1
|
Hulme J. Harnessing Ultrasonic Technologies to Treat Staphylococcus Aureus Skin Infections. Molecules 2025; 30:512. [PMID: 39942617 PMCID: PMC11819699 DOI: 10.3390/molecules30030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The rise of antibiotic-resistant Staphylococcus aureus strains, particularly MRSA, complicates the management of skin and soft tissue infections. This review highlights ultrasonic methodologies as adjunctive therapies to combat S. aureus-driven skin infections and prevent progression to biofilm formation and chronic wounds. Low- and high-frequency ultrasound (LFU and HFU) demonstrate potential in disrupting biofilms, enhancing drug delivery, and promoting tissue repair through cavitation and microbubble activity. These approaches integrate ultrasonic frequencies with microbubbles and therapeutics, such as antibiotics and affimers, to minimize resistance and improve healing. Tailoring the bioeffects of ultrasound on skin structures through localized delivery technologies, including microneedle patches and piezoelectric systems, presents promising solutions for early intervention in skin and soft structure infections (SSSIs).
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
2
|
Wang X, Tan Y, Gao L, Gao H. Study on ultrasound-enhanced molecular transport in articular cartilage. Drug Deliv Transl Res 2024; 14:3621-3639. [PMID: 39145819 DOI: 10.1007/s13346-024-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Local intra-articular administration with minimal side effects and rapid efficacy is a promising strategy for treating osteoarthritis(OA). Most drugs are rapidly cleared from the joint space by capillaries and lymphatic vessels before free diffusion into cartilage. Ultrasound, as a non-invasive therapy, enhances molecular transport within cartilage through the mechanisms of microbubble cavitation and thermal effects. This study investigated the mass transfer behavior of solute molecules with different molecular weights (479 Da, 40 kDa, 150 kDa) within porcine articular cartilage under low-frequency ultrasound conditions of 40 kHz and ultrasound intensities of 0.189 W/cm2 and 0.359 W/cm2. The results revealed that under the conditions of 0.189 W/cm2 ultrasound intensity, the mass transfer concentration of solute molecules were higher compared to passive diffusion, and with an increase in ultrasound intensity to 0.359 W/cm2, the mass transfer effect within the cartilage was further enhanced. Ultrasound promotes molecular transport in different layers of cartilage. Under static conditions, after 2 h of mass transfer, the concentration of small molecules in the superficial layer is lower than that in the middle layer. After applying ultrasound at 0.189 W/cm2, the molecular concentration in the superficial layer significantly increases. Under conditions of 0.359 W/cm2, after 12 h of mass transfer, the concentration of medium and large molecules in the deep layer region increased by more than two times. In addition, this study conducted an assessment of damage to porcine articular cartilage under ultrasound exposure, revealing the significant potential of low-frequency, low-intensity ultrasound in drug delivery and treatment of OA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yansong Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300382, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300382, China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300382, China.
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300382, China.
| | - Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
3
|
Feng S, Wang S, Tang J, Zhu X. Ultrasound Combined With Continuous Microbubble Injection to Enhance Catheter-Directed Thrombolysis in Vitro and in Vivo. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:741-749. [PMID: 38158852 DOI: 10.1002/jum.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES To investigate the influence of microbubble perfusion mode on catheter-directed thrombolysis (CDT), we evaluated the effect of two different types of microbubble perfusion modes (continuous injection versus bolus injection) on the thrombolytic efficacy of CDT in vitro and further assessed the effect of continuous microbubble injection on CDT in vivo. METHODS In an in vitro experimental setup, 50 fresh bovine whole blood clots were randomized into five groups: ultrasound and continuous microbubble injection-enhanced CDT (US + cMB + CDT), ultrasound and bolus microbubble injection-enhanced CDT (US + bMB + CDT), US + CDT, US + cMB, and CDT. In a porcine femoral vein thrombosis model, 16 completely obstructive thrombi were randomly assigned to the CDT group and the US + cMB + CDT group, respectively. Thrombolysis rate, vascular recanalization rate, hematoxylin-eosin, and immunofluorescence staining were used to evaluate the thrombolytic effect in vitro and in vivo. RESULTS In vitro, US + cMB + CDT group resulted in a significantly higher thrombolysis rate compared with the other four groups (P < .05). Meanwhile, this group also demonstrated a looser clot structure and more disrupted fibrin structures. In vivo, US + cMB + CDT contributed to a significantly higher vascular recanalization rate compared with CDT (87.50% versus 25.00%, P < .05). CONCLUSIONS US + cMB + CDT was more effective than US + bMB + CDT in thrombolysis, and ultrasound combined with continuous microbubble injection could enhance the thrombolytic efficacy of CDT.
Collapse
Affiliation(s)
- Shuang Feng
- Department of Ultrasound, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Shan Wang
- Department of Ultrasound, Huizhou Central People's Hospital, Huizhou, China
| | - Jiawei Tang
- Department of Ultrasound, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Xiansheng Zhu
- Department of Ultrasound, General Hospital of Southern Theatre Command, Guangzhou, China
| |
Collapse
|
4
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
5
|
Wal P, Aziz N, Singh CP, Rasheed A, Tyagi LK, Agrawal A, Wal A. Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders. Curr Gene Ther 2024; 24:356-376. [PMID: 38288826 DOI: 10.2174/0115665232268840231222035423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 07/16/2024]
Abstract
Cardiovascular disorders (CVD) are the primary cause of death worldwide. Multiple factors have been accepted to cause cardiovascular diseases; among them, smoking, physical inactivity, unhealthy eating habits, age, and family history are flag-bearers. Individuals at risk of developing CVD are suggested to make drastic habitual changes as the primary intervention to prevent CVD; however, over time, the disease is bound to worsen. This is when secondary interventions come into play, including antihypertensive, anti-lipidemic, anti-anginal, and inotropic drugs. These drugs usually undergo surgical intervention in patients with a much higher risk of heart failure. These therapeutic agents increase the survival rate, decrease the severity of symptoms and the discomfort that comes with them, and increase the overall quality of life. However, most individuals succumb to this disease. None of these treatments address the molecular mechanism of the disease and hence are unable to halt the pathological worsening of the disease. Gene therapy offers a more efficient, potent, and important novel approach to counter the disease, as it has the potential to permanently eradicate the disease from the patients and even in the upcoming generations. However, this therapy is associated with significant risks and ethical considerations that pose noteworthy resistance. In this review, we discuss various methods of gene therapy for cardiovascular disorders and address the ethical conundrum surrounding it.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | | | - Azhar Rasheed
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Lalit Kumar Tyagi
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Ankur Agrawal
- School of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
6
|
AIUM Official Statement for the Statement on Biological Effects of Therapeutic Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:E68-E73. [PMID: 37584480 DOI: 10.1002/jum.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
|
7
|
Suarez Escudero D, Haworth KJ, Genstler C, Holland CK. Quantifying the Effect of Acoustic Parameters on Temporal and Spatial Cavitation Activity: Gauging Cavitation Dose. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2388-2397. [PMID: 37648590 PMCID: PMC10581030 DOI: 10.1016/j.ultrasmedbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Cavitation-enhanced delivery of therapeutic agents is under development for the treatment of cancer and neurodegenerative and cardiovascular diseases, including sonothrombolysis for deep vein thrombosis. The objective of this study was to quantify the spatial and temporal distribution of cavitation activity nucleated by Definity infused through the EKOS catheter over a range of acoustic parameters controlled by the EKOS endovascular system. METHODS Three insonation protocols were compared in an in vitro phantom mimicking venous flow to measure the effect of peak rarefactional pressure, pulse duration and pulse repetition frequency on cavitation activity energy, location and duration. Inertial and stable cavitation activity was quantified using passive cavitation imaging, and a metric of cavitation dose based on energy density was defined. RESULTS For all three insonation protocols, cavitation was sustained for the entire 30 min Definity infusion. The evolution of cavitation energy during each pulse duration was similar for all three protocols. For insonation protocols with higher peak rarefactional acoustic pressures, inertial and stable cavitation doses also increased. A complex relationship between the temporal behavior of cavitation energy within each pulse and the pulse repetition frequency affected the cavitation dose for the three insonation protocols. The relative predominance of stable or inertial cavitation dose varied according to insonation schemes. Passive cavitation images revealed the spatial distribution of cavitation activity. CONCLUSION Our cavitation dose metric based on energy density enabled the impact of different acoustic parameters on cavitation activity to be measured. Depending on the type of cavitation to be promoted or suppressed, particular pulsing schemes could be employed in future studies, for example, to correlate cavitation dose with sonothrombolytic efficacy.
