO-NPs induced spontaneous erections and increased basal ICP in an animal model of RP. These effects are most likely due to increased microcirculatory blood flow. These characteristics suggest that NO-NPs would be useful in penile rehabilitation of patients following RP.
Collapse
Affiliation(s)
- Moses Tar
- Department of Urology, Albert Einstein College of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 2014; 15:13849-80. [PMID: 25116685 PMCID: PMC4159828 DOI: 10.3390/ijms150813849] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be “smart” and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.
Collapse
|
32
|
Kafshgari MH, Cavallaro A, Delalat B, Harding FJ, McInnes SJP, Mäkilä E, Salonen J, Vasilev K, Voelcker NH. Nitric oxide-releasing porous silicon nanoparticles. NANOSCALE RESEARCH LETTERS 2014; 9:333. [PMID: 25114633 PMCID: PMC4109794 DOI: 10.1186/1556-276x-9-333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/24/2014] [Indexed: 05/28/2023]
Abstract
In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.
Collapse
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Alex Cavallaro
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Steven JP McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, Turku FI-20014,
Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, Turku FI-20014,
Finland
| | - Krasimir Vasilev
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| |
Collapse
|
33
|
Moreno E, Schwartz J, Fernández C, Sanmartín C, Nguewa P, Irache JM, Espuelas S. Nanoparticles as multifunctional devices for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv 2014; 11:579-97. [PMID: 24620861 DOI: 10.1517/17425247.2014.885500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cutaneous and mucocutaneous leishmaniasis are major tropical skin diseases. Topical treatment is currently limited to the least severe forms of cutaneous leishmaniasis (CL) without risk of dissemination. It is also recommended in combination with systemic therapy for more severe forms. Progresses in this modality of treatment are hindered by the heterogeneity of the disease and shortcomings in the clinical trials. AREAS COVERED This review overlooks three major modalities of topical therapies in use or under investigation against CL: chemotherapy, photodynamic therapy and immunotherapy; either with older compounds such as paramomycin or more recent nitric oxide donors, antimicrobial peptides or silver derivatives. The advantages and limitations of their administration with newer formulation strategies such as nanoparticles (NPs) are discussed. EXPERT OPINION The efficacy of a topical treatment against CL depends not only on the intrinsic antileishmanial activity of the drug but also on the amount of drug available in the dermis. NPs as sustained release systems and permeation enhancers could favour the creation of a drug reservoir in the dermis. Additionally, certain NPs have immunomodulatory properties or wound healing capabilities of benefit in CL treatment. Pending task is the selective delivery of active compounds to intracellular amastigotes, because even small NPs are unable to penetrate deeply into the skin to encounter infected macrophages (except in ulcerative lesions).
Collapse
Affiliation(s)
- Esther Moreno
- University of Navarra, Tropical Health Institute , Irunlarrea, 1 E-31008 Pamplona , Spain +34948425600 ; +34948425619 ;
| | | | | | | | | | | | | |
Collapse
|
34
|
Chou HC, Chiu SJ, Liu YL, Hu TM. Direct formation of S-nitroso silica nanoparticles from a single silica source. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:812-822. [PMID: 24410024 DOI: 10.1021/la4048215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nitric oxide (NO) is a ubiquitous molecule in the body. Because of its multiple pathophysiologic roles, the potential for treating various diseases by the exogenous administration of NO has been under intensive investigation. However, the unstable, radical nature of NO poses a major challenge to the effective delivery of NO. Previously, silica nanoparticles synthesized by the traditional method have been developed into NO-carrying systems. In the present study, for the first time NO-carrying silica nanoparticles were prepared from a single silica precursor using a simple nanoprecipitation method. (3-Mercaptopropyl)-trimethoxysilane (MPTMS) was used as the sole silane source, which was subjected to acid-catalyzed S-nitrosation and condensation reactions in a one-pot organic phase. S-Nitroso silica nanoparticles (SNO-SiNPs) were then produced by injecting a smaller quantity of the organic phase into a larger amount of water without surfactants. Various preparation parameters were tested to obtain optimized conditions. Moreover, a phase diagram demonstrating the ouzo effect was constructed. The prepared SNO-SiNPs were spherical particles with a tunable size in the range of 100-400 nm. The nanoparticles in aqueous dispersions exhibited high colloid stability, possibly resulting from highly negatively charged surfaces. The result of solid-state (29)Si NMR shows the predominance of T(2) and T(3) silicon structures, suggesting that nanoparticles were formed from polycondensed silica species. In conclusion, NO-loaded silica nanoparticles have been directly prepared from a single silane precursor using a surfactant-free, low-energy, one-step nanoprecipitation approach. The method precludes the need for the initial formation of bare particles and subsequent functionalization steps.
