1
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024; 19:e202400326. [PMID: 38993102 PMCID: PMC11581424 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
| | - Junyoung Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - Gabin Kim
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Hyung Ho Lee
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Jin Soo Chung
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Ala Jo
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Minseob Koh
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Jongmin Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| |
Collapse
|
2
|
Puvvada N, Shaik MAS, Samanta D, Shaw M, Mondal I, Basu R, Bhattacharya A, Pathak A. Biocompatible fluorescent carbon nanoparticles as nanocarriers for targeted delivery of tamoxifen for regression of Breast carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124721. [PMID: 38943755 DOI: 10.1016/j.saa.2024.124721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer (BC) is the most common malignancy among females worldwide, and its high metastasis rates are the leading cause of death just after lung cancer. Currently, tamoxifen (TAM) is a hydrophobic anticancer agent and a selective estrogen modulator (SERM), approved by the FDA that has shown potential anticancer activity against BC, but the non-targeted delivery has serious side effects that limit its ubiquitous utility. Therefore, releasing anti-cancer drugs precisely to the tumor site can improve efficacy and reduce the side effects on the body. Nanotechnology has emerged as one of the most important strategies to solve the issue of overdose TAM toxicity, owing to the ability of nano-enabled formulations to deliver desirable quantity of TAM to cancer cells over a longer period of time. In view of this, use of fluorescent carbon nanoparticles in targeted drug delivery holds novel promise for improving the efficacy, safety, and specificity of TAM therapy. Here, we synthesized biocompatible carbon nanoparticles (CNPs) using chitosan molecules without any toxic surface passivating agent. Synthesized CNPs exhibit good water dispersibility and emit intense blue fluorescence upon excitation (360 nm source). The surface of the CNPs has been functionalized with folate using click chemistry to improve the targeted drug uptake by the malignant cell. The pH difference between cancer and normal cells was successfully exploited to trigger TAM release at the target site. After six hours of incubation, CNPs released ∼ 74 % of the TAM drug in acidic pH. In vitro, studies have also demonstrated that after treatment with the synthesized CNPs, significant inhibition of the tumor growth could be achieved.
Collapse
Affiliation(s)
- Nagaprasad Puvvada
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Department of Chemistry, School of Advanced Sciences, VIT-AP University, Vijayawada, Andhra Pradesh 522237, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Angana Bhattacharya
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
3
|
Bukowski K, Rogalska A, Marczak A. Folate Receptor Alpha-A Secret Weapon in Ovarian Cancer Treatment? Int J Mol Sci 2024; 25:11927. [PMID: 39595996 PMCID: PMC11593442 DOI: 10.3390/ijms252211927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy worldwide. Due to its nonspecific symptoms and unreliable screening tools, EOC is not diagnosed at an early stage in most cases. Unfortunately, despite achieving initial remission after debulking surgery and platinum-based chemotherapy, most patients experience the recurrence of the disease. The limited therapy approaches have encouraged scientists to search for new detection and therapeutic strategies. In this review, we discuss the role of folate receptor alpha (FRα) in EOC development and its potential application as a biomarker and molecular target in designing new EOC screening and treatment methods. We summarize the mechanisms of the action of various therapeutic strategies based on FRα, including MABs (monoclonal antibodies), ADCs (antibody-drug conjugates), FDCs (folate-drug conjugates), SMDCs (small molecule-drug conjugates), vaccines, and CAR-T (chimeric antigen receptor T) cells, and present the most significant clinical trials of some FRα-based drugs. Furthermore, we discuss the pros and cons of different FR-based therapies, highlighting mirvetuximab soravtansine (MIRV) as the currently most promising EOC-targeting drug.
Collapse
Affiliation(s)
- Karol Bukowski
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (A.R.); (A.M.)
| | | | | |
Collapse
|
4
|
Das T, Mondal S, Das S, Das S, Das Saha K. Enhanced anticancer activity of (-)-epigallocatechin-3-gallate (EGCG) encapsulated NPs toward colon cancer cell lines. Free Radic Res 2024; 58:565-582. [PMID: 38810269 DOI: 10.1080/10715762.2024.2360013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol of green tea, has chemo-preventive effects against various cancer cells. Nanoparticles (NPs) carrying different ligands are able to specifically interact with their receptors on different cancer cells that can provide effective release of cytotoxic drugs. In the present study, we have prepared EGCG entrapped NPs using PLGA (poly(d,l-lactide-co-glycolide)). Polyethylene glycol (PEG) and folic acid (FA) via double emulsion solvent evaporation (DESE) method obtained PLGA-EGCG (P-E), PLGA-PEG-EGCG (PP-E), and PLGA-PEG-FA-EGCG (PPF-E). Nanoformulations had been characterized with 1H NMR and FT-IR techniques, AFM, and DLS. PPF-E NPs showed an average size of 220 nm. Analysis of zeta potential confirmed the stability of NPs. HCT-116, HT-29, HCT-15, and HEK 293 cells were treated with both the prepared NPs and free EGCG (0-140 μM). Result showed PPF-E NPs had improved delivery, uptake and cell cytotoxicity toward human folic acid receptor-positive (FR+) colorectal cancer (CRC) cells as mainly on HCT-116 compared to HT-29, but not on the folic acid-negative cells (FR-) as HCT-15. PPF-E NPs enhanced intracellular reactive oxygen species (ROS) level in absence of N-acetyl-l-cysteine (NAC), elevated DNA fragmentation level, and increased apoptotic cell death at higher doses compared to other two NPs and free EGCG. In conclusion, PPF-E NPs exerted greater efficacy than PP-E, P-E, and free EGCG in HCT-116 cells.
Collapse
Affiliation(s)
- Tanushree Das
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sanchaita Mondal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujata Das
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sanjib Das
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
5
|
Beigrezaei A, Rafipour R. Design of casein-based nanocarriers for targeted delivery of daunorubicin to leukemia cells. Biotechnol Appl Biochem 2024. [PMID: 39324205 DOI: 10.1002/bab.2662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/24/2024] [Indexed: 09/27/2024]
Abstract
Daunorubicin (DAU) is a chemotherapy drug approved for the treatment of some cancers. However, the clinical compatibility of DAU is limited due to its lack of specificity and its highly toxic effects, which interfere with normal cells. This toxicity can be reduced with nanocarriers and targeted drug delivery systems. In this study, to develop the drug delivery of DAU, the surface of synthesized nanoparticles was modified by folic acid to target cancer cells optimally. Encapsulation of DAU in protein sodium caseinate (NaCAS) was done by adding calcium ions to bring the casein (CAS) in the solution to a micellar structure to synthesize dense nanoparticles. Fourier-transform infrared spectroscopy transmission, fluorescence spectroscopy, UV-Vis spectroscopy, field emission scanning electron microscopy, and zeta potential studies designed and distinguished the synthesized nanocomplexes. The results showed that CAS nanoparticles successfully encapsulated DAU, and the protein surface was targeted by folic acid. Light scattering analysis determined that the particles with a scattering index number of 306.0 and an average size of 8.117 nm were synthesized. The zeta potential of CAS micelles is more harmful than CAS nanoparticles. This is because calcium ions are added during the formation of CAS nanoparticles during the drug-loading stages. These studies prove that the synthesized "NaCAS-DAU" and "NaCAS-DAU-folic acid" complexes can be favorable carriers in the targeted drug delivery of cancer drugs.