Collapse
Affiliation(s)
- Daniel Suarez Escudero
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Klegerman ME, Peng T, Huang SL, Frierson B, Moody MR, Kim H, McPherson DD. Storage Stability of Atheroglitatide, an Echogenic Liposomal Formulation of Pioglitazone Targeted to Advanced Atheroma with a Fibrin-Binding Peptide. Pharmaceutics 2023; 15:2288. [PMID: 37765257 PMCID: PMC10536356 DOI: 10.3390/pharmaceutics15092288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
We have conducted a stability study of a complex liposomal pharmaceutical product, Atheroglitatide (AGT), stored at three temperatures, 4, 24, and 37 °C, for up to six months. The six parameters measured were functions of liposomal integrity (size and number), drug payload (loading efficiency), targeting peptide integrity (conjugation efficiency and specific avidity), and echogenicity (ultrasound-dependent controlled drug release), which were considered most relevant to the product's intended use. At 4 °C, liposome diameter trended upward, indicative of aggregation, while liposome number per mg lipid and echogenicity trended downward. At 24 °C, peptide conjugation efficiency (CE) and targeting efficiency (TE, specific avidity) trended downward. At 37 °C, CE and drug (pioglitazone) loading efficiency trended downward. At 4 °C, the intended storage temperature, echogenicity, and liposome size reached their practical tolerance limits at 6 months, fixing the product expiration at that point. Arrhenius analysis of targeting peptide CE and drug loading efficiency decay at the higher temperatures indicated complete stability of these characteristics at 4 °C. The results of this study underscore the storage stability challenges presented by complex nanopharmaceutical formulations.
Collapse
Affiliation(s)
- Melvin E. Klegerman
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (S.-L.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Tao Peng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (S.-L.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Shao-Ling Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (S.-L.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Brion Frierson
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (S.-L.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Melanie R. Moody
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (S.-L.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Hyunggun Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (S.-L.H.); (B.F.); (M.R.M.); (D.D.M.)
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - David D. McPherson
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (S.-L.H.); (B.F.); (M.R.M.); (D.D.M.)
| |
Collapse
|
9
|
Kennedy SR, Lafond M, Haworth KJ, Escudero DS, Ionascu D, Frierson B, Huang S, Klegerman ME, Peng T, McPherson DD, Genstler C, Holland CK. Initiating and imaging cavitation from infused echo contrast agents through the EkoSonic catheter. Sci Rep 2023; 13:6191. [PMID: 37062767 PMCID: PMC10106464 DOI: 10.1038/s41598-023-33164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Ultrasound-enhanced delivery of therapeutic-loaded echogenic liposomes is under development for vascular applications using the EkoSonic Endovascular System. In this study, fibrin-targeted echogenic liposomes loaded with an anti-inflammatory agent were characterized before and after infusion through an EkoSonic catheter. Cavitation activity was nucleated by Definity or fibrin-targeted, drug-loaded echogenic liposomes infused and insonified with EkoSonic catheters. Passive cavitation imaging was used to quantify and map bubble activity in a flow phantom mimicking porcine arterial flow. Cavitation was sustained during 3-min infusions of Definity or echogenic liposomes along the distal 6 cm treatment zone of the catheter. Though the EkoSonic catheter was not designed specifically for cavitation nucleation, infusion of drug-loaded echogenic liposomes can be employed to trigger and sustain bubble activity for enhanced intravascular drug delivery.
Collapse
Affiliation(s)
- Sonya R Kennedy
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Maxime Lafond
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
- LabTAU, Inserm, Université Lyon 1, Lyon, France
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Suarez Escudero
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
| | - Dan Ionascu
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Brion Frierson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shaoling Huang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Melvin E Klegerman
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David D McPherson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cardiovascular Center 3935, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA.
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Yin X, Jiang LH. Extracellular vesicles: Targeting the heart. Front Cardiovasc Med 2023; 9:1041481. [PMID: 36704471 PMCID: PMC9871562 DOI: 10.3389/fcvm.2022.1041481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular diseases rank the highest incidence and mortality worldwide. As the most common type of cardiovascular disease, myocardial infarction causes high morbidity and mortality. Recent studies have revealed that extracellular vesicles, including exosomes, show great potential as a promising cell-free therapy for the treatment of myocardial infarction. However, low heart-targeting efficiency and short plasma half-life have hampered the clinical translation of extracellular vesicle therapy. Currently, four major types of strategies aiming at enhancing target efficiency have been developed, including modifying EV surface, suppressing non-target absorption, increasing the uptake efficiency of target cells, and utilizing a hydrogel patch. This presented review summarizes the current research aimed at EV heart targeting and discusses the challenges and opportunities in EV therapy, which will be beneficial for the development of effective heart-targeting strategies.
Collapse
Affiliation(s)
- Xin Yin
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, China,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China,The First People’s Hospital of Yunnan, Kunming, Yunnan, China
| | - Li-Hong Jiang
- Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China,The First People’s Hospital of Yunnan, Kunming, Yunnan, China,*Correspondence: Li-Hong Jiang,
| |
Collapse
|
11
|
Klegerman ME, Moody MR, Huang SL, Peng T, Laing ST, Govindarajan V, Danila D, Tahanan A, Rahbar MH, Vela D, Genstler C, Haworth KJ, Holland CK, McPherson DD, Kee PH. Demonstration of ultrasound-mediated therapeutic delivery of fibrin-targeted pioglitazone-loaded echogenic liposomes into the arterial bed for attenuation of peri-stent restenosis. J Drug Target 2023; 31:109-118. [PMID: 35938912 DOI: 10.1080/1061186x.2022.2110251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/05/2023]
Abstract
Peri-stent restenosis following stent implantation is a major clinical problem. We have previously demonstrated that ultrasound-facilitated liposomal delivery of pioglitazone (PGN) to the arterial wall attenuated in-stent restenosis. To evaluate ultrasound mediated arterial delivery, in Yucatan miniswine, balloon inflations were performed in the carotid and subclavian arteries to simulate stent implantation and induce fibrin formation. The fibrin-binding peptide, GPRPPGGGC, was conjugated to echogenic liposomes (ELIP) containing dinitrophenyl-L-alanine-labelled pioglitazone (DNP-PGN) for targeting purposes. After pre-treating the arteries with nitroglycerine, fibrin-binding peptide-conjugated PGN-loaded ELIP (PAFb-DNP-PGN-ELIP also termed atheroglitatide) were delivered to the injured arteries via an endovascular catheter with an ultrasound core, either with or without ultrasound application (EKOSTM Endovascular System, Boston Scientific). In arteries treated with atheroglitatide, there was substantial delivery of PGN into the superficial layers (5 µm from the lumen) of the arteries with and without ultrasound, [(1951.17 relative fluorescence units (RFU) vs. 1901.17 RFU; P-value = 0.939)]. With ultrasound activation there was increased penetration of PGN into the deeper arterial layers (up to 35 µm from the lumen) [(13195.25 RFU vs. 7681.00 RFU; P-value = 0.005)]. These pre-clinical data demonstrate ultrasound mediated therapeutic vascular delivery to deeper layers of the injured arterial wall. This model has the potential to reduce peri- stent restenosis.