Collapse
Affiliation(s)
- Hung-Chang Chou
- School of Pharmacy, National Defense Medical Center , Taipei 11490, Taiwan, ROC
| | | | | | | |
Collapse
|
35
|
Kutner A, Friedman A. Nitric oxide nanoparticles for wound healing: future directions to overcome challenges. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2013.837670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Kim J, Saravanakumar G, Choi HW, Park D, Kim WJ. A platform for nitric oxide delivery. J Mater Chem B 2014; 2:341-356. [DOI: 10.1039/c3tb21259a] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013; 34:8533-54. [PMID: 23953781 DOI: 10.1016/j.biomaterials.2013.07.089] [Citation(s) in RCA: 771] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/26/2013] [Indexed: 02/06/2023]
Abstract
Anti-infective biomaterials need to be tailored according to the specific clinical application. All their properties have to be tuned to achieve the best anti-infective performance together with safe biocompatibility and appropriate tissue interactions. Innovative technologies are developing new biomaterials and surfaces endowed with anti-infective properties, relying either on antifouling, or bactericidal, or antibiofilm activities. This review aims at thoroughly surveying the numerous classes of antibacterial biomaterials and the underlying strategies behind them. Bacteria repelling and antiadhesive surfaces, materials with intrinsic antibacterial properties, antibacterial coatings, nanostructured materials, and molecules interfering with bacterial biofilm are considered. Among the new strategies, the use of phages or of antisense peptide nucleic acids are discussed, as well as the possibility to modulate the local immune response by active cytokines. Overall, there is a wealth of technical solutions to contrast the establishment of an implant infection. Many of them exhibit a great potential in preclinical models. The lack of well-structured prospective multicenter clinical trials hinders the achievement of conclusive data on the efficacy and comparative performance of anti-infective biomaterials.
Collapse
Affiliation(s)
- Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | |
Collapse
|
38
|
Abstract
SIGNIFICANCE There has been a striking advancement in our understanding of red cell substitutes over the past decade. Although regulatory oversight has influenced many aspects of product development in this period, those who have approached the demonstration of efficacy of red cell substitutes have failed to understand their implication at the level of the microcirculation, where blood interacts closely with tissue. RECENT ADVANCES The understanding of the adverse effects of acellular hemoglobin (Hb)-based oxygen carriers (HBOCs) has fortunately expanded from Hb-induced renal toxicity to a more complete list of biochemical mechanism. In addition, various unexpected adverse reactions were seen in early clinical studies. The effects of the presence of acellular Hb in plasma are relatively unique because of the convergence of mechanical and biochemical natures. CRITICAL ISSUES Controlling the variables using genetic engineering and chemical modification to change specific characteristics of the Hb molecule may allow for solving the complex multivariate problems of acellular Hb vasoactivity. HBOCs may never be rendered free of negative effects; however, quantifying the nature and extent of microvascular complications establishes a platform for designing new ameliorative therapies. FUTURE DIRECTIONS It is time to leave behind the study of vasoactivity and toxicity based on bench-top measurements of biochemical changes and those based solely on systemic parameters in vivo, and move to a more holistic analysis of the mechanisms creating the problems, complemented with meaningful studies of efficacy.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Kutner AJ, Friedman AJ. Use of nitric oxide nanoparticulate platform for the treatment of skin and soft tissue infections. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:502-14. [PMID: 23661566 PMCID: PMC7169754 DOI: 10.1002/wnan.1230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/08/2013] [Accepted: 04/18/2013] [Indexed: 12/24/2022]
Abstract
The incidence of skin and soft tissue infections (SSTI) due to multi‐drug resistant pathogens is increasing. The concomitant increase in antibiotic use along with the ease with which organisms develop mechanisms of resistance have together become a medical crisis, underscoring the importance of developing innovative and effective antimicrobial strategies. Nitric oxide (NO) is an endogenously produced molecule with many physiologic functions, including broad spectrum antimicrobial activity and immunomodulatory properties. The risk of resistance to NO is minimized because NO has multiple mechanisms of antimicrobial action. NO's clinical utility has been limited largely because it is highly reactive and lacks appropriate vehicles for storage and delivery. To harness NO's antimicrobial potential, a variety exogenous NO delivery platforms have been developed and evaluated, yet limitations preclude their use in the clinical setting. Nanotechnology represents a paradigm through which these limitations can be overcome, allowing for the encapsulation, controlled release, and focused delivery of NO for the treatment of SSTI. WIREs Nanomed Nanobiotechnol 2013. doi: 10.1002/wnan.1230 This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Collapse