Collapse
Affiliation(s)
- Ali Beigrezaei
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| |
Collapse
|
6
|
Bai W, Xue Y, Guo Y, Zhang D, Ma K, Chen Z, Xia K, Liao B, Huang G, Pan S, Zheng Y, Wang H, Yang H, Zhang LK, Guan YQ. Reactive oxygen species produced by photodynamic therapy enhance docosahexaenoic acid lipid peroxidation and induce the death of breast cancer cells. Colloids Surf B Biointerfaces 2024; 241:114012. [PMID: 38850743 DOI: 10.1016/j.colsurfb.2024.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Breast cancer remains a serious threat to women's physical and emotional health. The combination therapies can overcome the deficiency of single therapy, enhance the therapeutic effects and reduce the side effects at the same time. In this study, we synthesize a novel nanomedicine that enhanced the therapeutic effects of breast cancer treatment by combining photodynamic therapy and chemotherapy. The doxorubicin (DOX) and photosensitizer methyl pyropheophorbide-a (MPPa) are loaded into the nano-drug delivery system as DPSPFA/MPPa/DOX. In response to near-infrared (NIR) laser, the drugs were quickly released to the cancer cells. The MPPa produces reactive oxygen species (ROS) under the action of photodynamics. Unsaturated fatty acids with ROS promotes lipid peroxidation and the combination of chemotherapy and photodynamic therapy. The data shows that the DPSPFA/MPPa/DOX has a spherical shape, good dispersibility and stability, and the particle size is roughly 200 nm. The drug loading capability of DOX is about 13 %. Both of MCF7 cell model in vitro and breast cancer model in vivo, DPSPFA/MPPa/DOX showed an excellent anti-tumor effect of 86.9 % and without any obvious side effects. These findings might offer potential for a new approach for breast cancer treatment.
Collapse
Affiliation(s)
- Weiwei Bai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yongyong Xue
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dandan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kuo Ma
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kunwen Xia
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Beining Liao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Guowei Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengjun Pan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Zheng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Haoyuan Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; School of Engineering, Westlake University, Hangzhou 310030, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
7
|
Moon DO. Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management. Int J Mol Sci 2024; 25:2911. [PMID: 38474160 DOI: 10.3390/ijms25052911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This paper delves into the diverse and significant roles of curcumin, a polyphenolic compound from the Curcuma longa plant, in the context of cancer and inflammatory diseases. Distinguished by its unique molecular structure, curcumin exhibits potent biological activities including anti-inflammatory, antioxidant, and potential anticancer effects. The research comprehensively investigates curcumin's molecular interactions with key proteins involved in cancer progression and the inflammatory response, primarily through molecular docking studies. In cancer, curcumin's effectiveness is determined by examining its interaction with pivotal proteins like CDK2, CK2α, GSK3β, DYRK2, and EGFR, among others. These interactions suggest curcumin's potential role in impeding cancer cell proliferation and survival. Additionally, the paper highlights curcumin's impact on inflammation by examining its influence on proteins such as COX-2, CRP, PDE4, and MD-2, which are central to the inflammatory pathway. In vitro and clinical studies are extensively reviewed, shedding light on curcumin's binding mechanisms, pharmacological impacts, and therapeutic application in various cancers and inflammatory conditions. These studies are pivotal in understanding curcumin's functionality and its potential as a therapeutic agent. Conclusively, this review emphasizes the therapeutic promise of curcumin in treating a wide range of health issues, attributed to its complex chemistry and broad pharmacological properties. The research points towards curcumin's growing importance as a multi-faceted natural compound in the medical and scientific community.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
8
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
9
|
Zhang W, Lang R. Macrophage metabolism in nonalcoholic fatty liver disease. Front Immunol 2023; 14:1257596. [PMID: 37868954 PMCID: PMC10586316 DOI: 10.3389/fimmu.2023.1257596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its inflammatory and often progressive subtype nonalcoholic steatohepatitis (NASH), have emerged as significant contributors to hepatic morbidity worldwide. The pathophysiology of NAFLD/NASH is multifaceted, variable, and remains incompletely understood. The pivotal role of liver-resident and recruited macrophages in the pathogenesis of NAFLD and NASH is widely acknowledged as a crucial factor in innate immunity. The remarkable plasticity of macrophages enables them to assume diverse activation and polarization states, dictated by their immunometabolism microenvironment and functional requirements. Recent studies in the field of immunometabolism have elucidated that alterations in the metabolic profile of macrophages can profoundly influence their activation state and functionality, thereby influencing various pathological processes. This review primarily focuses on elucidating the polarization and activation states of macrophages, highlighting the correlation between their metabolic characteristics and the transition from pro-inflammatory to anti-inflammatory phenotypes. Additionally, we explore the potential of targeting macrophage metabolism as a promising therapeutic approach for the management of NAFLD/NASH.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Hussain A, Kumar A, Uttam V, Sharma U, Sak K, Saini RV, Saini AK, Haque S, Tuli HS, Jain A, Sethi G. Application of curcumin nanoformulations to target folic acid receptor in cancer: Recent trends and advances. ENVIRONMENTAL RESEARCH 2023; 233:116476. [PMID: 37348632 DOI: 10.1016/j.envres.2023.116476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.
Collapse
Affiliation(s)
- Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, 345050, Dubai, United Arab Emirates
| | - Ajay Kumar
- University Center for Research & Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India; Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | | | - Reena V Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India; Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
11
|
Gandidzanwa S, Beukes N, Joseph SV, Janse Van Vuuren A, Mashazi P, Britton J, Kilian G, Roux S, Nyokong T, Lee ME, Frost CL, Tshentu ZR. The development of folate-functionalised palladium nanoparticles for folate receptor targeting in breast cancer cells. NANOTECHNOLOGY 2023; 34:465705. [PMID: 37527629 DOI: 10.1088/1361-6528/acec52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Folate receptor-targeted therapy has excellent prospects for the treatment of breast cancer. A non-toxic concentration of folate-conjugated palladium-based nanoparticles was used to target the overexpressed folate receptor on breast cancer cells. The folate-conjugated nanoparticles were tailored to accumulate selectively in cancer cells relative to normal cells via the folate receptor. The MDA-MB-231, MDA-MB-468, MCF-7 breast cancer cell lines, and MCF-10A normal cell lines were used in the study. Qualitative and quantitative analysis of nanoparticle cellular uptake and accumulation was conducted using transmission electron microscopy and inductively coupled plasma-optical emission spectroscopy. The findings proved that folate-conjugated palladium nanoparticles successfully and preferentially accumulated in breast cancer cells. We conclude that folate-conjugated palladium nanoparticles can be potentially used to target breast cancer cells for radiopharmaceutical applications.
