1
|
Ao R, Liang W, Wang Z, Li Q, Pan X, Zhen Y, An Y. Delivery Strategies of Growth Factors in Cartilage Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39345121 DOI: 10.1089/ten.teb.2024.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cartilage plays an important role in supporting soft tissues, reducing joint friction, and distributing pressure. However, its self-repair capacity is limited due to the lack of blood vessels, nerves, and lymphatic systems. Tissue engineering offers a potential solution to promote cartilage regeneration by combining scaffolds, seed cells, and growth factors. Among these, growth factors play a critical role in regulating cell proliferation, differentiation, and extracellular matrix remodeling. However, their instability, susceptibility to degradation and potential side effects limit their effectiveness. This article reviews the main growth factors used in cartilage tissue engineering and their delivery strategies, including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cell system-based delivery. Each method shows unique advantages in enhancing the delivery efficiency and specificity of growth factors but also faces challenges such as cost, biocompatibility, and safety. Future research needs to further optimize these strategies to achieve more efficient, safe, and economical delivery of growth factors, thereby advancing the clinical application of cartilage tissue engineering.
Collapse
Affiliation(s)
- Rigele Ao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Zimo Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Qiaoyu Li
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Xingyi Pan
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| |
Collapse
|
2
|
Jankauskaite L, Malinauskas M, Aukstikalne L, Dabasinskaite L, Rimkunas A, Mickevicius T, Pockevičius A, Krugly E, Martuzevicius D, Ciuzas D, Baniukaitiene O, Usas A. Functionalized Electrospun Scaffold-Human-Muscle-Derived Stem Cell Construct Promotes In Vivo Neocartilage Formation. Polymers (Basel) 2022; 14:polym14122498. [PMID: 35746068 PMCID: PMC9229929 DOI: 10.3390/polym14122498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, we aimed to improve properties of scaffolds for better cell adherence and cartilage regeneration. Thus, electrospun PCL–scaffolds were functionalized with ozone and loaded with TGF-β3. Together, human-muscle-derived stem cells (hMDSCs) were isolated and assessed for their phenotype and potential to differentiate into specific lineages. Then, hMDSCs were seeded on ozonated (O) and non-ozonated (“naïve” (NO)) scaffolds with or without protein and submitted for in vitro and in vivo experiments. In vitro studies showed that hMDSC and control cells (human chondrocyte) could be tracked for at least 14 days. We observed better proliferation of hMDSCs in O scaffolds compared to NO scaffolds from day 7 to day 28. Protein analysis revealed slightly higher expression of type II collagen (Coll2) on O scaffolds compared to NO on days 21 and 28. We detected more pronounced formation of glycosaminoglycans in the O scaffolds containing TGF-β3 and hMDSC compared to NO and scaffolds without TGF-β3 in in vivo animal experiments. Coll2-positive extracellular matrix was observed within O and NO scaffolds containing TGF-β3 and hMDSC for up to 8 weeks after implantation. These findings suggest that ozone-treated, TGF-β3-loaded scaffold with hMDSC is a promising tool in neocartilage formation.
Collapse
Affiliation(s)
- Lina Jankauskaite
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
- Correspondence:
| | - Mantas Malinauskas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Lauryna Aukstikalne
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Lauryna Dabasinskaite
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Augustinas Rimkunas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Tomas Mickevicius
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Alius Pockevičius
- Pathology Center, Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania;
| | - Edvinas Krugly
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Dainius Martuzevicius
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Darius Ciuzas
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Odeta Baniukaitiene
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Arvydas Usas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| |
Collapse
|
3
|
Barisón MJ, Nogoceke R, Josino R, Horinouchi CDDS, Marcon BH, Correa A, Stimamiglio MA, Robert AW. Functionalized Hydrogels for Cartilage Repair: The Value of Secretome-Instructive Signaling. Int J Mol Sci 2022; 23:ijms23116010. [PMID: 35682690 PMCID: PMC9181449 DOI: 10.3390/ijms23116010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cartilage repair has been a challenge in the medical field for many years. Although treatments that alleviate pain and injury are available, none can effectively regenerate the cartilage. Currently, regenerative medicine and tissue engineering are among the developed strategies to treat cartilage injury. The use of stem cells, associated or not with scaffolds, has shown potential in cartilage regeneration. However, it is currently known that the effect of stem cells occurs mainly through the secretion of paracrine factors that act on local cells. In this review, we will address the use of the secretome—a set of bioactive factors (soluble factors and extracellular vesicles) secreted by the cells—of mesenchymal stem cells as a treatment for cartilage regeneration. We will also discuss methodologies for priming the secretome to enhance the chondroregenerative potential. In addition, considering the difficulty of delivering therapies to the injured cartilage site, we will address works that use hydrogels functionalized with growth factors and secretome components. We aim to show that secretome-functionalized hydrogels can be an exciting approach to cell-free cartilage repair therapy.