Affiliation(s)
- Allison J Kutner
- Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
40
|
Naghavi N, de Mel A, Alavijeh OS, Cousins BG, Seifalian AM. Nitric oxide donors for cardiovascular implant applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:22-35. [PMID: 23136136 DOI: 10.1002/smll.201200458] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/13/2012] [Indexed: 06/01/2023]
Abstract
In an era of increased cardiovascular disease burden in the ageing population, there is great demand for devices that come in to contact with the blood such as heart valves, stents, and bypass grafts that offer life saving treatments. Nitric oxide (NO) elution from healthy endothelial tissue that lines the vessels maintains haemostasis throughout the vasculature. Surgical devices that release NO are desirable treatment options and N-diazeniumdiolates and S-nitrosothiols are recognized as preferred donor molecules. There is a keen interest to investigate newer methods by which NO donors can be retained within biomaterials so that their release and kinetic profiles can be optimized. A range of polymeric scaffolds incorporating microparticles and nanomaterials are presenting solutions to current challenges, and have been investigated in a range of clinical applications. This review outlines the application of NO donors for cardiovascular therapy using biomaterials that release NO locally to prevent thrombosis and intimal hyperplasia (IH) and enhance endothelialization in the fabrication of next generation cardiovascular device technology.
Collapse
Affiliation(s)
- Noora Naghavi
- UCL Centre for Nanotechnology & Regenerative Medicine, University College London, UK
| | | | | | | | | |
Collapse
|
41
|
Blecher K, Martinez LR, Tuckman-Vernon C, Nacharaju P, Schairer D, Chouake J, Friedman JM, Alfieri A, Guha C, Nosanchuk JD, Friedman AJ. Nitric oxide-releasing nanoparticles accelerate wound healing in NOD-SCID mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1364-71. [DOI: 10.1016/j.nano.2012.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/10/2012] [Accepted: 02/24/2012] [Indexed: 01/08/2023]
|
42
|
Virtual screening as a strategy for the identification of xenobiotics disrupting corticosteroid action. PLoS One 2012; 7:e46958. [PMID: 23056542 PMCID: PMC3464284 DOI: 10.1371/journal.pone.0046958] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Impaired corticosteroid action caused by genetic and environmental influence, including exposure to hazardous xenobiotics, contributes to the development and progression of metabolic diseases, cardiovascular complications and immune disorders. Novel strategies are thus needed for identifying xenobiotics that interfere with corticosteroid homeostasis. 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) and mineralocorticoid receptors (MR) are major regulators of corticosteroid action. 11β-HSD2 converts the active glucocorticoid cortisol to the inactive cortisone and protects MR from activation by glucocorticoids. 11β-HSD2 has also an essential role in the placenta to protect the fetus from high maternal cortisol concentrations. METHODS AND PRINCIPAL FINDINGS We employed a previously constructed 3D-structural library of chemicals with proven and suspected endocrine disrupting effects for virtual screening using a chemical feature-based 11β-HSD pharmacophore. We tested several in silico predicted chemicals in a 11β-HSD2 bioassay. The identified antibiotic lasalocid and the silane-coupling agent AB110873 were found to concentration-dependently inhibit 11β-HSD2. Moreover, the silane AB110873 was shown to activate MR and stimulate mitochondrial ROS generation and the production of the proinflammatory cytokine interleukin-6 (IL-6). Finally, we constructed a MR pharmacophore, which successfully identified the silane AB110873. CONCLUSIONS Screening of virtual chemical structure libraries can facilitate the identification of xenobiotics inhibiting 11β-HSD2 and/or activating MR. Lasalocid and AB110873 belong to new classes of 11β-HSD2 inhibitors. The silane AB110873 represents to the best of our knowledge the first industrial chemical shown to activate MR. Furthermore, the MR pharmacophore can now be used for future screening purposes.