Collapse
Affiliation(s)
| | - Natasha Beukes
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Sinelizwi V Joseph
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Arno Janse Van Vuuren
- Center for High Resolution Transmission Electron Microscopy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Philani Mashazi
- Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Jonathan Britton
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Gareth Kilian
- Department of Pharmacy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Saartjie Roux
- Department of Human Physiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Michael E Lee
- Center for High Resolution Transmission Electron Microscopy, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Carminita L Frost
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Zenixole R Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| |
Collapse
|
12
|
Feng Y, Cao Y, Singh R, Janjua TI, Popat A. Silica nanoparticles for brain cancer. Expert Opin Drug Deliv 2023; 20:1749-1767. [PMID: 37905998 DOI: 10.1080/17425247.2023.2273830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Brain cancer is a debilitating disease with a poor survival rate. There are significant challenges for effective treatment due to the presence of the blood-brain barrier (BBB) and blood-tumor barrier (BTB) which impedes drug delivery to tumor sites. Many nanomedicines have been tested in improving both the survival and quality of life of patients with brain cancer with the recent focus on inorganic nanoparticles such as silica nanoparticles (SNPs). This review examines the use of SNPs as a novel approach for diagnosing, treating, and theranostics of brain cancer. AREAS COVERED The review provides an overview of different brain cancers and current therapies available. A special focus on the key functional properties of SNPs is discussed which makes them an attractive material in the field of onco-nanomedicine. Strategies to overcome the BBB using SNPs are analyzed. Furthermore, recent advancements in active targeting, combination therapies, and innovative nanotherapeutics utilizing SNPs are discussed. Safety considerations, toxicity profiles, and regulatory aspects are addressed to provide an understanding of SNPs' translational potential. EXPERT OPINION SNPs have tremendous prospects in brain cancer research. The multifunctionality of SNPs has the potential to overcome both the BBB and BTB limitations and can be used for brain cancer imaging, drug delivery, and theranostics. The insights provided will facilitate the development of next-generation, innovative strategies, guiding future research toward improved diagnosis, targeted therapy, and better outcomes in brain cancer patients.
Collapse
Affiliation(s)
- Yuran Feng
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Ravi Singh
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
14
|
Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer. Biochim Biophys Acta Gen Subj 2023:130396. [PMID: 37271407 DOI: 10.1016/j.bbagen.2023.130396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Liposomes are predominantly used sorts of nanocarriers for active targeted delivery through surface functionalization using targeting ligand. The folate receptors are overexpressed in various cancers including breast cancer and because of its binding aptitude specifically to folate receptors, folic acid became the attractive ligand. METHODS In this research, we have developed a folate and Poly-l-Lysine conjugate and coated this conjugate onto the liposomes. The prepared liposomes were characterized using DLS, FTIR, NMR, SEM, TEM, XRD, AFM, stability and drug release studies. Furthermore, In vitro studies were carried out on FR overexpressed breast cancer cell line. RESULTS The FA-LUT-ABC-Lip have diameter of 183 ± 3.17 nm with positive surface charge +33.65 ± 3 mV and the drug release studies confirm the NIR responsive payload cleavage. The coated formulation (in presence of NIR light) effectively reduced the IC50 values and kills breast cancer cells through FR mediated internalization and accelerated drug release. Moreover, LUT Formulation shows anticancer effect due to significant inhibition of cell migration and proliferation by regulating VEGF expression and induced apoptosis through the caspase-3 up-regulation. CONCLUSION It is evident from the in vitro studies that the formulation was found to be very effective and can be explored for triggered and targeted delivery of the substances through active targeting. GENERAL SIGNIFICANCE Combining receptor mediated drug delivery with triggered release aid in more amounts of drug reaching the target site and achieving enhanced therapeutic activity.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Archana Karole
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Shabi Parvez
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
15
|
Varaganti P, Buddolla V, Lakshmi BA, Kim YJ. Recent advances in using folate receptor 1 (FOLR1) for cancer diagnosis and treatment, with an emphasis on cancers that affect women. Life Sci 2023:121802. [PMID: 37244363 DOI: 10.1016/j.lfs.2023.121802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
A glycosylphosphatidylinositol (GPI)-anchored glycoprotein called the folate receptor 1 (FOLR1) facilitates the transportation of folate by mediating receptor-mediated endocytosis in response to ligand binding. While FOLR1 expression is typically restricted to the apical surfaces of the epithelium in the lung, kidney, and choroid plexus in healthy people, it is overexpressed in a number of solid tumours, including high-grade osteosarcoma, breast cancer, ovarian cancer, and non-small cell lung cancer. As a result, FOLR1 has become an attractive target for cancer detection and therapy, particularly for cancers that affect women. A number of methods have been developed to target FOLR1 in cancer therapy, including the development of FOLR1-targeted imaging agents for cancer diagnosis and the use of folate conjugates to deliver cytotoxic agents to cancer cells that overexpress FOLR1. Therefore, we focus on the most recent developments in employing FOLR1 for cancer diagnosis and treatment in this review, particularly with regard to cancers that affect women.
Collapse
Affiliation(s)
- Pavitra Varaganti
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517506, Andhra Pradesh, India
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517506, Andhra Pradesh, India
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
16
|
Ye M, Zhou Y, Zhao H, Wang X. Magnetic Microrobots with Folate Targeting for Drug Delivery. CYBORG AND BIONIC SYSTEMS 2023; 4:0019. [PMID: 37223549 PMCID: PMC10202387 DOI: 10.34133/cbsystems.0019] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 09/02/2023] Open
Abstract
Untethered microrobots can be used for cargo delivery (e.g., drug molecules, stem cells, and genes) targeting designated areas. However, it is not enough to just reach the lesion site, as some drugs can only play the best therapeutic effect within the cells. To this end, folic acid (FA) was introduced into microrobots in this work as a key to mediate endocytosis of drugs into cells. The microrobots here were fabricated with biodegradable gelatin methacryloyl (GelMA) and modified with magnetic metal-organic framework (MOF). The porous structure of MOF and the hydrogel network of polymerized GelMA were used for the loading of enough FA and anticancer drug doxorubicin (DOX) respectively. Utilizing the magnetic property of magnetic MOF, these microrobots can gather around the lesion site with the navigation of magnetic fields. The combination effects of FA targeting and magnetic navigation substantially improve the anticancer efficiency of these microrobots. The result shows that the cancer cells inhibition rate of microrobots with FA can be up to 93%, while that of the ones without FA was only 78%. The introduction of FA is a useful method to improve the drug transportation ability of microrobots, providing a meaningful reference for further research.
Collapse
Affiliation(s)
- Min Ye
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Yan Zhou
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Hongyu Zhao
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| |
Collapse
|
17
|
Larcher LM, Pitout IL, Keegan NP, Veedu RN, Fletcher S. DNAzymes: Expanding the Potential of Nucleic Acid Therapeutics. Nucleic Acid Ther 2023. [PMID: 37093127 DOI: 10.1089/nat.2022.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Nucleic acids drugs have been proven in the clinic as a powerful modality to treat inherited and acquired diseases. However, key challenges including drug stability, renal clearance, cellular uptake, and movement across biological barriers (foremost the blood-brain barrier) limit the translation and clinical efficacy of nucleic acid-based therapies, both systemically and in the central nervous system. In this study we provide an overview of an emerging class of nucleic acid therapeutic, called DNAzymes. In particular, we review the use of chemical modifications and carrier molecules for the stabilization and/or delivery of DNAzymes in cell and animal models. Although this review focuses on DNAzymes, the strategies described are broadly applicable to most nucleic acid technologies. This review should serve as a general guide for selecting chemical modifications to improve the therapeutic performance of DNAzymes.
Collapse
Affiliation(s)
- Leon M Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Ianthe L Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| |
Collapse
|
18
|
Young O, Ngo N, Lin L, Stanbery L, Creeden JF, Hamouda D, Nemunaitis J. Folate Receptor as a Biomarker and Therapeutic Target in Solid Tumors. Curr Probl Cancer 2023; 47:100917. [PMID: 36508886 DOI: 10.1016/j.currproblcancer.2022.100917] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
Folate is a B vitamin necessary for basic biological functions, including rapid cell turnover occurring in cancer cell proliferation. Though the role of folate as a causative versus protective agent in carcinogenesis is debated, several studies have indicated that the folate receptor (FR), notably subtype folate receptor alpha (FRα), could be a viable biomarker for diagnosis, progression, and prognosis. Several cancers, including gastrointestinal, gynecological, breast, lung, and squamous cell head and neck cancers overexpress FR and are currently under investigation to correlate receptor status to disease state. Traditional chemotherapies have included antifolate medications, such as methotrexate and pemetrexed, which generate anticancer activity during the synthesis phase of the cell cycle. Increasingly, the repertoire of pharmacotherapies is expanding to include FR as a target, with a heterogenous pool of directed therapies. Here we discuss the FR, expression and effect in cancer biology, and relevant pharmacologic inhibitors.