Collapse
|
4
|
Zhang Y, Li K, Shen L, Yu L, Ding T, Ma B, Ge S, Li J. Metal Phenolic Nanodressing of Porous Polymer Scaffolds for Enhanced Bone Regeneration via Interfacial Gating Growth Factor Release and Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:268-277. [PMID: 34961319 DOI: 10.1021/acsami.1c19633] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous polymer scaffolds are essential materials for tissue engineering because they can be easily processed to deliver stem cells or bioactive factors. However, scaffolds made of synthetic polymers normally lack a bioactive cell-material interface and undergo a burst release of growth factors, which may hinder their further application in tissue engineering. In this paper, a metal-phenolic network (MPN) was interfacially constructed on the pore surface of a porous poly(dl-lactide) (PPLA) scaffold. Based on the molecular gating property of the MPN supramolecular structure, the PPLA@MPN scaffold achieved the sustained release of the loaded molecules. In addition, the MPN coating provided a bioactive interface, thus encouraging the migration and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The PPLA@MPN scaffolds exhibited enhanced bone regeneration in a rat femoral defect model in vivo compared to PPLA, which is ascribed to the combined effect of sustained bone morphogenetic protein-2 (BMP-2) release and the osteogenic ability of MPN. This nanodressing technique provides a viable and straightforward strategy for enhancing the performance of porous polymer scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Kai Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Lanbo Shen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Lu Yu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Tian Ding
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Baojin Ma
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
5
|
Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Yilmaz EN, Zeugolis DI. Electrospun Polymers in Cartilage Engineering-State of Play. Front Bioeng Biotechnol 2020; 8:77. [PMID: 32133352 PMCID: PMC7039817 DOI: 10.3389/fbioe.2020.00077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Articular cartilage defects remain a clinical challenge. Articular cartilage defects progress to osteoarthritis, which negatively (e.g., remarkable pain, decreased mobility, distress) affects millions of people worldwide and is associated with excessive healthcare costs. Surgical procedures and cell-based therapies have failed to deliver a functional therapy. To this end, tissue engineering therapies provide a promise to deliver a functional cartilage substitute. Among the various scaffold fabrication technologies available, electrospinning is continuously gaining pace, as it can produce nano- to micro- fibrous scaffolds that imitate architectural features of native extracellular matrix supramolecular assemblies and can deliver variable cell populations and bioactive molecules. Herein, we comprehensively review advancements and shortfalls of various electrospun scaffolds in cartilage engineering.
Collapse
Affiliation(s)
- Elif Nur Yilmaz
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
7
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. Int J Biol Macromol 2019; 141:636-662. [DOI: 10.1016/j.ijbiomac.2019.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
|
9
|
Nenna A, Nappi F, Dougal J, Satriano U, Chello C, Mastroianni C, Lusini M, Chello M, Spadaccio C. Sternal wound closure in the current era: the need of a tailored approach. Gen Thorac Cardiovasc Surg 2019; 67:907-916. [PMID: 31531834 DOI: 10.1007/s11748-019-01204-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/04/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Median sternotomy remains the most common access to perform cardiac surgery procedures. However, the experience of the operating surgeon remains a crucial factor during sternal closure to avoid potential complications related to poor sternal healing, such as mediastinitis. Considering the lack of major randomized controlled trials and the heterogeneity of the current literature, this narrative review aims to summarize the different techniques and approaches to sternal closure with the aim to investigate their reflections into clinical outcomes and to inform the choice on the most effective closure method after median sternotomy. METHODS A literature search through PubMed, Embase, EBSCO, Cochrane database of systematic reviews, and Web of Science from its inception up to April 2019 using the following search keywords in various combinations: sternal, sternotomy, mediastinitis, deep sternal wound infection, cardiac surgery, closure. RESULTS Single wire fixation methods, at present, seems the most useful method to perform sternal closure in routine patients, although patients with a fragile sternum might benefit more from a figure-of-eight technique. In high-risk patients (e.g. chronic pulmonary disease, obesity, bilateral internal mammary artery harvesting, diabetes, off-midline sternotomy), rigid plate fixation is currently the most effective method, if available; alternatively, weave techniques could be used. CONCLUSION The choice among the sternal closure techniques should be mainly inspired and tailored on the patient's characteristics, and correct judgement and experience play a pivotal role. A decisional algorithm has been proposed as an attempt to overcome the absence of specific guidelines and to guide the operative approach. This operative approach might be used also in non-cardiac procedure in which median sternotomy is required, such as in case of thoracic surgery.