Collapse
Affiliation(s)
- Melvin E Klegerman
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Melanie R Moody
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shao-Ling Huang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan T Laing
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vijay Govindarajan
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Delia Danila
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amirali Tahanan
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mohammad H Rahbar
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Deborah Vela
- Cardiovascular Pathology Research Department, Texas Heart Institute, Houston, TX, USA
| | | | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - David D McPherson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick H Kee
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
12
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
13
|
Tang J, Tang J, Zhu Q, Liao Y, Bai L, Luo T, Feng S, Liu Z. A minimally invasive strategy to evacuate hematoma by synergy of an improved ultrasonic horn with urokinase: an in-vitro study. Med Phys 2022; 49:1333-1343. [PMID: 35018646 DOI: 10.1002/mp.15453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES In this study, Ultrasound Needle-an improved minimally invasive ultrasonic horn device was used to explore its potential of synergizing with urokinase in enhancing clots lysis in an in-vitro intracranial hematoma model. MATERIALS AND METHODS 10 ml bovine blood was incubated for 3 h at 37 ℃, and coagulated into clot to mimic intracranial hematoma in-vitro. Ultrasound Needle was an improved ultrasonic horn with a fine tip (1.80 mm) and metallic sheath, and had a frequency of 29.62 kHz. 10000 IU urokinase was injected through the metallic sheath during the vibration of Ultrasound Needle tip to lyse the clots for 8 minutes under different working parameter settings (n = 8) to explore the influence of parameters Amplitude (%) and Duty (%) on clot lysis weight (W0 ). The maximum temperatures were measured by an infrared thermometer during the treatment process. The W0 of different treatment groups (US (Ultrasound Needle), US+NS (normal saline), UK (urokinase), US+UK, n = 8) were compared to verify the synergistic lysis effect of Ultrasound Needle combined with urokinase at optimal working parameters (40% Amplitude, 20% Duty; input power 4.20 W; axial tip-vibration amplitude 69.17 μm). Clots samples after treatment were fixed overnight for macroscopic examination. And fluorescent frozen sections and scanning electron microscopy examination were performed to show microscopic changes in clots and evaluate the cavitation effect of Ultrasound Needle on promoting drug diffusion within the clots. RESULTS The clot lysis weight W0 increased with the parameters Amplitude (%) and Duty (%), reached a peak (2.435±0.137 g) at 40% Amplitude and 20% Duty (input power 4.20 W), and then decreased. Higher Amplitude (%) and Duty (%) led to higher maximum temperature, and W0 was negatively correlated with the maximum temperature after the peak (r = -0.958). At the optimal parameter setting, the maximum temperature was 33.8±0.9 ℃, and the W0 of the US+UK group was more than 4 times of UK alone group (2.435±0.137 g vs 0.607±0.185 g). Fluorescent frozen sections confirmed that the ultrasound energy of Ultrasound Needle could mechanically damage the clot tissues and promote the intra-clots drug diffusion. Macroscopic examination showed that US+UK group caused larger clots lysis area than UK alone group (2.08 cm2 vs 0.65 cm2 ). In addition, electron microscopy examination exhibited that the fibrin filaments of the clots in US+UK group were lysed more thoroughly compared to single treatment groups. CONCLUSIONS Ultrasound Needle, an improved ultrasonic horn device, can mechanically damage the clot tissues and exhibit an excellent synergistic lysis effect with thrombolytic drugs. Therefore, Ultrasound Needle has great potential in providing a new minimally invasive strategy for rapid intracranial hematoma evacuation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Junhui Tang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yiyi Liao
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luhua Bai
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shuang Feng
- Department of Ultrasound, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
15
|
Wang Y, Pisapati AV, Zhang XF, Cheng X. Recent Developments in Nanomaterial-Based Shear-Sensitive Drug Delivery Systems. Adv Healthc Mater 2021; 10:e2002196. [PMID: 34076369 PMCID: PMC8273148 DOI: 10.1002/adhm.202002196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/21/2021] [Indexed: 01/30/2023]
Abstract
Nanomaterial-based drug delivery systems (DDSs) increase the efficacy of various therapeutics, and shear stress has been shown to be a robust modulator of payload release. In the past few decades, a deeper understanding has been gained of the effects of flow in the body and its alteration in pathological microenvironments. More recently, shear-responsive nanomaterial DDSs have been developed. Studies on this subject mainly from the last decade are reviewed here, focusing on innovations of the material design and mechanisms of the shear response. The two most popular shear-controlled drug carriers distinguished by different release mechanisms, that is, shear-deformable nanoparticles (NPs) and shear-dissociated NP aggregates (NPAs), are surveyed. The influence of material structures on their properties such as drug loading, circulation time, and shear sensitivity are discussed. The drug development stages, therapeutic effects, limitations, and potential of these DDSs are further inspected. The reviewed research emphasizes the advantages and significance of nanomaterial-based shear-sensitive DDSs in the field of targeted drug delivery. It is also believed that efforts to rationally design nanomaterial DDSs responsive to shear may prompt a new class of diagnostics and therapeutics for signaling and rectifying pathological flows in the body.
Collapse
Affiliation(s)
- Yi Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Avani V. Pisapati
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - X. Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| |
Collapse
|
16
|
Su X, Rakshit M, Das P, Gupta I, Das D, Pramanik M, Ng KW, Kwan J. Ultrasonic Implantation and Imaging of Sound-Sensitive Theranostic Agents for the Treatment of Arterial Inflammation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24422-24430. [PMID: 34019376 DOI: 10.1021/acsami.1c01161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For site-specific diseases such as atherosclerosis, it is desirable to noninvasively and locally deliver therapeutics for extended periods of time. High-intensity focused ultrasound (HIFU) provides targeted drug delivery, yet remains unable to sustain delivery beyond the HIFU treatment time. Furthermore, methods to validate HIFU-enhanced drug delivery remain limited. In this study, we report on HIFU-targeted implantation of degradable drug-loaded sound-sensitive multicavity PLGA microparticles (mcPLGA MPs) as a theranostic agent for the treatment of arterial lesions. Once implanted into the targeted tissue, mcPLGA MPs eluted dexamethasone for several days, thereby reducing inflammatory markers linked to oxidized lipid uptake in a foam cell spheroid model. Furthermore, implanted mcPLGA MPs created hyperechoic regions on diagnostic ultrasound images, and thus noninvasively verified that the target region was treated with the theranostic agents. This novel and innovative multifunctional theranostic platform may serve as a promising candidate for noninvasive imaging and treatment for site-specific diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Su
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Prativa Das
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Ipshita Gupta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, CleanTech One, 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
17
|
Kleven RT, Karani KB, Hilvert N, Ford SM, Mercado-Shekhar KP, Racadio JM, Rao MB, Abruzzo TA, Holland CK. Accelerated sonothrombolysis with Definity in a xenographic porcine cerebral thromboembolism model. Sci Rep 2021; 11:3987. [PMID: 33597659 PMCID: PMC7889614 DOI: 10.1038/s41598-021-83442-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Adjuvant ultrasound at 2 MHz with or without an ultrasound contrast agent improves the rate of thrombus resolution by recombinant tissue plasminogen activator (rt-PA) in laboratory and clinical studies. A sub-megahertz approach can further expand this therapy to a subset of patients with an insufficient temporal bone window, improving efficacy in unselected patient populations. The aim of this study was to determine if a clinical ultrasound contrast agent (UCA), Definity, and 220 kHz pulsed ultrasound accelerated rt-PA thrombolysis in a preclinical animal model of vascular occlusion. The effect of Definity and ultrasound on thrombus clearance was first investigated in vitro and subsequently tested in a xenographic porcine cerebral thromboembolism model in vivo. Two different microcatheter designs (end-hole, multi-side-hole) were used to infuse rt-PA and Definity at the proximal edge or directly into clots, respectively. Sonothrombolysis with Definity increased clot mass loss relative to saline or rt-PA alone in vitro, only when rt-PA was administered directly into clots via a multi-side-hole microcatheter. Combined treatment with rt-PA, Definity, and ultrasound in vivo increased the rate of reperfusion up to 45 min faster than clots treated with rt-PA or saline. In this porcine cerebral thromboembolism model employing retracted human clots, 220 kHz ultrasound, in conjunction with Definity increased the probability of early successful reperfusion with rt-PA.
Collapse
Affiliation(s)
- Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, CVC 3921, 0586, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA.
| | - Kunal B Karani
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicole Hilvert
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha M Ford
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Karla P Mercado-Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - John M Racadio
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marepalli B Rao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, CVC 3921, 0586, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
| | - Todd A Abruzzo
- Division of Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Radiology, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, CVC 3921, 0586, 231 Albert Sabin Way, Cincinnati, OH, 45267-0586, USA
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
18
|
Hess A, Thackeray JT, Wollert KC, Bengel FM. Radionuclide Image-Guided Repair of the Heart. JACC Cardiovasc Imaging 2020; 13:2415-2429. [DOI: 10.1016/j.jcmg.2019.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 01/12/2023]
|
19
|
Inserra C, Regnault G, Cleve S, Mauger C, Doinikov AA. Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. IV. Case of modes n and m. Phys Rev E 2020; 102:043103. [PMID: 33212592 DOI: 10.1103/physreve.102.043103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
This paper is the conclusion of work done in our previous papers [A. A. Doinikov et al., Phys. Rev. E 100, 033104 (2019)10.1103/PhysRevE.100.033104; Phys. Rev. E 100, 033105 (2019)10.1103/PhysRevE.100.033105]. The overall aim of the study is to develop a theory for modeling the velocity field of acoustic microstreaming produced by nonspherical oscillations of a gas bubble. In our previous papers, general equations were derived to describe the velocity field of acoustic microstreaming produced by modes m and n of bubble oscillations. Particular cases of mode interaction were derived, such as the 0-n, 1-1, 1-m, and n-n interactions. Here the general case of interaction between modes n and m, n>m, is solved analytically. Solutions are expressed in terms of complex mode amplitudes, meaning that the mode amplitudes are assumed to be known and serve as input data for the calculation of the velocity field of microstreaming. No restrictions are imposed on the ratio of the bubble radius to the viscous penetration depth. The n-m interaction results in specific streaming patterns: At large distance from the bubble interface the pattern exhibits 2|n-m| lobes, while 2min(m,n) lobes exist in the bubble vicinity. The spatial organization of the recirculation zones is unique for the interaction of two distinct nonspherical modes and therefore appears as a signature of the n-m interaction.