Collapse
Affiliation(s)
- Olivia Young
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Nealie Ngo
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | | - Justin Fortune Creeden
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
19
|
Nguyen NT, Kim J, Le XT, Lee WT, Lee ES, Oh KT, Choi HG, Youn YS. Amplified Fenton-Based Oxidative Stress Utilizing Ultraviolet Upconversion Luminescence-Fueled Nanoreactors for Apoptosis-Strengthened Ferroptosis Anticancer Therapy. ACS NANO 2023; 17:382-401. [PMID: 36579941 DOI: 10.1021/acsnano.2c08706] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an emerging anticancer strategy, ferroptosis has recently been developed in combination with current therapeutic modalities to overcome the existing limitations of conventional therapies. Herein, an ultraviolet (UV) upconversion luminescence-fueled nanoreactor is explored to combine ferroptosis and apoptosis through the UV-catalyzed Fenton reaction of an iron supplement (ferric ammonium citrate) loaded in a mesoporous silica layer in addition to the support of a chemotherapeutic agent (cisplatin) attached on the functionalized silica surface for the treatment of triple negative breast cancer (TNBC). The nanoplatform can circumvent the low penetration depth typical of UV light by upconverting near-infrared irradiation and emitting UV photons that convert Fe3+ to Fe2+ to boost the generation of hydroxyl radicals (·OH), causing devastating lipid peroxidation. Apart from DNA damage-induced apoptosis, cisplatin can also catalyze Fenton-based therapy by its abundant production of hydrogen peroxide (H2O2). As a bioinspired lipid membrane, the folate receptor-targeted liposome as the coating layer offers high biocompatibility and colloidal stability for the upconversion nanoparticles, in addition to prevention of the premature release of encapsulated hydrophilic compounds, before driving the nanoformulation to the target tumor site. As a result, superior antitumor efficacy has been observed in a 4T1 tumor-bearing mouse model with negligible side effects, suggesting that such a nanoformulation could play a pivotal role in effective apoptosis-strengthened ferroptosis TNBC therapy.
Collapse
Affiliation(s)
- Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Juho Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Woo Tak Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology and Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
20
|
Bal-Öztürk A, Tietilu ŞD, Yücel O, Erol T, Akgüner ZP, Darıcı H, Alarcin E, Emik S. Hyperbranched polymer-based nanoparticle drug delivery platform for the nucleus-targeting in cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Moudgil A, Salve R, Gajbhiye V, Chaudhari BP. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem Phys Lipids 2023; 250:105258. [PMID: 36375540 DOI: 10.1016/j.chemphyslip.2022.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage. But how eminent could liposomes and their advantages be in superseding these existing therapeutic modalities? A solution is reflected in this review that draws attention to a decade-long journey embarked upon by researchers in this wake. This text is a comprehensive discussion of liposomes, the front runners of the drug delivery systems, and their active and passive targeting approaches for breast cancer management. Active targeting has been studied over the decade by many receptors overexpressed on the breast cancer cells and passive targeting with many drug combinations. The results converge on the fact that the actively targeted formulations exhibit a superior efficacy over their non-targeted counterparts and the all liposomal formulations are efficacious over the free drugs. This undoubtedly underlines the dominion of liposomal formulations over conventional chemotherapy. These investigations have led to the development of different liposomal formulations with active and passive targeting capacities that could be explored in depth. Acknowledging and getting a deeper insight into the liposomal evolution through time also unveiled many imperfections and unchartered territories that can be explored to deliver dexterous liposomal formulations against breast cancer and more in the clinical trial pipeline.
Collapse
Affiliation(s)
- Aliesha Moudgil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India.
| |
Collapse
|
22
|
Fabrication of hesperidin hybrid lecithin-folic acid silver nanoparticles and its evaluation as anti-arthritis formulation in autoimmune arthritic rat model. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
23
|
Yasin D, Sami N, Afzal B, Husain S, Naaz H, Ahmad N, Zaki A, Rizvi MA, Fatma T. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Salek-Maghsoodi M, Golsanamlu Z, Sadeghi-Mohammadi S, Gazizadeh M, Soleymani J, Safaralizadeh R. Simple fluorescence chemosensor for the detection of calcium ions in water samples and its application in bio-imaging of cancer cells. RSC Adv 2022; 12:31535-31545. [PMID: 36380939 PMCID: PMC9631868 DOI: 10.1039/d2ra04815a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/29/2022] [Indexed: 12/27/2023] Open
Abstract
This article describes the design, synthesis and characterization of a sensor suitable for practical measurement of ionized calcium in water samples and cancer cells. Calcium is an important ion in living organs and works as a messenger in several cellular functions. A lack of Ca ions interrupts the immune system and can lead to several diseases. A novel magnetic-polydopamine nanoparticle (PDNP)/rhodamine B (RhB)/folic acid (FA) nanoparticle was developed for the determination of calcium ions in MCF 7 cell lysates and water samples. Furthermore, the produced nanoparticle was employed for bioimaging of folate receptor (FR)-overexpressed cancer cells. This nanoprobe displayed a bright photoluminescence emission at 576 nm under an excitation wavelength of 420 nm. In the presence of calcium ions, the fluorescence emission of the MNPs-PDNPs/RhB/FA probe was proportionally decreased from 20 ng mL-1 to 100 ng mL-1 and 0.5 μg mL-1 to 20 μg mL-1 with a lower limit of quantification (LLOQ) of about 20 ng mL-1. The developed sensor showed a low-interference manner in the presence of possible coexistence interfering ions. In addition, this nanomaterial showed excellent biocompatibility with favorable differentiation ability to attach to the FR-positive cancer cells. The MNPs-PDNPs/RhB/FA nanoparticle has been utilized for bioimaging of the MCF 7 cell with favorable differentiation ability.
Collapse
Affiliation(s)
- Maral Salek-Maghsoodi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Zahra Golsanamlu
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Gazizadeh
- Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, Tabriz University Tabriz Iran
| |
Collapse
|
25
|
Folate-based radiotracers for nuclear imaging and radionuclide therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Ding Z, Li W, Dou Y, Zhou Y, Ren Y, Jing H, Liang X, Wang X, Li N. Triangular-shaped homologous heterostructure as photocatalytic H 2S scavenger and macrophage modulator for rheumatoid arthritis therapy. J Mater Chem B 2022; 10:8549-8564. [PMID: 36239131 DOI: 10.1039/d2tb01650h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic arthropathy causing cartilage destruction, bone erosion, and even disability. Although some advances in RA treatment have been made based on inflammatory cytokine inhibition, long-term treatment and drug effect have been restrained by severe side effects. Herein, we developed a resveratrol (RSV)-loaded Ag/Ag2S triangular-shaped homologous heterostructure with polyethylene glycol/folic acid (PEG/FA) modification (Ag/Ag2S-PEG-FA/RSV NTs) to simultaneously suppress inflammatory cytokine over-expression through photocatalytic H2S scavenging and macrophage polarization stimulation. On one hand, the over-expressed H2S, which acted as a pro-inflammatory mediator to activate the MAPK/ICAM-1 pathway and exacerbate inflammation, was eliminated through photocatalysis. The homologous Ag and Ag2S of the heterostructure enhanced electron separation and transfer by acting as a charge acceptor and electron generator, respectively, which restrained electron/hole recombination and promoted photocatalysis efficiency. Additionally, the intrinsic superoxide dismutase (SOD) and catalase (CAT) activity of Ag decomposed the reactive oxygen species (ROS) over-expressed in the RA microenvironment, which supplied O2 for the photocatalytic H2S scavenging progress. On the other hand, RSV, a natural product with anti-inflammatory activity, could be delivered to the inflammatory joint by the targeting effect of PEG-FA, thus inhibiting the IκB/NF-κB pro-inflammatory pathway to induce macrophage interconversion balance from M1 to M2. As expected, the Ag/Ag2S-PEG-FA/RSV NTs exhibited H2S scavenging capacity and modulated macrophage polarization to reduce the inflammatory cytokine level and halt RA progression in vitro and in vivo. Overall, this study revealed a therapeutic strategy with high efficacy, which opens broad prospects for RA treatment.