Collapse
Affiliation(s)
- Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy.
| | - Francesco Nappi
- Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Jennifer Dougal
- Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK
| | - Umberto Satriano
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Camilla Chello
- Dermatology, University of Rome "La Sapienza", Rome, Italy
| | - Ciro Mastroianni
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | | |
Collapse
|
10
|
Simultaneous enhancement of vascularization and contact-active antibacterial activity in diopside-based ceramic orbital implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110036. [PMID: 31546358 DOI: 10.1016/j.msec.2019.110036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
Rapid vascularization and long-term antibacterial property are desirable characteristics of the next-generation implants in orbital reconstruction. In this study, the new diopside-based orbital implants were developed by direct ink writing of diopside (CaMgSi2O6; DIO) and low-melt bioactive glass (BG)-assisted sintering approaches. The mechanical tests showed that the addition 5% or 10% BG could readily enhance the compressive strength of the DIO porous bioceramics after sintering at 1150 °C. The Tris buffer immersion test in vitro indicated that the porous bioceramics exhibited appreciable mechanical stability and very limited mass loss (<3.5%) after 8 weeks. The DIO/10BG porous bioceramic sintered at 1150 °C or 1250 °C could promote appreciable angiogenesis response at the early stage (2-6 weeks) of implantation in the rabbit panniculus carnosus muscle models in vivo. It is interesting that the steam autoclaved bioceramics exhibited outstanding contact-active inhibition against Staphylococcus aureus and Pseudomonas aeruginosa, but as-sintered bioceramics showed no antibacterial effect. It is reasonable to consider that our strategy paves the way toward a simple and effective approach to fabricate the multifunctional tailormade implants for orbital implantation, thus accelerating the clinical translation of biomaterials research.
Collapse
|
11
|
Browe DC, Mahon OR, Díaz‐Payno PJ, Cassidy N, Dudurych I, Dunne A, Buckley CT, Kelly DJ. Glyoxal cross‐linking of solubilized extracellular matrix to produce highly porous, elastic, and chondro‐permissive scaffolds for orthopedic tissue engineering. J Biomed Mater Res A 2019; 107:2222-2234. [DOI: 10.1002/jbm.a.36731] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- David C. Browe
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Olwyn R. Mahon
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- School of Biochemistry and Immunology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin Ireland
| | - Pedro J. Díaz‐Payno
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Nina Cassidy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - Ivan Dudurych
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin Ireland
| | - Conor T. Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| |
Collapse
|
12
|
Shie MY, Chang WC, Wei LJ, Huang YH, Chen CH, Shih CT, Chen YW, Shen YF. 3D Printing of Cytocompatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. MATERIALS 2017; 10:ma10020136. [PMID: 28772498 PMCID: PMC5459153 DOI: 10.3390/ma10020136] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 12/03/2022]
Abstract
Diseases in articular cartilages have affected millions of people globally. Although the biochemical and cellular composition of articular cartilages is relatively simple, there is a limitation in the self-repair ability of the cartilage. Therefore, developing strategies for cartilage repair is very important. Here, we report on a new liquid resin preparation process of water-based polyurethane based photosensitive materials with hyaluronic acid with application of the materials for 3D printed customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics the mechanical properties of articular cartilages. It is suitable for culturing human Wharton’s jelly mesenchymal stem cells (hWJMSCs) and the cells in this case showed an excellent chondrogenic differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in customized tissue engineering and also facilitate the development of cartilage tissue engineering.