Collapse
Affiliation(s)
- Claude Inserra
- Univ Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, INSERM, UMR 1032, LabTAU, F-69003 Lyon, France
| | - Gabriel Regnault
- Univ Lyon, École Centrale de Lyon, INSA de Lyon, CNRS, LMFA UMR 5509, F-69134 Écully, France
| | - Sarah Cleve
- Univ Lyon, École Centrale de Lyon, INSA de Lyon, CNRS, LMFA UMR 5509, F-69134 Écully, France
| | - Cyril Mauger
- Univ Lyon, École Centrale de Lyon, INSA de Lyon, CNRS, LMFA UMR 5509, F-69134 Écully, France
| | - Alexander A Doinikov
- Univ Lyon, École Centrale de Lyon, INSA de Lyon, CNRS, LMFA UMR 5509, F-69134 Écully, France
| |
Collapse
|
20
|
Beekers I, Mastik F, Beurskens R, Tang PY, Vegter M, van der Steen AFW, de Jong N, Verweij MD, Kooiman K. High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2017-2029. [PMID: 32402676 DOI: 10.1016/j.ultrasmedbio.2020.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble-cell interaction remains poorly understood. Because intracellular calcium (Cai2+) is a key cellular regulator, unraveling the Cai2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell-cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 μm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai2+ fluctuations, providing new insight into the microbubble-cell interaction to aid clinical translation.
Collapse
Affiliation(s)
- Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Beurskens
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Phoei Ying Tang
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Merel Vegter
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Guan L, Wang C, Yan X, Liu L, Li Y, Mu Y. A thrombolytic therapy using diagnostic ultrasound combined with RGDS-targeted microbubbles and urokinase in a rabbit model. Sci Rep 2020; 10:12511. [PMID: 32719362 PMCID: PMC7385658 DOI: 10.1038/s41598-020-69202-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/10/2020] [Indexed: 11/22/2022] Open
Abstract
This study aimed to explore thrombolysis therapy based on ultrasound combined with urokinase and Arg–Gly–Asp sequence (RGDS)-targeted microbubbles by evaluating the histological changes in a thrombotic rabbit model. Forty-two New Zealand rabbits featuring platelet-rich thrombi in the femoral artery were randomized to (n = 6/group): ultrasound alone (US); urokinase alone (UK); ultrasound plus non-targeted microbubbles (US + M); ultrasound plus RGDS-targeted microbubbles (US + R); RGDS-targeted microbubbles plus urokinase (R + UK); ultrasound, non-targeted microbubbles and urokinase (US + M + UK); and ultrasound, RGDS-targeted microbubbles and urokinase (US + R + UK) groups. Diagnostic ultrasound was used transcutaneously over the thrombus for 30 min. We evaluated the thrombolytic effect based on ultrasound thrombi detection, blood flow, and histological observations. Among all study groups, complete recanalization was achieved in the US + R + UK group. Hematoxylin and eosin staining showed that the thrombi were completely dissolved. Scanning electron microscopy examination demonstrated that the fiber network structure of the thrombi was damaged. Transmission electron microscopy showed that the thrombus was decomposed into high electron-dense particles. Histology for von Willebrand factor and tissue factor were both negative in the US + R + UK group. This study revealed that a thrombolytic therapy consisting of diagnostic ultrasound together with RGDS-targeted and urokinase coupled microbubbles.
Collapse
Affiliation(s)
- Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Chunmei Wang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xue Yan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Liyun Liu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Yanhong Li
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
22
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
23
|
Smith CAB, Coussios CC. Spatiotemporal Assessment of the Cellular Safety of Cavitation-Based Therapies by Passive Acoustic Mapping. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1235-1243. [PMID: 32111455 DOI: 10.1016/j.ultrasmedbio.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/09/2023]
Abstract
Many useful therapeutic bio-effects can be generated using ultrasound-induced cavitation. However, cavitation is also capable of causing unwanted cellular and vascular damage, which should be monitored to ensure treatment safety. In this work, the unique opportunity provided by passive acoustic mapping (PAM) to quantify cavitation dose across an entire volume of interest during therapy is utilised to provide setup-independent measures of spatially localised cavitation dose. This spatiotemporally quantifiable cavitation dose is then related to the level of cellular damage generated. The cavitation-mediated destruction of equine red blood cells mixed with one of two types of cavitation nuclei at a variety of concentrations is investigated. The blood is placed within a 0.5-MHz ultrasound field and exposed to a range of peak rarefactional pressures up to 2 MPa, with 50 to 50,000 cycle pulses maintaining a 5% duty cycle. Two co-planar linear arrays at 90° to each other are used to generate 400-µm-resolution frequency domain robust capon beamforming PAM maps, which are then used to generate estimates of cavitation dose. A relationship between this cavitation dose and the levels of haemolysis generated was found which was comparable regardless of the applied acoustic pressure, pulse length, cavitation agent type or concentration used. PAM was then used to monitor cellular damage in multiple locations within a tissue phantom simultaneously, with the damage-cavitation dose relationship being similar for the two experimental models tested. These results lay the groundwork for this method to be applied to other measures of safety, allowing for improved ultrasound monitoring of cavitation-based therapies.
Collapse
Affiliation(s)
- Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
24
|
Shamloo A, Ebrahimi S, Amani A, Fallah F. Targeted Drug Delivery of Microbubble to Arrest Abdominal Aortic Aneurysm Development: A Simulation Study Towards Optimized Microbubble Design. Sci Rep 2020; 10:5393. [PMID: 32214205 PMCID: PMC7096410 DOI: 10.1038/s41598-020-62410-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/12/2020] [Indexed: 01/10/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is an irreversible bulge in the artery with higher prevalence among the elderlies. Increase of the aneurysm diameter by time is a fatal phenomenon which will lead to its sidewall rupture. Invasive surgical treatments are vital in preventing from AAA development. These approaches however have considerable side effects. Targeted drug delivery using microbubbles (MBs) has been recently employed to suppress the AAA growth. The present study is aimed to investigate the surface adhesion of different types of drug-containing MBs to the inner wall of AAA through ligand-receptor binding, using fluid-structure interaction (FSI) simulation by using a patient CT-scan images of the vascular system. The effect of blood flow through AAA on MBs delivery to the intended surface was also addressed. For this purpose, the adherence of four types of MBs with three different diameters to the inner surface wall of AAA was studied in a patient with 40-mm diameter aneurysm. The effects of the blood mechanical properties on the hematocrit (Hct) percentage of patients suffering from anemia and diabetes were studied. Moreover, the impact of variations in the artery inlet velocity on blood flow was addressed. Simulation results demonstrated the dependency of the surface density of MBs (SDM) adhered on the AAA lumen to the size and the type of MBs. It was observed that the amount of SDM due to adhesion on the AAA lumen for one of the commercially-approved MBs (Optison) with a diameter of 4.5 μm was higher than the other MBs. Furthermore, we have shown that the targeted drug delivery to the AAA lumen is more favorable in healthy individuals (45% Hct) compared to the patients with diabetes and anemia. Also, it was found that the targeted drug delivery method using MBs on the patients having AAA with complicated aneurysm shape and negative inlet blood flow velocity can be severely affected.
Collapse
Affiliation(s)
- Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Amani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Famida Fallah
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Lattwein KR, Shekhar H, Kouijzer JJP, van Wamel WJB, Holland CK, Kooiman K. Sonobactericide: An Emerging Treatment Strategy for Bacterial Infections. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:193-215. [PMID: 31699550 PMCID: PMC9278652 DOI: 10.1016/j.ultrasmedbio.2019.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Ultrasound has been developed as both a diagnostic tool and a potent promoter of beneficial bio-effects for the treatment of chronic bacterial infections. Bacterial infections, especially those involving biofilm on implants, indwelling catheters and heart valves, affect millions of people each year, and many deaths occur as a consequence. Exposure of microbubbles or droplets to ultrasound can directly affect bacteria and enhance the efficacy of antibiotics or other therapeutics, which we have termed sonobactericide. This review summarizes investigations that have provided evidence for ultrasound-activated microbubble or droplet treatment of bacteria and biofilm. In particular, we review the types of bacteria and therapeutics used for treatment and the in vitro and pre-clinical experimental setups employed in sonobactericide research. Mechanisms for ultrasound enhancement of sonobactericide, with a special emphasis on acoustic cavitation and radiation force, are reviewed, and the potential for clinical translation is discussed.