Collapse
Affiliation(s)
- Ziqiao Ding
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Wen Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Yingzi Ren
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, 1 Dali Road, Heping District, 300050, Tianjin, P. R. China.
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, P. R. China.
| |
Collapse
|
27
|
Li J, Cai Z, Li XW, Zhuang C. Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. J Med Chem 2022; 65:13533-13560. [PMID: 36205223 DOI: 10.1021/acs.jmedchem.2c01223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted protein degradation (TPD), a promising therapeutic strategy in drug discovery, has great potential to regulate the endogenous degradation of undruggable targets with small molecules. As vital resources that provide diverse structural templates for drug discovery, natural products (NPs) are a rising and robust arsenal for the development of therapeutic TPD. The first proof-of-concept study of proteolysis-targeting chimeras (PROTACs) was a natural polyketide ovalicin-derived degrader; since then, NPs have shown great potential to promote TPD technology. The use of NP-inspired targeted protein degraders has been confirmed to be a promising strategy to treat many human conditions, including cancer, inflammation, and nonalcoholic fatty liver disease. Nevertheless, the development of NP-inspired degraders is challenging, and the field is currently in its infancy. In this review, we summarize the bioactivities and mechanisms of NP-inspired degraders and discuss the associated challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Chunlin Zhuang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
28
|
Jiang Z, Tang H, Xiong Q, Li M, Dai Y, Zhou Z. Placental cell translocation of folate-conjugated pullulan acetate non-spherical nanoparticles. Colloids Surf B Biointerfaces 2022; 216:112553. [PMID: 35598508 DOI: 10.1016/j.colsurfb.2022.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/26/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Due to the adverse effects of free drugs on the fetus, placental-mediated pregnancy complications still lack effective pharmacotherapy. This study aims to construct a non-spherical drug delivery system based on folate-conjugated pullulan acetate (FPA) for placental targeting and translocation. By adjusting the initial solvent system, FPA nanoparticles with different morphologies were prepared using dialysis method without a surfactant. Cytotoxicity and lactate dehydrogenase release assays indicated the good biocompatibility of FPA nanoparticles in BeWo b30 cells. Cellular uptake and in vitro placental barrier transportation studies showed that FPA nanoparticles entered the cells and transported across the cell monolayer, benefiting from the active target effect mediated by the folate receptor. Moreover, non-spherical FPA nanoparticles showed nuclear translocation due to their shape effect. These findings provide a novel aspect in placental-mediated pregnancy treatment and applications in the obstetrics field of drug use during pregnancy.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China.
| | - Qingqing Xiong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Li
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China
| | - Yinmei Dai
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China.
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China.
| |
Collapse
|
29
|
Honmane SM, Charde MS, Salunkhe SS, Choudhari PB, Nangare SN. Polydopamine surface-modified nanocarriers for improved anticancer activity: Current progress and future prospects. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Lu Y, Wang S, Wang Y, Li M, Liu Y, Xue D. Current Researches on Nanodrug Delivery Systems in Bladder Cancer Intravesical Chemotherapy. Front Oncol 2022; 12:879828. [PMID: 35720013 PMCID: PMC9202556 DOI: 10.3389/fonc.2022.879828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors in urinary system. Intravesical chemotherapy is a common adjuvant therapy after transurethral resection of bladder tumors. However, it has several disadvantages such as low drug penetration rate, short residence time, unsustainable action and inability to release slowly, thus new drug delivery and new modalities in delivery carriers need to be continuously explored. Nano-drug delivery system is a novel way in treatment for bladder cancer that can increase the absorption rate and prolong the duration of drug, as well as sustain the action by controlling drug release. Currently, nano-drug delivery carriers mainly included liposomes, polymers, and inorganic materials. In this paper, we reveal current researches in nano-drug delivery system in bladder cancer intravesical chemotherapy by describing the applications and defects of liposomes, polymers and inorganic material nanocarriers, and provide a basis for the improvement of intravesical chemotherapy drugs in bladder cancer.
Collapse
Affiliation(s)
- Yilei Lu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Siqi Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yuhang Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Mingshan Li
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yili Liu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Dongwei Xue
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Zhao D, Cao J, Zhang L, Zhang S, Wu S. Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment. BIOSENSORS 2022; 12:bios12050342. [PMID: 35624643 PMCID: PMC9138815 DOI: 10.3390/bios12050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms.
Collapse
Affiliation(s)
- Dongxu Zhao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China;
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| |
Collapse
|
32
|
Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S. Folic acid-conjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00120-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
In the current study, folic acid-conjugated PEG-PCL-PEG triblock copolymer were synthesized and loaded with 5-fluorouracil and magnetite nanoparticles (5-FU-SPION-PEG-PCL-PEG-FA) for targeted delivery of drug to HT29 human colon cancer cells and CT26 mouse colon cancer model. The nanoparticles were synthesized and characterized by nuclear magnetic resonance spectroscopy (NMR) and transmission electron microscopy (TEM). The cellular uptake of nanoparticles was assessed in vitro (on HUVEC and HT29) and in vivo (on CT26 colon tumor tissues). The cytotoxic effect of nanoparticles was assessed on human colon cell lines (HT29, Caco-2, HTC116, and SW480) and normal HUVEC cells. In addition, antitumor effects of nanoparticles were investigated based on tumor volume, survival time and protein expression of Bax and Bcl-2 on CT26 tumor-bearing BALB/c mice.
Results
Characterization of nanoparticles showed 5-FU-SPION-PEG-PCL-PEG-FA (5-FU-NPs-FA) nanoparticles had spherical shape with hydrodynamic diameter of 85 nm. The drug-release profile exhibited sustained pH-responsive release with cumulative release reaching approximately 23% after 24 h. Cellular uptake studies revealed that HT29 cancer cells absorb higher amount of 5-FU-NPs-FA as compared to HUVEC normal cells (P < 0.05). In addition, 5-FU-NPs-FA was found to be more antitumor efficient in comparison to free 5-FU based on Bax/Bcl2 ratio, survival rate of tumoral mouse and inhibitory tumor volume (P < 0.05).
Conclusions
The results suggested that 5-FU-NPs-FA could be considered as promising sustained drug delivery platform for in vitro and in vivo conditions, which may provide selective treatment of tumor cancer cells.