Collapse
Affiliation(s)
- Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
- School of Dentistry, China Medical University, Taichung 40447, Taiwan.
| | - Wen-Ching Chang
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Li-Ju Wei
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Yu-Hsin Huang
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Chien-Han Chen
- School of Medicine, College of Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Cheng-Ting Shih
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
| | - Yi-Wen Chen
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
| | - Yu-Fang Shen
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| |
Collapse
|
13
|
Dashnyam K, El-Fiqi A, Buitrago JO, Perez RA, Knowles JC, Kim HW. A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. J Tissue Eng 2017; 8:2041731417707339. [PMID: 28560015 PMCID: PMC5435366 DOI: 10.1177/2041731417707339] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis is considered an important issue in the development of biomaterials for the successful regeneration of tissues including bone. While growth factors are commonly used with biomaterials to promote angiogenesis, some ions released from biomaterials can also contribute to angiogenic events. Many silica-based biomaterials have been widely used for the repair and regeneration of tissues, mainly hard tissues such as bone and tooth structure. They have shown excellent performance in bone formation by stimulating angiogenesis. The release of silicate and others (Co and Cu ions) has therefore been implicated to play critical roles in the angiogenesis process. In this short review, we highlight the in vitro and in vivo findings of angiogenesis (and the related bone formation) stimulated by the various types of silicon-containing biomaterials where silicate ions released might play essential roles. We discuss further the possible molecular mechanisms underlying in the ion-induced angiogenic events.
Collapse
Affiliation(s)
- Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jennifer O Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Roman A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- UIC Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
14
|
Reboredo JW, Weigel T, Steinert A, Rackwitz L, Rudert M, Walles H. Investigation of Migration and Differentiation of Human Mesenchymal Stem Cells on Five-Layered Collagenous Electrospun Scaffold Mimicking Native Cartilage Structure. Adv Healthc Mater 2016; 5:2191-8. [PMID: 27185494 DOI: 10.1002/adhm.201600134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/30/2016] [Indexed: 11/06/2022]
Abstract
Cartilage degeneration is the major cause of chronic pain, lost mobility, and reduced quality of life for over estimated 150 million osteoarthritis sufferers worldwide. Despite intensive research, none of the available therapies can restore the hyaline cartilage surface beyond just fibrous repair. To overcome these limitations, numerous cell-based approaches for cartilage repair are being explored that aim to provide an appropriate microenvironment for chondrocyte maintenance and differentiation of multipotent mesenchymal stem cells (MSCs) toward the chondrogenic lineage. Articular cartilage is composed of highly organized collagen network that entails the tissue into four distinct zones and each zone into three different regions based on differences in matrix morphology and biochemistry. Current cartilage implants cannot establish the hierarchical tissue organization that seems critical for normal cartilage function. Therefore, in this study, a structured, multilayered collagen scaffold designed for the replacement of damaged cartilage is presented that allows repopulation by host cells and synthesis of a new natural matrix. By using the electrospinning method, the potential to engineer a scaffold consisting of two different collagen types is obtained. With the developed collagen scaffold, a five-layered biomaterial is created that has the potency to induce the differentiation of human bone marrow derived MSCs toward the chondrogenic lineage.