Collapse
|
43
|
Nacharaju P, Tuckman-Vernon C, Maier KE, Chouake J, Friedman A, Cabrales P, Friedman JM. A nanoparticle delivery vehicle for S-nitroso-N-acetyl cysteine: sustained vascular response. Nitric Oxide 2012; 27:150-60. [PMID: 22705913 DOI: 10.1016/j.niox.2012.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/11/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Interest in the development of nitric oxide (NO) based therapeutics has grown exponentially due to its well elucidated and established biological functions. In line with this surge, S-nitroso thiol (RSNO) therapeutics are also receiving more attention in recent years both as potential stable sources of NO as well as for their ability to serve as S-nitrosating agents; S-nitrosation of protein thiols is implicated in many physiological processes. We describe two hydrogel based RSNO containing nanoparticle platforms. In one platform the SNO groups are covalently attached to the particles (SNO-np) and the other contains S-nitroso-N-acetyl cysteine encapsulated within the particles (NAC-SNO-np). Both platforms function as vehicles for sustained activity as trans-S-nitrosating agents. NAC-SNO-np exhibited higher efficiency for generating GSNO from GSH and maintained higher levels of GSNO concentration for longer time (24 h) as compared to SNO-np as well as a previously characterized nitric oxide releasing platform, NO-np (nitric oxide releasing nanoparticles). In vivo, intravenous infusion of the NAC-SNO-np and NO-np resulted in sustained decreases in mean arterial pressure, though NAC-SNO-np induced longer vasodilatory effects as compared to the NO-np. Serum chemistries following infusion demonstrated no toxicity in both treatment groups. Together, these data suggest that the NAC-SNO-np represents a novel means to both study the biologic effects of nitrosothiols and effectively capitalize on its therapeutic potential.
Collapse
Affiliation(s)
- Parimala Nacharaju
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Sanchez DA, Nosanchuk J, Friedman A. The purview of nitric oxide nanoparticle therapy in infection and wound healing. Nanomedicine (Lond) 2012; 7:933-6. [PMID: 22642306 DOI: 10.2217/nnm.12.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
45
|
Jen MC, Serrano MC, van Lith R, Ameer GA. Polymer-Based Nitric Oxide Therapies: Recent Insights for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2012; 22:239-260. [PMID: 25067935 PMCID: PMC4111277 DOI: 10.1002/adfm.201101707] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since the discovery of nitric oxide (NO) in the 1980s, this cellular messenger has been shown to participate in diverse biological processes such as cardiovascular homeostasis, immune response, wound healing, bone metabolism, and neurotransmission. Its beneficial effects have prompted increased research in the past two decades, with a focus on the development of materials that can locally release NO. However, significant limitations arise when applying these materials to biomedical applications. This Feature Article focuses on the development of NO-releasing and NO-generating polymeric materials (2006-2011) with emphasis on recent in vivo applications. Results are compared and discussed in terms of NO dose, release kinetics, and biological effects, in order to provide a foundation to design and evaluate new NO therapies.