Graphical Abstarct
Collapse
|
33
|
Ci T, Zhang W, Qiao Y, Li H, Zang J, Li H, Feng N, Gu Z. Delivery strategies in treatments of leukemia. Chem Soc Rev 2022; 51:2121-2144. [PMID: 35188506 DOI: 10.1039/d1cs00755f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukemia is a hematological malignancy associated with the uncontrolled proliferation of mutant progenitors, suppressing the production of normal blood cells. Current treatments, including chemotherapy, radiotherapy, and immunotherapy, still lead to unsatisfactory results with a 5 year survival rate of only 30-50%. The poor prognosis is related to both disease relapse and treatment-associated toxicity. Delivery strategies can improve the in vivo pharmacokinetics of drugs, navigating the therapeutics to target cells or the tumor microenvironment and reversing drug resistance, which maximizes tumor elimination and alleviates systematic adverse effects. This review discusses available FDA-approved anti-leukemia drugs and therapies with a focus on the advances in the development of anti-leukemia drug delivery systems. Additionally, challenges in clinical translation of the delivery strategies and future research opportunities in leukemia treatment are also included.
Collapse
Affiliation(s)
- Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yingyu Qiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Huangjuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jing Zang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongjun Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Pilch J, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Augustin E, Nowicka AM. Foliate-Targeting Quantum Dots- β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms23031261. [PMID: 35163186 PMCID: PMC8835877 DOI: 10.3390/ijms23031261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
Targeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) with foliate-targeting properties for the delivery of anticancer compound C-2028. C-2028 was bound to the nanoconjugate via an inclusion complex with β-CD. The effect of using FA in QDs-β-CD(C-2028)-FA nanoconjugates on cytotoxicity, cellular uptake, and the mechanism of internalization in cancer (H460, Du-145, and LNCaP) and normal (MRC-5 and PNT1A) cells was investigated. The QDs-β-CD(C-2028)-FA were characterized using DLS (dynamic light scattering), ZP (zeta potential), quartz crystal microbalance with dissipation (QCM-D), and UV-vis spectroscopy. The conjugation of C-2028 with non-toxic QDs or QDs-β-CD-FA did not change the cytotoxicity of this compound. Confocal microscopy studies proved that the use of FA in nanoconjugates significantly increased the amount of delivered compound, especially to cancer cells. QDgreen-β-CD(C-2028)-FA enters the cells through multiple endocytosis pathways in different levels, depending on the cell line. To conclude, the use of FA is a good self-navigating molecule in the QDs platform for drug delivery to cancer cells.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| | - Patrycja Kowalik
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Ewa Paluszkiewicz
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Anna M. Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| |
Collapse
|
35
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
36
|
Wu Z, Dai L, Tang K, Ma Y, Song B, Zhang Y, Li J, Lui S, Gong Q, Wu M. Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics. Regen Biomater 2021; 8:rbab062. [PMID: 34868634 PMCID: PMC8634494 DOI: 10.1093/rb/rbab062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumour, with a median survival of 3 months without treatment and 15 months with treatment. Early GBM diagnosis can significantly improve patient survival due to early treatment and management procedures. Magnetic resonance imaging (MRI) using contrast agents is the preferred method for the preoperative detection of GBM tumours. However, commercially available clinical contrast agents do not accurately distinguish between GBM, surrounding normal tissue and other cancer types due to their limited ability to cross the blood–brain barrier, their low relaxivity and their potential toxicity. New GBM-specific contrast agents are urgently needed to overcome the limitations of current contrast agents. Recent advances in nanotechnology have produced alternative GBM-targeting contrast agents. The surfaces of nanoparticles (NPs) can be modified with multimodal contrast imaging agents and ligands that can specifically enhance the accumulation of NPs at GBM sites. Using advanced imaging technology, multimodal NP-based contrast agents have been used to obtain accurate GBM diagnoses in addition to an increased amount of clinical diagnostic information. NPs can also serve as drug delivery systems for GBM treatments. This review focuses on the research progress for GBM-targeting MRI contrast agents as well as MRI-guided GBM therapy.
Collapse
Affiliation(s)
- Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lixiong Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ke Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqi Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Siemiaszko G, Niemirowicz-Laskowska K, Markiewicz KH, Misztalewska-Turkowicz I, Dudź E, Milewska S, Misiak P, Kurowska I, Sadowska A, Car H, Wilczewska AZ. Synergistic effect of folate-conjugated polymers and 5-fluorouracil in the treatment of colon cancer. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00104-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
In recent years, targeted drug delivery strategies have received special attention from the scientific world due to advantages such as more effective therapy and reduction of side effects. The principle of operation is delayed excretion from the bloodstream of the drug delivery system compared to the drug itself, as well as facilitated penetration into diseased cells thanks to the use of ligands recognized by appropriate receptors. Particularly interesting drug carriers are amphiphilic copolymers that form nano-sized micelles with a drug, which can release the drug at a specific place in the body under the influence of appropriate stimuli.
Results
We describe the synthesis of the diblock polymer, poly(2-hydroxyethyl acrylate)-b-poly(N-vinylcaprolactam) using RAFT/MADIX (Reversible Addition-Fragmentation chain Transfer/MAcromolecular Design by Interchange of Xanthate) controlled polymerization affording polymers with good dispersity according to SEC (Size-Exclusion Chromatography). Some post-modifications of the polymer with folic acid were then performed as evidenced by NMR (Nuclear Magnetic Resonance), UV–Vis (UltraViolet–Visible) and FT-IR (Fourier-Transform Infrared) spectroscopy, and TGA (ThermoGravimetric Analysis). The formation of stable micellar systems from polymers with and without the drug, 5-fluorouracil, was confirmed by DLS (Dynamic Light Scattering) and zeta potential measurements, and TEM (Transmission Eelectron Microscopy) imaging. Finally, the cloud point of the polymers was investigated, which turned out to be close to the temperature of the human body. Most importantly, these micellar systems have been explored as a drug delivery system against colon cancer, showing increased cytotoxicity compared to the drug alone. This effect was achieved due to the easier cellular uptake by the interaction of folic acid and its receptors on the surface of cancer cells.
Conclusions
The presented results constitute a solid foundation for the implementation of a nano-sized drug delivery system containing folic acid for practical use in the treatment of drug-resistant cancer, as well as more effective therapy with fewer side effects.