Collapse
Affiliation(s)
- Jenny W. Reboredo
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
| | - Tobias Weigel
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
| | - Andre Steinert
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Lars Rackwitz
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Maximilian Rudert
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Heike Walles
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
- Translational Center Würzburg “Regenerative Therapies in Oncology and Musculoskeletal Diseases” Würzburg Branch; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Röntgenring 11 97070 Würzburg Germany
| |
Collapse
|
15
|
He D, Zhuang C, Chen C, Xu S, Yang X, Yao C, Ye J, Gao C, Gou Z. Rational Design and Fabrication of Porous Calcium–Magnesium Silicate Constructs That Enhance Angiogenesis and Improve Orbital Implantation. ACS Biomater Sci Eng 2016; 2:1519-1527. [DOI: 10.1021/acsbiomaterials.6b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dongshuang He
- Bio-Nanomaterials
and Regenerative Medicine Research Division, Zhejiang—California
International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Chen Zhuang
- Bio-Nanomaterials
and Regenerative Medicine Research Division, Zhejiang—California
International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Cong Chen
- College
of Material Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sanzhong Xu
- Department
of Orthopaedic Surgery, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Xianyan Yang
- Bio-Nanomaterials
and Regenerative Medicine Research Division, Zhejiang—California
International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Chunlei Yao
- Department
of Ophthalmology, The Second Affiliated Hospital, College of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Juan Ye
- Department
of Ophthalmology, The Second Affiliated Hospital, College of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Changyou Gao
- Bio-Nanomaterials
and Regenerative Medicine Research Division, Zhejiang—California
International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhongru Gou
- Bio-Nanomaterials
and Regenerative Medicine Research Division, Zhejiang—California
International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1215263. [PMID: 27642587 PMCID: PMC5011507 DOI: 10.1155/2016/1215263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.
Collapse
|
17
|
Tong S, Xu DP, Liu ZM, Du Y, Wang XK. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Int J Mol Med 2016; 38:367-80. [PMID: 27352815 PMCID: PMC4935461 DOI: 10.3892/ijmm.2016.2651] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
The role of transforming growth factor-β1 (TGF-β1) in normal human fracture healing has been previously demonstrated. The objective of the present study was to examine the biocompatibility of TGF-β1-silk fibroin-chitosan (TGF-β1-SF-CS) three-dimensional (3D) scaffolds in order to construct an ideal scaffold for bone tissue engineering. We added TGF-β1 directly to the SF-CS scaffold to construct a 3D scaffold for the first time, to the best of our knowledge, and performed evaluations to determine whether it may have potential applications as a growth factor delivery device. Bone marrow-derived mesenchymal stem cells (BMSCs) were seeded on the TGF-β1-SF-CS scaffolds and the silk fibroin-chitosan (SF-CS) scaffolds. On the TGF-β1‑SF-CS and the SF-CS scaffolds, the cell adhesion rate increased in a time‑dependent manner. Using a Cell Counting Kit-8 (CCK-8) assay and analyzing the alkaline phosphatase (ALP) expression proved that TGF-β1 significantly enhanced the growth and proliferation of BMSCs on the SF-CS scaffolds in a time-dependent manner. To examine the in vivo biocompatibility and osteogenesis of the TGF-β1‑SF-CS scaffolds, the TGF-β1-SF-CS scaffolds and the SF-CS scaffolds were implanted in rabbit mandibles and studied histologically and microradiographically. The 3D computed tomography (CT) scan and histological examinations of the samples showed that the TGF-β1-SF-CS scaffolds exhibited good biocompatibility and extensive osteoconductivity with the host bone after 8 weeks. Moreover, the introduction of TGF-β1 to the SF-CS scaffolds markedly enhanced the efficiency of new bone formation, and this was confirmed using bone mineral density (BMD) and biomechanical evaluation, particularly at 8 weeks after implantation. We demonstrated that the TGF-β1‑SF-CS scaffolds possessed as good biocompatibility and osteogenesis as the hybrid ones. Taken together, these findings indicate that the TGF-β1-SF-CS scaffolds fulfilled the basic requirements of bone tissue engineering, and have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery. Thus, TGF-β1-SF-CS composite scaffolds represent a promising, novel type of scaffold for use in bone tissue engineering.