Collapse
Affiliation(s)
- Michele C Jen
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas Cantoblanco, Madrid 28049, Spain
| | - Robert van Lith
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| | - Guillermo A Ameer
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| |
Collapse
|
46
|
Schairer D, Martinez LR, Blecher K, Chouake J, Nacharaju P, Gialanella P, Friedman JM, Nosanchuk JD, Friedman A. Nitric oxide nanoparticles: pre-clinical utility as a therapeutic for intramuscular abscesses. Virulence 2012; 3:62-7. [PMID: 22286699 DOI: 10.4161/viru.3.1.18816] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide (NO) is a critical component of host defense against invading pathogens; however, its therapeutic utility is limited due to a lack of practical delivery systems. Recently, a NO-releasing nanoparticulate platform (NO-np) was shown to have in vitro broad-spectrum antimicrobial activity and in vivo pre-clinical efficacy in a dermal abscess model. To extend these findings, both topical (TP) and intralesional (IL) NO-np administration was evaluated in a MRSA intramuscular murine abscess model and compared with vancomycin. All treatment arms accelerated abscess clearance clinically, histologically, and by microbiological assays on both days 4 and 7 following infection. However, abscesses treated with NO-np via either route demonstrated a more substantial, statistically significant decrease in bacterial survival based on colony forming unit assays and histologically revealed less inflammatory cell infiltration and preserved muscular architecture. These data suggest that the NO-np may be an effective addition to our armament for deep soft tissue infections.
Collapse
Affiliation(s)
- David Schairer
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
INTRODUCTION It is becoming increasingly clear that many diseases are characterized or associated with perturbations in nitric oxide (NO) production/signaling. Therapeutics or strategies designed to restore normal NO homeostasis will likely have broad application and utility in human health. This highly complex and multi-step pathway for NO production and subsequent target activation provides many steps in the endogenous pathway that may be useful targets for drug development. Important therapeutic areas for NO-based therapies are inflammatory disorders, cardiovascular diseases, erectile dysfunction and metabolic disorders. AREAS COVERED The following review will discuss the endogenous NO pathway, highlight the current market and indications for NO-based therapeutics, as well as identify pathway targets currently under drug development. Each step along the NO pathway will be discussed including exogenous sources of NO, use of precursors to promote NO production and downstream pathways affected by NO production with advantages and disadvantages highlighted for each. EXPERT OPINION Development of NO-based therapeutics is and will continue to be a major focus of biotech and pharmaceutical companies. Understanding and utilizing dietary and nutritional strategies to restore NO homeostasis could allow for safer, quicker marketing of products that may be just as efficacious as drugs designed against specific targets.
Collapse
Affiliation(s)
- Nathan S Bryan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine , The University of Texas Health Science Center at Houston,The Graduate School of Biomedical Sciences at Houston , Department of Integrative Biology and Pharmacology , 1825 Pressler St. 530C, Houston, TX 77030 , USA +1 713 500 2439 ; +1 713 500 2447 ;
| |
Collapse
|
48
|
Saraiva J, Marotta-Oliveira SS, Cicillini SA, Eloy JDO, Marchetti JM. Nanocarriers for nitric oxide delivery. JOURNAL OF DRUG DELIVERY 2011; 2011:936438. [PMID: 21869934 PMCID: PMC3159988 DOI: 10.1155/2011/936438] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/13/2011] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is a promising pharmaceutical agent that has vasodilative, antibacterial, and tumoricidal effects. To study the complex and wide-ranging roles of NO and to facilitate its therapeutic use, a great number of synthetic compounds (e.g., nitrosothiols, nitrosohydroxyamines, N-diazeniumdiolates, and nitrosyl metal complexes) have been developed to chemically stabilize and release NO in a controlled manner. Although NO is currently being exploited in many biomedical applications, its use is limited by several factors, including a short half-life, instability during storage, and potential toxicity. Additionally, efficient methods of both localized and systemic in vivo delivery and dose control are needed. One strategy for addressing these limitations and thus increasing the utility of NO donors is based on nanotechnology.
Collapse
Affiliation(s)
- Juliana Saraiva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14010-903 Ribeirão Preto, SP, Brazil
| | - Samantha S. Marotta-Oliveira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14010-903 Ribeirão Preto, SP, Brazil
| | - Simone Aparecida Cicillini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14010-903 Ribeirão Preto, SP, Brazil
| | - Josimar de Oliveira Eloy
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14010-903 Ribeirão Preto, SP, Brazil
| | - Juliana Maldonado Marchetti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14010-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
49
|
Zhao H, Feng Y, Guo J. Polycarbonateurethane films containing complex of copper(II) catalyzed generation of nitric oxide. J Appl Polym Sci 2011. [DOI: 10.1002/app.34056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|