Graphical Abstract
Collapse
|
38
|
Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov Today 2021; 27:471-489. [PMID: 34781032 DOI: 10.1016/j.drudis.2021.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
The uncontrolled release of drugs in conventional drug delivery systems has led to the introduction of new nanotechnology-based drug delivery systems and the use of targeted nanocarriers for cancer treatment. These targeted nanocarriers, which consist of intelligent nanoparticles modified with targeting ligands, can deliver drugs to specified locations at the right time and reduce drug doses to prevent side effects. Folate is a suitable targeting ligand for folate receptors overexpressed on cancer cells and has shown promising results in the diagnosis and treatment of cancer. In this review, we highlight the latest developments on the use of folate-conjugated nanoparticles in cancer diagnosis and treatment. Moreover, the toxicity, biocompatibility and efficacy of these nanocarriers are discussed.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Arezoo Sodagar Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
39
|
Kumar V, Leekha A, Kaul A, Mishra AK, Verma AK. Role of folate-conjugated glycol-chitosan nanoparticles in modulating the activated macrophages to ameliorate inflammatory arthritis: in vitro and in vivo activities. Drug Deliv Transl Res 2021; 10:1057-1075. [PMID: 32363539 DOI: 10.1007/s13346-020-00765-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activated macrophages are the primary targets in rheumatoid arthritis (RA) management. So, we report efficacious, dual-functional Methotrexate (MTX) loaded folate-conjugated pH-responsive glycol-chitosan nanoparticles (MFGCN) prepared by nano-precipitation and zero-order cross-linking reaction for targeting inflamed arthritic tissue. Physical characterization by DLS, SEM and TEM indicated a spherical, smooth morphology with a diameter ~ 300 nm. 1H NMR and FTIR indicated folic acid conjugation to GC by zero-order cross-linkers. In vitro release kinetics in PBS showed pH-responsive and sustained release behaviour of MFGCN. Enhanced cellular uptake and cytotoxicity of MFGCN in LPS(+)RAW and activated peritoneal macrophages (Mϕ) were observed when compared to LPS(-)RAW cells. MFGCN-induced mitochondrial membrane potential (MMP) perturbations indicated apoptosis. Oxidative stress was evident by significant increase in ROS and RNS, 4 h post incubation with MFGCN. Negligible hemolysis by FGCN and MFGCN on rat RBC's indicated biocompatibility. In vivo biodistribution of MFGCN in adjuvant-induced arthritis (AIA) rats indicated RA targetability. Prolonged blood circulation coupled with higher concentrations of 99mTc-MFGCN at the arthritic site was observed post 24 h of injection. The gamma scintigraphic image confirmed accumulation of radiolabelled MFGCN in arthritic paw when compared to the non-inflamed paw, confirming the selective uptake of 99mTc-MFGCN by folate-overexpressing macrophages in the arthritic synovium thereby proving its targeted efficacy and theranostic potential. In AIA rats, MFGCN lowers arthritic signs, improves antioxidant response and decreases pro-inflammatory cytokines, suggesting its potential in targeting activated macrophages of synovium. Graphical abstract.
Collapse
Affiliation(s)
- Vijay Kumar
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Ankita Leekha
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Anita Kamra Verma
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
40
|
Hong Y, Ju Y, Chen W, Liu Y, Zhang M, Zhao H. Fabrication of PεCL-AuNP-BSA core-shell-corona nanoparticles for flexible spatiotemporal drug delivery and SERS detection. Biomater Sci 2021; 9:4440-4447. [PMID: 33989374 DOI: 10.1039/d1bm00388g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticles with protein coronae can be used as promising multifunctional platforms for nanomedicine due to the possibility of performing surface functionalization on protein molecules and the achievement of biomedical properties. In this research, nanoparticles (NPs) with poly(ε-caprolactone) (PεCL) cores, gold NP (AuNP) shells and BSA coronae were fabricated by a self-assembly approach. The hydrophobic PεCL cores were used to encapsulate curcumin (CUR), the AuNP shells were decorated with a Raman probe, and the protein molecules in the coronae were functionalized with folic acid (FA). The self-assembly behaviors, drug delivery and the surface-enhanced Raman scattering (SERS) effect of the hybrid NPs were investigated in this research. The sizes of the core-shell-corona NPs (CSCNPs) are dependent on the initial concentrations of PεCL and AuNPs. The CUR in CSCNPs show enzyme-triggered release properties. The added lipase or trypsin can facilitate the CUR release from the hybrid NPs. The functionalization of CSCNPs with FA can significantly improve the internalization of NPs into 4T1 tumor cells due to the overexpressed folate receptors on the cells. In addition, the SERS effect of CSCNPs can be achieved when the AuNPs are decorated with 2-naphthalenethiol. The hybrid CSCNPs can be used as a promising platform for spatiotemporal drug delivery, cell imaging, and theranostics. Based on the same CSCNP platform, flexible functions can be adjusted according to the application needs.
Collapse
Affiliation(s)
- Yanhang Hong
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, weijing road #94, Tianjin 300071, China.
| | - Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, weijing road #94, Tianjin 300071, China.
| | - Wenjuan Chen
- Tianjin Key laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yingze Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, weijing road #94, Tianjin 300071, China.
| | - Mingming Zhang
- Tianjin Key laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, weijing road #94, Tianjin 300071, China.
| |
Collapse
|
41
|
Wang L, Zhu B, Huang J, Xiang X, Tang Y, Ma L, Yan F, Cheng C, Qiu L. Ultrasound-targeted microbubble destruction augmented synergistic therapy of rheumatoid arthritis via targeted liposomes. J Mater Chem B 2021; 8:5245-5256. [PMID: 32432638 DOI: 10.1039/d0tb00430h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) can lead to joint destruction and deformity, which is a significant cause of the loss of the young and middle-aged labor force. However, the treatment of RA is still filled with challenges. Though dexamethasone, one of the glucocorticoids, is commonly used in the treatment of RA, its clinical use is limited because of the required high-dose and long-term use, unsatisfactory therapeutic effects, and various side-effects. Ultrasound-targeted microbubble destruction (UTMD) can augment the ultrasonic cavitation effects and trigger drug release from targeted nanocarriers in the synovial cavity, which makes it a more effective synergistic treatment strategy for RA. In this work, we aim to utilize the UTMD effect to augment the synergistic therapy of RA by using polyethylene glycol (PEG)-modified folate (FA)-conjugated liposomes (LPs) loaded with dexamethasone sodium phosphate (DexSP) (DexSP@LPs-PEG-FA). The UTMD-mediated DexSP@LPs-PEG-FA for targeted delivery of DexSP including a synergistic ultrasonic cavitation effect and drug therapy were investigated through in vitro RAW264.7 cell experiments and in vivo collagen-induced arthritis SD rat model animal experiments. The results show the DexSP release from targeted liposomes was improved under the UTMD effect. Likewise, the folate-conjugated liposomes displayed targeting association to RAW264.7 cells. Together with the application of ultrasound and microbubbles, liposomes-delivered DexSP potently reduced joints swelling, bone erosion, and inflammation in both joints and serum with a low dose. These results demonstrated that UTMD-mediated folate-conjugated liposomes are not only a promising method for targeted synergistic treatment of RA but also may show high potential for serving as nanomedicines for many other biomedical fields.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bihui Zhu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jianbo Huang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xi Xiang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuanjiao Tang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Feng Yan
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China and Department of Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Li Qiu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
42
|
Mahoutforoush A, Solouk A, Hamishehkar H, Haghbin Nazarpak M, Abbaspour-Ravasjani S. Novel decorated nanostructured lipid carrier for simultaneous active targeting of three anti-cancer agents. Life Sci 2021; 279:119576. [PMID: 33965376 DOI: 10.1016/j.lfs.2021.119576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Cancer-targeted co-delivery of therapeutic agents has been recognized as an effective strategy for increasing efficacy and reducing side effects of therapeutic agents. In this study, we used methotrexate (MTX) alone as a targeting moiety and chemotherapeutic agent and in combination with docetaxel (DTX) and doxorubicin (DOX) as chemotherapeutic agents to stop cancer cell proliferation with the aid of newly designed nanostructured lipid carriers (NLCs). The physicochemical properties of our designed nanocomplexes were evaluated by DLS, FT-IR spectroscopy, SEM, and TEM. Moreover, the targeting efficiency of the designed and synthesized nanoplatforms was evaluated on the folate receptor (FR) positive human breast cancer cell line (MCF-7) and FR negative human alveolar basal epithelial cells (A549). The NLCs/DTX/DOX/CS and NLCs/DTX/DOX/CS-MTX complexes significantly increased the cell cytotoxicity and the cell apoptosis rate. However, the complexes significantly reduced the capability of colony formation and cell migration. Our results revealed that NLCs/DTX/DOX/CS-MTX had synergistic cytotoxicity, reactive oxygen spaces, autophagy, and the apoptosis induction ability with an enhanced cellular internalization rate in FR-positive cancer cells, thorough MTX recognition capability. We conclude that the NLCs/DTX/DOX/CS-MTX complex is a new promising paradigm for breast cancer-targeted co-delivery.