Collapse
Affiliation(s)
- Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Himanshu Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joop J P Kouijzer
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Kee PH, Moody MR, Huang SL, Kim H, Yin X, Peng T, Laing ST, Klegerman ME, Rahbar MH, Vela D, Genstler C, Haworth KJ, Holland CK, McPherson DD. Stabilizing Peri-Stent Restenosis Using a Novel Therapeutic Carrier. JACC Basic Transl Sci 2020; 5:1-11. [PMID: 32043017 PMCID: PMC7000871 DOI: 10.1016/j.jacbts.2019.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Late in-stent restenosis remains a significant problem. Bare-metal stents were implanted into peripheral arteries in miniature swine, followed by direct intra-arterial infusion of nitric oxide-loaded echogenic liposomes (ELIPs) and anti-intercellular adhesion molecule-1 conjugated ELIPs loaded with pioglitazone exposed to an endovascular catheter with an ultrasonic core. Ultrasound-facilitated delivery of ELIP formulations into stented peripheral arteries attenuated neointimal growth. Local atheroma-targeted, ultrasound-triggered delivery of nitric oxide and pioglitazone, an anti-inflammatory peroxisome proliferator-activated receptor-γ agonist, into stented arteries has the potential to stabilize stent-induced neointimal growth and obviate the need for long-term antiplatelet therapy.
Collapse
Affiliation(s)
- Patrick H. Kee
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Melanie R. Moody
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Shao-Ling Huang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Hyunggun Kim
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Bio-Mechatronic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Xing Yin
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Tao Peng
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Susan T. Laing
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Melvin E. Klegerman
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Mohammad H. Rahbar
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Deborah Vela
- Department of Pathology, Texas Heart Institute, Houston, Texas
| | | | - Kevin J. Haworth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Christy K. Holland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - David D. McPherson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
27
|
Zhu Q, Dong G, Wang Z, Sun L, Gao S, Liu Z. Intra-clot Microbubble-Enhanced Ultrasound Accelerates Catheter-Directed Thrombolysis for Deep Vein Thrombosis: A Clinical Study. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2427-2433. [PMID: 31160122 DOI: 10.1016/j.ultrasmedbio.2019.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Insufficiency of microbubbles in the vessel-obstructing thrombus significantly reduces the effectiveness of ultrasound thrombolysis. With catheter-directed thrombolysis (CDT), microbubbles can be delivered directly into the thrombus. In this study, we combined CDT with intra-clot microbubble-enhanced ultrasound thrombolysis (IMUT) to investigate its safety and efficiency in thrombolysis in patients with acute lower limb deep vein thrombosis (DVT). For IMUT, a 1-MHz air-backed transducer directed 100-μs-pulse-length and 100-Hz-pulse-repetition pressure at 1 MPa was used. Thirteen DVT patients in the study group were treated with CDT and IMUT. Forty-three DVT patients in the historical control group were treated with CDT alone. The results indicated that the average thrombolysis time of the study group was significantly shorter (5.23 ± 1.59 d) than that of the control (10.00 ± 2.69 d), and the overall urokinase dosage of the study group ([3.82 ± 1.68] × 106 IU) was lower than that of the control ([4.99 ± 2.26] × 106 IU). No procedure-related complications were noted in either group. Therefore, combining CDT with IMUT can improve thrombolysis safely and efficiently.
Collapse
Affiliation(s)
- Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Gang Dong
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lulu Sun
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunji Gao
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China; Department of Ultrasound, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
28
|
Kleven RT, Karani KB, Salido NG, Shekhar H, Haworth KJ, Mast TD, Tadesse DG, Holland CK. The effect of 220 kHz insonation scheme on rt-PA thrombolytic efficacy in vitro. Phys Med Biol 2019; 64:165015. [PMID: 31189149 DOI: 10.1088/1361-6560/ab293b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultrasound-enhanced recombinant tissue plasminogen activator (rt-PA) thrombolysis is under development as an adjuvant to ischemic stroke therapy. The goal of this study was to design a pulsed ultrasound (US) exposure scheme that reduced intracranial constructive interference and tissue heating, and maintained thrombolytic efficacy relative to continuous wave (CW) insonation. Three 220 kHz US schemes were evaluated, two pulsed insonation schemes (15 cycles, 68 µs pulse duration, 33% or 62.5% duty cycle) and an intermittent CW insonation scheme (50 s active, 30 s quiescent) over a 30-min treatment period. An in silico study using a finite-difference model of transcranial US propagation was performed to estimate the intracranial acoustic field and temperature rise in the skull for each insonation scheme. In vitro measurements with flow were performed to assess thrombolysis using time-lapse microscopy. Intracranial constructive interference was not reduced with pulsed US using a pulse length of 15 cycles compared to intermittent CW US. The 33.3% duty cycle pulsed US scheme reduced heating in the temporal bone as much as 60% relative to the intermittent CW scheme. All insonation schemes promoted sustained stable cavitation in vitro and augmented thrombolysis compared to rt-PA alone (p < 0.05). Ultraharmonic (UH) and harmonic cumulative energy over a 30 min treatment period was significantly higher (p < 0.05) for the intermittent CW US scheme compared to either pulsed US scheme. Despite the difference in cavitation emissions, no difference was observed in the clot lysis between the three US schemes. These findings demonstrate that a 33.3% duty cycle pulsed US scheme with a 15-cycle burst can reduce bone heating and achieve equivalent thrombolytic efficacy as an intermittent CW scheme.
Collapse
Affiliation(s)
- Robert T Kleven
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America. Robert Kleven, CVC 3921, 0586, 231 Albert Sabin Way, Cincinnati, OH 45267-0586, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
29
|
McMahon D, Poon C, Hynynen K. Evaluating the safety profile of focused ultrasound and microbubble-mediated treatments to increase blood-brain barrier permeability. Expert Opin Drug Deliv 2019; 16:129-142. [PMID: 30628455 DOI: 10.1080/17425247.2019.1567490] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Treatment of several diseases of the brain are complicated by the presence of the skull and the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubble (MB)-mediated BBB treatment is a minimally invasive method to transiently increase the permeability of blood vessels in targeted brain areas. It can be used as a general delivery system to increase the concentration of therapeutic agents in the brain parenchyma. AREAS COVERED Over the past two decades, the safety of using FUS+MBs to deliver agents across the BBB has been interrogated through various methods of imaging, histology, biochemical assays, and behavior analyses. Here we provide an overview of the factors that affect the safety profile of these treatments, describe methods by which FUS+MB treatments are controlled, and discuss data that have informed the assessment of treatment risks. EXPERT OPINION There remains a need to assess the risks associated with clinically relevant treatment strategies, specifically repeated FUS+MB treatments, with and without therapeutic agent delivery. Additionally, efforts to develop metrics by which FUS+MB treatments can be easily compared across studies would facilitate a more rapid consensus on the risks associated with this intervention.
Collapse
Affiliation(s)
- Dallan McMahon
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , ON , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , ON , Canada
| | - Charissa Poon
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , ON , Canada.,c Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , ON , Canada
| | - Kullervo Hynynen
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , ON , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , ON , Canada.,c Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
30
|
Boulos P, Varray F, Poizat A, Ramalli A, Gilles B, Bera JC, Cachard C. Weighting the Passive Acoustic Mapping Technique With the Phase Coherence Factor for Passive Ultrasound Imaging of Ultrasound-Induced Cavitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2301-2310. [PMID: 30273149 DOI: 10.1109/tuffc.2018.2871983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound (US) cavitation is currently being explored for low-invasive therapy techniques applied to a wide panel of pathologies. Because of the random behavior of cavitation, a real-time spatial monitoring system may be required. For this purpose, the US passive imaging techniques have been recently investigated. In particular, the passive acoustic mapping (PAM) beamforming method enables the reconstruction of cavitation activity maps by beamforming acoustic signals passively recorded by an array transducer. In this paper, an optimized version of PAM, PAM weighted with a phase coherence factor (PAM-PCF), is considered. A general validation process is developed including simulations on a point source and experiments on a wire. Furthermore, using a focused regulated US-induced cavitation generator, reproducible cavitation experiments are conducted in water and in agar gel. The spatial behavior of a bubble cavitation cloud is determined using the PAM-PCF beamforming method to localize the focal cavitation point in two perpendicular imaging planes.
Collapse
|
31
|
Rich KT, Holland CK, Rao MB, Mast TD. Characterization of cavitation-radiated acoustic power using diffraction correction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:3563. [PMID: 30599638 PMCID: PMC6308017 DOI: 10.1121/1.5083831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A method is developed for compensating absolute pressure measurements made by a calibrated passive cavitation detector (PCD) to estimate the average acoustic power radiated from a region of interest (ROI) defined to encompass all cavitating bubbles. A diffraction correction factor for conversion of PCD-measured pressures to cavitation-radiated acoustic power per unit area or volume is derived as a simple analytic expression, accounting for position- and frequency-dependent PCD sensitivity. This approach can be applied to measurements made by any PCD without precise knowledge of the number, spatial, or temporal distribution of cavitating bubbles. The diffraction correction factor is validated in simulation for a wide range of ROI dimensions and frequencies. The correction factor is also applied to emission measurements obtained during in vitro ultrasound-enhanced sonophoresis experiments, allowing comparison of stable cavitation levels between therapeutic configurations with different source center frequencies. Results incorporating sonication at both 0.41 and 2.0 MHz indicate that increases in skin permeability correlate strongly with the acoustic power of subharmonic emissions radiated per unit skin area.