Collapse
Affiliation(s)
- Shuang Tong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| | - Da-Peng Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| | - Zi-Mei Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| | - Yang Du
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| | - Xu-Kai Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
18
|
Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials 2016; 84:64-75. [DOI: 10.1016/j.biomaterials.2016.01.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 02/08/2023]
|
19
|
Wang X, Chang J, Tian T, Ma B. Preparation of calcium silicate/decellularized porcine myocardial matrix crosslinked by procyanidins for cardiac tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra02947g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CS-incorporated myocardial ECM scaffolds release functional ions gradually, which stimulate expression of the proangiogenic factors in endothelia cells.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Tian Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
20
|
|
21
|
Santo VE, Popa EG, Mano JF, Gomes ME, Reis RL. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomater 2015; 19:56-65. [PMID: 25795623 DOI: 10.1016/j.actbio.2015.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/04/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
The role of Platelet Lysates (PLs) as a source of growth factors (GFs) and as main element of three-dimensional (3D) hydrogels has been previously described. However, the resulting hydrogels usually suffer from high degree of contraction, limiting their usefulness. This work describes the development of a stable biomimetic 3D hydrogel structure based on PLs, through the spontaneous assembling of a high concentration of chitosan-chondroitin sulfate nanoparticles (CH/CS NPs) with PLs loaded by adsorption. The interactions between the NPs and the lysates resemble the ones observed in the extracellular matrix (ECM) native environment between glycosaminoglycans and ECM proteins. In vitro release studies were carried out focusing on the quantification of PDGF-BB and TGF-β1 GFs. Human adipose derived stem cells (hASCs) were entrapped in these 3D hydrogels and cultured in vitro under chondrogenic stimulus, in order to assess their potential use for cartilage regeneration. Histological, immunohistological and gene expression analysis demonstrated that the PL-assembled constructs entrapping hASCs exhibited results similar to the positive control (hASCS cultured in pellets), concerning the levels of collagen II expression and immunolocalization of collagen type I and II and aggrecan. Moreover, the deposition of new cartilage ECM was detected by alcian blue and safranin-O positive stainings. This work demonstrates the potential of PLs to act simultaneously as a source/carrier of GFs and as a 3D structure of support, through the application of a "bottom-up" approach involving the assembly of NPs, resulting in an enriched construct for cartilage regeneration applications.
Collapse
Affiliation(s)
- Vítor E Santo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elena G Popa
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
22
|
Mao C, Chen X, Miao G, Lin C. Angiogenesis stimulated by novel nanoscale bioactive glasses. ACTA ACUST UNITED AC 2015; 10:025005. [PMID: 25805509 DOI: 10.1088/1748-6041/10/2/025005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of biomaterials to induce rapid vascular formation is critical in tissue regeneration. Combining recombinant angiogenic growth factors with bioengineered constructs have proven to be difficult due to several issues, including the instability of recombinant proteins, the need for sustained delivery and the dosage of factors. New formulations of bioactive glass, 58S nanosized bioactive glass (58S-NBG), have been reported to enhance wound healing in animal models better than the first generation of 45S5 Bioglass. Therefore, we investigated the effects of extracts of 58S-NBG and 80S-NBG on cultures of human umbilical vein endothelial cells (HUVECs). Cell viability was assessed by MTS assay. In vitro angiogenesis was measured using an ECM gel tube formation assay, and levels of mRNAs for five angiogenic related genes were measured by qRT-PCR. Extracts of 58S-NBG and 80S-NBG stimulated the proliferation of HUVECs, accelerated cell migration, up-regulated expression of the vascular endothelial growth factor, basic fibroblast growth factor, their receptors, and endothelial nitric oxide synthase, resulting in enhanced tube formation in vitro. The enhanced angiogenic response correlated with increased levels of Ca and Si in the extracts of 58S-NBG and 80S-NBG. The ability of 58S-NBG and 80S-NBG to stimulate angiogenesis in vitro provides alternative approaches for stimulating neovascularization of tissue-engineered constructs.
Collapse
Affiliation(s)
- Cong Mao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China. National Engineering Research Center for Tissues Restoration and Reconstruction, Guangzhou 510006, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Karnik S, Hines K, Mills DK. Nanoenhanced hydrogel system with sustained release capabilities. J Biomed Mater Res A 2014; 103:2416-26. [PMID: 25424733 DOI: 10.1002/jbm.a.35376] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 01/24/2023]
Abstract
An alginate/halloysite nanotube (HNT) nanocomposite was developed with sustained release of bone morphogenetic proteins (BMPs) at picogram low levels. BMP-2, 4, and 6 and osteoblasts were chosen as our model "growth factor" and "cell type" as the interaction of BMPs with osteoblasts is well known and thoroughly investigated. Alginate hydrogels with HNTs doped with BMP-2, 4, or 6 only or BMP-4 and 6 in combination. Osteoblasts were seeded within the hydrogels and studied for changes in cell proliferation, phenotypic expression, and mineralization over a 28-day experimental period. Osteoblast behavior was enhanced in BMP doped hydrogel/HNTs nanocomposites as compared with control groups. Release profiles showed that BMP-2 was released in a sustained fashion over a 7-day period and at picogram levels. Mineralization, as showed by Von Kossa staining, and protein synthesis peaked at 28 days, for all three growth factor combinations. BMP-4 provided a marked stimulus for osteoblast functionality base and was comparable to BMP-6 in terms of osteoblast differentiation and mineralization. BMP-4 and 6, in combination, showed a marked enhancement in osteoblast differentiation and functionality; however, the response seemed to be delayed when compared with BMP-4 and 6 release. Hydrogel surfaces had a complex surface topography and greater structural integrity with increased halloysite addition. The data suggest that these nanocomposites may provide a mechanism to enhance repair and regeneration in damaged or diseased tissues, reducing the need for more invasive treatment modalities.