Collapse
Affiliation(s)
- Amin Mahoutforoush
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 1591634653, Iran
| | | |
Collapse
|
43
|
In Vivo Positive Magnetic Resonance Imaging of Brain Cancer (U87MG) Using Folic Acid-Conjugated Polyacrylic Acid-Coated Ultrasmall Manganese Oxide Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultrasmall nanoparticles are potential candidates for application as high-performance imaging agents. Herein, we present the synthesis and characterization of folic acid (FA)-conjugated polyacrylic acid (PAA)-coated MnO nanoparticles with an average particle diameter of 2.7 nm. FA conferred cancer-targeting ability, while PAA conferred good colloidal stability and low cellular cytotoxicity on the FA-PAA-coated MnO nanoparticles. Further, the nanoparticles exhibited a high relaxivity (r1) value of 9.3 s−1mM−1 (r2/r1 = 2.2). Their application potential as cancer-targeting T1 magnetic resonance imaging contrast agents was confirmed by their enhanced T1 contrast enhancements at the brain cancer (U87MG) site upon intravenous administration to mice tails.
Collapse
|
44
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
45
|
Gangopadhyay S, Nikam RR, Gore KR. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics. Nucleic Acid Ther 2021; 31:245-270. [PMID: 33595381 DOI: 10.1089/nat.2020.0882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi), a gene regulatory process mediated by small interfering RNAs (siRNAs), has made remarkable progress as a potential therapeutic agent against various diseases. However, RNAi is associated with fundamental challenges such as poor systemic delivery and susceptibility to the nucleases. Targeting ligand-bound delivery vehicles has improved the accumulation of drug at the target site, which has resulted in high transfection efficiency and enhanced gene silencing. Recently, folate receptor (FR)-mediated targeted delivery of siRNAs has garnered attention due to their enhanced cellular uptake and high transfection efficiency toward tumor cells. Folic acid (FA), due to its small size, low immunogenicity, high in vivo stability, and high binding affinity toward FRs, has attracted much attention for targeted siRNA delivery. FRs are overexpressed in a large number of tumors, including ovarian, breast, kidney, and lung cancer cells. In this review, we discuss recent advances in FA-mediated siRNA delivery to treat cancers and inflammatory diseases. This review summarizes various FA-conjugated nanoparticle systems reported so far in the literature, including liposome, silica, metal, graphene, dendrimers, chitosan, organic copolymers, and RNA nanoparticles. This review will help in the design and development of potential delivery vehicles for siRNA drug targeting to tumor cells using an FR-mediated approach.
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rahul R Nikam
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
46
|
Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021; 18:205-227. [PMID: 32969740 PMCID: PMC7904578 DOI: 10.1080/17425247.2021.1828339] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Nanocarrier-based delivery systems offer multiple benefits to overcome limitations of the traditional drug dosage forms, such as protection of the drug, enhanced bioavailability, targeted delivery to disease site, etc. Nanocarriers have exhibited tremendous successes in targeted delivery of therapeutics to the desired tissues and cells with improved bioavailability, high drug loading capacity, enhanced intracellular delivery, and better therapeutic effect. A specific design of stimuli-responsive nanocarriers allows for changing their structural and physicochemical properties in response to exogenous and endogenous stimuli. These nanocarriers show a promise in site specific controlled release of therapeutics under certain physiological conditions or external stimuli. AREAS COVERED This review highlights recent progresses on the multifunctional and stimuli-sensitive nanocarriers for targeted therapeutic drug delivery applications. EXPERT OPINION The progress from single functional to multifunctional nanocarriers has shown tremendous potential for targeted delivery of therapeutics. On our opinion, the future of targeted delivery of drugs, nucleic acids, and other substances belongs to the site-targeted multifunctional and stimuli-based nanoparticles with controlled release. Targeting of nanocarriers to the disease site enhance the efficacy of the treatment by delivering more therapeutics specifically to the affected cells and substantially limiting adverse side effects upon healthy organs, tissues, and cells.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Environmental and Occupational Health Science Institute, Piscataway, NJ, USA
| |
Collapse
|
47
|
Verma N, Thapa K, Dua K. Material and strategies used in oncology drug delivery. ADVANCED DRUG DELIVERY SYSTEMS IN THE MANAGEMENT OF CANCER 2021:47-62. [DOI: 10.1016/b978-0-323-85503-7.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Huang Y, Deng Y, Zhang J, Meng L, Li X. Direct ligand screening against membrane proteins on live cells enabled by DNA-programmed affinity labelling. Chem Commun (Camb) 2021; 57:3769-3772. [DOI: 10.1039/d1cc00961c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA-programmed affinity labelling (DPAL) enables the screening of chemical compounds against membrane proteins directly on live cells.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Yuqing Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Jianfu Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| |
Collapse
|
49
|
Grigoletto A, Tedeschini T, Canato E, Pasut G. The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1689. [PMID: 33314717 DOI: 10.1002/wnan.1689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Polymer conjugation can be considered one of the leading approaches within the vast field of nanotechnology-based drug delivery systems. In fact, such technology can be exploited for delivering an active molecule, such as a small drug, a protein, or genetic material, or it can be applied to other drug delivery systems as a strategy to improve their in vivo behavior or pharmacokinetic activities such as prolonging the half-life of a drug, conferring stealth properties, providing external stimuli responsiveness, and so on. If on the one hand, polymer conjugation with biotech drug is considered the linchpin of the protein delivery field boasting several products in clinical use, on the other, despite dedicated research, conjugation with low molecular weight drugs has not yet achieved the milestone of the first clinical approval. Some of the primary reasons for this debacle are the difficulties connected to achieving selective targeting to diseased tissue, organs, or cells, which is the main goal not only of polymer conjugation but of all delivery systems of small drugs. In light of the need to achieve better drug targeting, researchers are striving to identify more sophisticated, biocompatible delivery approaches and to open new horizons for drug targeting methodologies leading to successful clinical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tommaso Tedeschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
50
|
Halik PK, Koźmiński P, Gniazdowska E. Perspectives of Methotrexate-Based Radioagents for Application in Nuclear Medicine. Mol Pharm 2020; 18:33-43. [PMID: 33251808 PMCID: PMC7788572 DOI: 10.1021/acs.molpharmaceut.0c00740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methotrexate is a gold standard among
disease modifying antirheumatic
drugs and is also extensively used clinically in combination with
oncological therapies. Thus, it is not surprising that nuclear medicine
found an interest in methotrexate in the search for diagnostic and
therapeutic solutions. Numerous folate-related radiopharmaceuticals
have been proposed for nuclear medicine purposes; however, methotrexate
radioagents represent only a minority. This imbalance results from
the fact that methotrexate has significantly weaker affinity for folate
receptors than folic acid. Nevertheless, radiolabeled methotrexate
agents utilized as a tool for early detection and imaging of inflammation
in rheumatoid arthritis patients gave promising results. Similarly,
the use of multimodal MTX-release nanosystems may find potential applications
in radiosynovectomy and theranostic approaches in folate receptor
positive cancers.
Collapse
Affiliation(s)
- Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Przemysław Koźmiński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|