Collapse
Affiliation(s)
- Kyle T Rich
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Marepalli B Rao
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - T Douglas Mast
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
32
|
Skachkov I, Luan Y, van Tiel ST, van der Steen AFW, de Jong N, Bernsen MR, Kooiman K. SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures. PLoS One 2018; 13:e0204354. [PMID: 30235336 PMCID: PMC6147550 DOI: 10.1371/journal.pone.0204354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
In vivo cell tracking of therapeutic, tumor, and endothelial cells is an emerging field and a promising technique for imaging cardiovascular disease and cancer development. Site-specific labeling of endothelial cells with the MRI contrast agent superparamagnetic iron oxide (SPIO) in the absence of toxic agents is challenging. Therefore, the aim of this in vitro study was to find optimal parameters for efficient and safe SPIO-labeling of endothelial cells using ultrasound-activated CD31-targeted microbubbles for future MRI tracking. Ultrasound at a frequency of 1 MHz (10,000 cycles, repetition rate of 20 Hz) was used for varying applied peak negative pressures (10–160 kPa, i.e. low mechanical index (MI) of 0.01–0.16), treatment durations (0–30 s), time of SPIO addition (-5 min– 15 min with respect to the start of the ultrasound), and incubation time after SPIO addition (5 min– 3 h). Iron specific Prussian Blue staining in combination with calcein-AM based cell viability assays were applied to define the most efficient and safe conditions for SPIO-labeling. Optimal SPIO labeling was observed when the ultrasound parameters were 40 kPa peak negative pressure (MI 0.04), applied for 30 s just before SPIO addition (0 min). Compared to the control, this resulted in an approximate 12 times increase of SPIO uptake in endothelial cells in vitro with 85% cell viability. Therefore, ultrasound-activated targeted ultrasound contrast agents show great potential for effective and safe labeling of endothelial cells with SPIO.
Collapse
Affiliation(s)
- Ilya Skachkov
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Ying Luan
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Sandra T. van Tiel
- Department of Radiology & Nucleair Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Antonius F. W. van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Monique R. Bernsen
- Department of Radiology & Nucleair Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
33
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
34
|
Lattwein KR, Shekhar H, van Wamel WJB, Gonzalez T, Herr AB, Holland CK, Kooiman K. An in vitro proof-of-principle study of sonobactericide. Sci Rep 2018; 8:3411. [PMID: 29467474 PMCID: PMC5821825 DOI: 10.1038/s41598-018-21648-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Abstract
Infective endocarditis (IE) is associated with high morbidity and mortality rates. The predominant bacteria causing IE is Staphylococcus aureus (S. aureus), which can bind to existing thrombi on heart valves and generate vegetations (biofilms). In this in vitro flow study, we evaluated sonobactericide as a novel strategy to treat IE, using ultrasound and an ultrasound contrast agent with or without other therapeutics. We developed a model of IE biofilm using human whole-blood clots infected with patient-derived S. aureus (infected clots). Histology and live-cell imaging revealed a biofilm layer of fibrin-embedded living Staphylococci around a dense erythrocyte core. Infected clots were treated under flow for 30 minutes and degradation was assessed by time-lapse microscopy imaging. Treatments consisted of either continuous plasma flow alone or with different combinations of therapeutics: oxacillin (antibiotic), recombinant tissue plasminogen activator (rt-PA; thrombolytic), intermittent continuous-wave low-frequency ultrasound (120-kHz, 0.44 MPa peak-to-peak pressure), and an ultrasound contrast agent (Definity). Infected clots exposed to the combination of oxacillin, rt-PA, ultrasound, and Definity achieved 99.3 ± 1.7% loss, which was greater than the other treatment arms. Effluent size measurements suggested low likelihood of emboli formation. These results support the continued investigation of sonobactericide as a therapeutic strategy for IE.
Collapse
Affiliation(s)
- Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Room Ee2302, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA. .,Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | - Himanshu Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Tammy Gonzalez
- Cincinnati Children's Hospital Medical Center, Division of Immunobiology, Center for Systems Immunology, and Division of Infectious Diseases, Cincinnati, Ohio, USA
| | - Andrew B Herr
- Cincinnati Children's Hospital Medical Center, Division of Immunobiology, Center for Systems Immunology, and Division of Infectious Diseases, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Room Ee2302, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
35
|
A systematic review of ultrasound-accelerated catheter-directed thrombolysis in the treatment of deep vein thrombosis. J Thromb Thrombolysis 2018; 45:440-451. [DOI: 10.1007/s11239-018-1629-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Gray MD, Lyka E, Coussios CC. Diffraction Effects and Compensation in Passive Acoustic Mapping. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:258-268. [PMID: 29389657 DOI: 10.1109/tuffc.2017.2778509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Over the last decade, a variety of noninvasive techniques have been developed to monitor therapeutic ultrasound procedures in support of safety or efficacy assessments. One class of methods employs diagnostic ultrasound arrays to sense acoustic emissions, thereby providing a means to passively detect, localize, and quantify the strength of nonlinear sources, including cavitation. Real array element diffraction patterns may differ substantially from those presumed in existing beamforming algorithms. However, diffraction compensation has received limited treatment in passive and active imaging, and measured diffraction data have yet to be used for array response correction. The objectives of this paper were to identify differences between ideal and real element diffraction patterns, and to quantify the impact of diffraction correction on cavitation mapping beamformer performance. These objectives were addressed by performing calibration measurements on a diagnostic linear array, using the results to calculate diffraction correction terms, and applying the corrections to cavitation emission data collected from soft tissue phantom experiments. Measured diffraction patterns were found to differ significantly from those of ideal element forms, particularly at higher frequencies and shorter distances from the array. Diffraction compensation of array data resulted in cavitation energy estimates elevated by as much as a factor of 5, accompanied by the elimination of a substantial bias between two established beamforming algorithms. These results illustrate the importance of using measured array responses to validate analytical field models and to minimize observation biases in imaging applications where quantitative analyses are critical for assessment of therapeutic safety and efficacy.
Collapse
|
37
|
Qin P, Han T, Yu ACH, Xu L. Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery. J Control Release 2018; 272:169-181. [PMID: 29305924 DOI: 10.1016/j.jconrel.2018.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Ultrasound-driven microbubbles can trigger reversible membrane perforation (sonoporation), open interendothelial junctions and stimulate endocytosis, thereby providing a temporary and reversible time-window for the delivery of macromolecules across biological membranes and endothelial barriers. This time-window is related not only to cavitation events, but also to biological regulatory mechanisms. Mechanistic understanding of the interaction between cavitation events and cells and tissues, as well as the subsequent cellular and molecular responses will lead to new design strategies with improved efficacy and minimized side effects. Recent important progress on the spatiotemporal characteristics of sonoporation, cavitation-induced interendothelial gap and endocytosis, and the spatiotemporal bioeffects and the preliminary biological mechanisms in cavitation-enhanced permeability, has been made. On the basis of the summary of this research progress, this Review outlines the underlying bioeffects and the related biological regulatory mechanisms involved in cavitation-enhanced permeability; provides a critical commentary on the future tasks and directions in this field, including developing a standardized methodology to reveal mechanism-based bioeffects in depth, and designing biology-based treatment strategies to improve efficacy and safety. Such mechanistic understanding the bioeffects that contribute to cavitation-enhanced delivery will accelerate the translation of this approach to the clinic.
Collapse
Affiliation(s)
- Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Peng R, Luo Y, Li Z, Wang W, Pang Y. Design of an ultrasonic physiotherapy system with pulse wave feedback control. Technol Health Care 2017; 25:305-315. [PMID: 28582919 DOI: 10.3233/thc-171334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Due to different physical and biological mechanisms behind ultrasound hyperthermia and phonophoresis, the requirement for ultrasound power, frequency and control modes varies. OBJECTIVE This paper introduces an adaptive ultrasonic physiotherapy system based on real-time surveillance over physiological characteristics of the patients, which in turn assists the individual treatment and dose limitation in auxiliary rehabilitation. METHODS The method essentially takes advantage of distinctive characteristics of two different phases (systole and diastole) of the human cardiac cycle as a medium for modulation. The abundance of blood flow during systole enables energy exchange for hyperthermia while blood flow insufficiency caused by diastole assists in drug penetration. Said method could improve the adjuvant therapy as it provides partial drug penetration and therapeutic dosage control. RESULTS By adjusting time window and intensity of multi-frequency ultrasound, it is possible to reduce the irradiation dosage to around 22% of that during continuous irradiation at 1 MHz. The method shows high potential in clinical practice. CONCLUSION Frequency-tuning ultrasound therapy would be more efficient regarding drug penetration and improve the therapeutic efficacy of hyperthermia.
Collapse
Affiliation(s)
- Ran Peng
- Chongqing University of Posts and Telecommunications, Chongqing, China.,National Engineering Research Center of Ultrasound Medicine, Chongqing Medical University, Chongqing, China
| | - Yang Luo
- Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhangyong Li
- Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Wei Wang
- Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yu Pang
- Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
39
|
Kooiman K, van Rooij T, Qin B, Mastik F, Vos HJ, Versluis M, Klibanov AL, de Jong N, Villanueva FS, Chen X. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification. PLoS One 2017; 12:e0180747. [PMID: 28686673 PMCID: PMC5501608 DOI: 10.1371/journal.pone.0180747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023] Open
Abstract
Acoustic behavior of lipid-coated microbubbles has been widely studied, which has led to several numerical microbubble dynamics models that incorporate lipid coating behavior, such as buckling and rupture. In this study we investigated the relationship between microbubble acoustic and lipid coating behavior on a nanosecond scale by using fluorescently labeled lipids. It is hypothesized that a local increased concentration of lipids, appearing as a focal area of increased fluorescence intensity (hot spot) in the fluorescence image, is related to buckling and folding of the lipid layer thereby highly influencing the microbubble acoustic behavior. To test this hypothesis, the lipid microbubble coating was fluorescently labeled. The vibration of the microbubble (n = 177; 2.3–10.3 μm in diameter) upon insonification at an ultrasound frequency of 0.5 or 1 MHz at 25 or 50 kPa acoustic pressure was recorded with the UPMC Cam, an ultra-high-speed fluorescence camera, operated at ~4–5 million frames per second. During short tone-burst excitation, hot spots on the microbubble coating occurred at relative vibration amplitudes > 0.3 irrespective of frequency and acoustic pressure. Around resonance, the majority of the microbubbles formed hot spots. When the microbubble also deflated acoustically, hot spot formation was likely irreversible. Although compression-only behavior (defined as substantially more microbubble compression than expansion) and subharmonic responses were observed in those microbubbles that formed hot spots, both phenomena were also found in microbubbles that did not form hot spots during insonification. In conclusion, this study reveals hot spot formation of the lipid monolayer in the microbubble’s compression phase. However, our experimental results show that there is no direct relationship between hot spot formation of the lipid coating and microbubble acoustic behaviors such as compression-only and the generation of a subharmonic response. Hence, our hypothesis that hot spots are related to acoustic buckling could not be verified.
Collapse
Affiliation(s)
- Klazina Kooiman
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Netherlands Heart Institute, Utrecht, the Netherlands
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| | - Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Hendrik J. Vos
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Michel Versluis
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine and MESA+ Institute for Nanotechnology, University of Twente, Enschede, the Netherlands
| | - Alexander L. Klibanov
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Flordeliza S. Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
40
|
Wang T, Yuan C, Dai B, Liu Y, Li M, Feng Z, Jiang Q, Xu Z, Zhao N, Gu N, Yang F. Click-Chemistry-Mediated Rapid Microbubble Capture for Acute Thrombus Ultrasound Molecular Imaging. Chembiochem 2017; 18:1364-1368. [PMID: 28426149 DOI: 10.1002/cbic.201700068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tuantuan Wang
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Chuxiao Yuan
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Bingyang Dai
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Yang Liu
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Mingxi Li
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Zhenqiang Feng
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Ningwei Zhao
- Shimadzu Biomedical Research Laboratory; West Huaihai Road 570 Shanghai 200052 China
| | - Ning Gu
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Fang Yang
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| |
Collapse
|
41
|
Güvener N, Appold L, de Lorenzi F, Golombek SK, Rizzo LY, Lammers T, Kiessling F. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods 2017; 130:4-13. [PMID: 28552267 DOI: 10.1016/j.ymeth.2017.05.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 01/15/2023] Open
Abstract
Ultrasound (US) is one of the most frequently used imaging methods in the clinic. The broad spectrum of its applications can be increased by the use of gas-filled microbubbles (MB) as ultrasound contrast agents (UCA). In recent years, also nanoscale UCA like nanobubbles (NB), echogenic liposomes (ELIP) and nanodroplets have been developed, which in contrast to MB, are able to extravasate from the vessels into the tissue. New disease-specific UCA have been designed for the assessment of tissue biomarkers and advanced US to a molecular imaging modality. For this purpose, specific binding moieties were coupled to the UCA surface. The vascular endothelial growth factor receptor-2 (VEGFR-2) and P-/E-selectin are prominent examples of molecular US targets to visualize tumor blood vessels and inflammatory diseases, respectively. Besides their application in contrast-enhanced imaging, MB can also be employed for drug delivery to tumors and across the blood-brain barrier (BBB). This review summarizes the development of micro- and nanoscaled UCA and highlights recent advances in diagnostic and therapeutic applications, which are ready for translation into the clinic.
Collapse
Affiliation(s)
- Nihan Güvener
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Lia Appold
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Federica de Lorenzi
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Susanne K Golombek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Larissa Y Rizzo
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| |
Collapse
|
42
|
Huang S, Shekhar H, Holland CK. Comparative lytic efficacy of rt-PA and ultrasound in porcine versus human clots. PLoS One 2017; 12:e0177786. [PMID: 28545055 PMCID: PMC5435301 DOI: 10.1371/journal.pone.0177786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/03/2017] [Indexed: 01/19/2023] Open
Abstract
Introduction Porcine thrombi are employed routinely in preclinical models of ischemic stroke. In this study, we examined the differential lytic susceptibility of porcine and human whole blood clots with and without the use of microbubbles and ultrasound (US) as an adjuvant. Materials and methods An in vitro system equipped with time-lapse microscopy was used to evaluate recombinant tissue-plasminogen activator (rt-PA) lysis of porcine and human clots in the same species or cross species plasma. Human and porcine whole blood clots were treated with rt-PA and an echo contrast agent, Definity®, and exposed to intermittent 120 kHz US. Results and conclusions The rt-PA lytic efficacy observed for porcine clots in porcine plasma was 22 times lower than for human clots in human plasma reported previously. Further, porcine clots did not exhibit increased lysis with adjuvant Definity® and US exposure. However, the rt-PA lytic susceptibility of the porcine clots in human plasma was similar to that of human clots in human plasma. Human clots perfused with porcine plasma did not respond to rt-PA, but adjuvant use of Definity® and US enhanced lysis. These results reveal considerable differences in lytic susceptibility of porcine clots and human clots to rt-PA. The use of porcine clot models to test new human thrombolytic therapies may necessitate modulation of coagulation and thrombolytic factors to reflect human hemostasis accurately.
Collapse
Affiliation(s)
- Shenwen Huang
- Department of Biomedical, Chemical, & Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Himanshu Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Christy K. Holland
- Department of Biomedical, Chemical, & Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
43
|
Bubulis A, Garalienė V, Jurėnas V, Navickas J, Giedraitis S. Effect of Low-Intensity Cavitation on the Isolated Human Thoracic Artery In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1040-1047. [PMID: 28196770 DOI: 10.1016/j.ultrasmedbio.2016.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 12/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Reported here are the results of an experimental study on the response to low-intensity cavitation induced by low-frequency (4-6 W/cm2, 20 kHz and 32.6 kHz) ultrasound of isolated human arterial samples taken during conventional myocardial revascularization operations. Studies have found that low-frequency ultrasound results in a significant (48%-54%) increase in isometric contraction force and does not depend on the number of exposures (10 or 20) or the time passed since the start of ultrasound (0, 10 and 20 min), but does depend on the frequency and location (internal or external) of the blood vessels for the application of ultrasound. Diltiazem (an inhibitor of slow calcium channels) and carbachol (an agonist of muscarinic receptors) used in a concentration-dependent manner did not modify the relaxation dynamics of smooth muscle affected by ultrasound. Thus, ultrasound conditioned to the augmentation of the isometric contraction force the smooth muscle of blood vessels and did not improve endothelial- and calcium channel blocker-dependent relaxation.
Collapse
|
44
|
Abshire C, Murad HY, Arora JS, Liu J, Mandava SH, John VT, Khismatullin DB, Lee BR. Focused Ultrasound-Triggered Release of Tyrosine Kinase Inhibitor From Thermosensitive Liposomes for Treatment of Renal Cell Carcinoma. J Pharm Sci 2017; 106:1355-1362. [PMID: 28159640 DOI: 10.1016/j.xphs.2017.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022]
Abstract
This study reports, for the first time, development of tyrosine kinase inhibitor-loaded, thermosensitive liposomes (TKI/TSLs) and their efficacy for treatment of renal cell carcinoma when triggered by focused ultrasound (FUS). Uptake of these nanoparticles into renal cancer cells was visualized with confocal and fluorescent imaging of rhodamine B-loaded liposomes. The combination of TKI/TSLs and FUS was tested in an in vitro tumor model of renal cell carcinoma. According to MTT cytotoxic assay and flow cytometric analysis, the combined treatment led to the least viability (23.4% ± 2.49%, p < 0.001), significantly lower than that observed from treatment with FUS (97.6% ± 0.67%, not significant) or TKI/TSL (71.0% ± 3.65%, p < 0.001) at 96 h compared to control. The importance of this unique, synergistic combination was demonstrated in viability experiments with non-thermosensitive liposomes (TKI/NTSL + FUS: 58.8% ± 1.5% vs. TKI/TSL + FUS: 36.2% ± 1.4%, p < 0.001) and heated water immersion (TKI/TSL + WB43°: 59.3% ± 2.91% vs. TKI/TSL + FUS: 36.4% ± 1.55%, p < 0.001). Our findings coupled with the existing use of FUS in clinical practice make the proposed combination of targeted chemotherapy, nanotechnology, and FUS a promising platform for enhanced drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Caleb Abshire
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Hakm Y Murad
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana 70118; Tulane Institute for Integrative Engineering for Health and Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Jaspreet S Arora
- Department of Chemical and Bimolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana 70118; Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana 70112
| | - James Liu
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Sree Harsha Mandava
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Vijay T John
- Department of Chemical and Bimolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana 70118; Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana 70112
| | - Damir B Khismatullin
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana 70118; Tulane Institute for Integrative Engineering for Health and Medicine, Tulane University, New Orleans, Louisiana 70112; Division of Urology, University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Benjamin R Lee
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana 70112; Division of Urology, University of Arizona College of Medicine, Tucson, Arizona 85724.
| |
Collapse
|
45
|
Carugo D, Aron M, Sezgin E, Bernardino de la Serna J, Kuimova MK, Eggeling C, Stride E. Modulation of the molecular arrangement in artificial and biological membranes by phospholipid-shelled microbubbles. Biomaterials 2017; 113:105-117. [DOI: 10.1016/j.biomaterials.2016.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/22/2016] [Accepted: 10/23/2016] [Indexed: 12/17/2022]
|
46
|
Wang J, Kaplan JA, Colson YL, Grinstaff MW. Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Adv Drug Deliv Rev 2017; 108:68-82. [PMID: 27856307 PMCID: PMC5285479 DOI: 10.1016/j.addr.2016.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/01/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022]
Abstract
Mechanically-activated delivery systems harness existing physiological and/or externally-applied forces to provide spatiotemporal control over the release of active agents. Current strategies to deliver therapeutic proteins and drugs use three types of mechanical stimuli: compression, tension, and shear. Based on the intended application, each stimulus requires specific material selection, in terms of substrate composition and size (e.g., macrostructured materials and nanomaterials), for optimal in vitro and in vivo performance. For example, compressive systems typically utilize hydrogels or elastomeric substrates that respond to and withstand cyclic compressive loading, whereas, tension-responsive systems use composites to compartmentalize payloads. Finally, shear-activated systems are based on nanoassemblies or microaggregates that respond to physiological or externally-applied shear stresses. In order to provide a comprehensive assessment of current research on mechanoresponsive drug delivery, the mechanical stimuli intrinsically present in the human body are first discussed, along with the mechanical forces typically applied during medical device interventions, followed by in-depth descriptions of compression, tension, and shear-mediated drug delivery devices. We conclude by summarizing the progress of current research aimed at integrating mechanoresponsive elements within these devices, identifying additional clinical opportunities for mechanically-activated systems, and discussing future prospects.
Collapse
Affiliation(s)
- Julia Wang
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States
| | - Jonah A Kaplan
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States; Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States; Department of Medicine, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States.
| |
Collapse
|
47
|
Raymond JL, Luan Y, Peng T, Huang SL, McPherson DD, Versluis M, de Jong N, Holland CK. Loss of gas from echogenic liposomes exposed to pulsed ultrasound. Phys Med Biol 2016; 61:8321-8339. [PMID: 27811382 DOI: 10.1088/0031-9155/61/23/8321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The destruction of echogenic liposomes (ELIP) in response to pulsed ultrasound excitations has been studied acoustically previously. However, the mechanism underlying the loss of echogenicity due to cavitation nucleated by ELIP has not been fully clarified. In this study, an ultra-high speed imaging approach was employed to observe the destruction phenomena of single ELIP exposed to ultrasound bursts at a center frequency of 6 MHz. We observed a rapid size reduction during the ultrasound excitation in 139 out of 397 (35%) ultra- high-speed recordings. The shell dilation rate, which is defined as the microbubble wall velocity divided by the instantaneous radius, [Formula: see text] /R, was extracted from the radius versus time response of each ELIP, and was found to be correlated with the deflation. Fragmentation and surface mode vibrations were also observed and are shown to depend on the applied acoustic pressure and initial radius. Results from this study can be utilized to optimize the theranostic application of ELIP, e.g. by tuning the size distribution or the excitation frequency.
Collapse
Affiliation(s)
- Jason L Raymond
- Biomedical Engineering Program, University of Cincinnati, Cardiovascular Center 3940, 231 Albert Sabin Way, Cincinnati, OH 45267-0586, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sutton JT, Haworth KJ, Shanmukhappa SK, Moody MR, Klegerman ME, Griffin JK, Patton DM, McPherson DD, Holland CK. Delivery of bevacizumab to atheromatous porcine carotid tissue using echogenic liposomes. Drug Deliv 2016; 23:3594-3605. [PMID: 27689451 DOI: 10.1080/10717544.2016.1212441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ultrasound is both a valuable diagnostic tool and a promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles that may also encapsulate and shield therapeutic agents in the bloodstream. Here, the effect of color-Doppler ultrasound exposure on bevacizumab-loaded liposome delivery into the vascular bed was assessed in atheromatous porcine carotids. Bevacizumab, an anti-angiogenic antibody to vascular endothelial growth factor (VEGF-A), was loaded into echogenic liposomes (BEV-ELIP) and confirmed to be immunoreactive. BEV-ELIP flowing within the lumen were exposed to color-Doppler ultrasound at three acoustic pressures for 3.5 min during treatment at physiologic temperature and fluid pressure. To confirm the presence of bubble activity, cavitation was detected within the lumen by a single-element passive cavitation detector. After treatment, the artery was fixed at physiologic pressure and subjected to immunohistochemical analysis to assess the penetration of bevacizumab within the carotid wall. The results suggest that other factors may more strongly influence the deposition of bevacizumab into carotid tissue than color-Doppler ultrasound and cavitation. In both sets of arteries, preferential accumulation of bevacizumab occurred in locations associated with atheroma progression and neointimal thickening: fibrous tissue, necrotic plaque and areas near macrophage infiltration. The delivery of bevacizumab to carotid vascular tissue correlated with the properties of the tissue bed, such as permeability, or affinity for growth-factor binding. Future investigations using this novel therapeutic strategy may focus on characterizing the spatial extent of delivery and bevacizumab colocalization with biochemical markers of atheroma.
Collapse
Affiliation(s)
- J T Sutton
- a Biomedical Engineering Program, University of Cincinnati , Cincinnati , OH , USA.,f Philips Research North America , Cambridge , MA , USA
| | - K J Haworth
- a Biomedical Engineering Program, University of Cincinnati , Cincinnati , OH , USA.,b College of Medicine, Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati , Cincinnati , OH , USA
| | - S K Shanmukhappa
- c Department of Pathology , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,d College of Medicine, Pathology and Laboratory Medicine, University of Cincinnati , Cincinnati , OH , USA
| | - M R Moody
- e Department of Internal Medicine , University of Texas Health Science Center , Houston , TX , USA , and
| | - M E Klegerman
- e Department of Internal Medicine , University of Texas Health Science Center , Houston , TX , USA , and
| | - J K Griffin
- a Biomedical Engineering Program, University of Cincinnati , Cincinnati , OH , USA
| | - D M Patton
- a Biomedical Engineering Program, University of Cincinnati , Cincinnati , OH , USA
| | - D D McPherson
- e Department of Internal Medicine , University of Texas Health Science Center , Houston , TX , USA , and
| | - C K Holland
- a Biomedical Engineering Program, University of Cincinnati , Cincinnati , OH , USA.,b College of Medicine, Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
49
|
Affiliation(s)
- Yuqi Zhang
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jicheng Yu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hunter N. Bomba
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
50
|
van Rooij T, Skachkov I, Beekers I, Lattwein KR, Voorneveld JD, Kokhuis TJ, Bera D, Luan Y, van der Steen AF, de Jong N, Kooiman K. Viability of endothelial cells after ultrasound-mediated sonoporation: Influence of targeting, oscillation, and displacement of microbubbles. J Control Release 2016; 238:197-211. [DOI: 10.1016/j.jconrel.2016.07.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
|