Collapse
Affiliation(s)
- Sonali Karnik
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, Louisiana, 71272
| | - Kanesha Hines
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, Louisiana, 71272
| | - David K Mills
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, Louisiana, 71272.,The School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, 71272
| |
Collapse
|
24
|
Hung KC, Tseng CS, Hsu SH. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv Healthc Mater 2014; 3:1578-87. [PMID: 24729580 DOI: 10.1002/adhm.201400018] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/26/2014] [Indexed: 01/26/2023]
Abstract
Biodegradable materials that can undergo degradation in vivo are commonly employed to manufacture tissue engineering scaffolds, by techniques including the customized 3D printing. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. So far, there is no investigation on water-based 3D printing for synthetic materials. In this study, the water dispersion of elastic and biodegradable polyurethane (PU) nanoparticles is synthesized, which is further employed to fabricate scaffolds by 3D printing using polyethylene oxide (PEO) as a viscosity enhancer. The surface morphology, degradation rate, and mechanical properties of the water-based 3D-printed PU scaffolds are evaluated and compared with those of polylactic-co-glycolic acid (PLGA) scaffolds made from the solution in organic solvent. These scaffolds are seeded with chondrocytes for evaluation of their potential as cartilage scaffolds. Chondrocytes in 3D-printed PU scaffolds have excellent seeding efficiency, proliferation, and matrix production. Since PU is a category of versatile materials, the aqueous 3D printing process developed in this study is a platform technology that can be used to fabricate devices for biomedical applications.
Collapse
Affiliation(s)
- Kun-Che Hung
- Institute of Polymer Science and Engineering; National Taiwan University; No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan R.O.C
| | - Ching-Shiow Tseng
- Department of Mechanical Engineering; National Central University; Taoyuan 32001 Taiwan R.O.C
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering; National Taiwan University; No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan R.O.C
- Research Center for Developmental Biology and Regenerative Medicine; National Taiwan University; Taipei 10617 Taiwan R.O.C
| |
Collapse
|
25
|
Hegewald AA, Cluzel J, Krüger JP, Endres M, Kaps C, Thomé C. Effects of initial boost with TGF-beta 1 and grade of intervertebral disc degeneration on 3D culture of human annulus fibrosus cells. J Orthop Surg Res 2014; 9:73. [PMID: 25116605 PMCID: PMC4143571 DOI: 10.1186/s13018-014-0073-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/25/2014] [Indexed: 12/01/2022] Open
Abstract
Background Three-dimensional (3D) culture in porous biomaterials as well as stimulation with growth factors are known to be supportive for intervertebral disc cell differentiation and tissue formation. Unless sophisticated releasing systems are used, however, effective concentrations of growth factors are maintained only for a very limited amount of time in in vivo applications. Therefore, we investigated, if an initial boost with transforming growth factor-beta 1 (TGF-beta 1) is capable to induce a lasting effect of superior cartilaginous differentiation in slightly and severely degenerated human annulus fibrosus (AF) cells. Methods Human AF tissue was harvested during surgical treatment of six adult patients with lumbar spinal diseases. Grading of disc degeneration was performed with magnet resonance imaging. AF cells were isolated and expanded in monolayer culture and rearranged three-dimensionally in a porous biomaterial consisting of stepwise absorbable poly-glycolic acid and poly-(lactic-co-glycolic) acid and a supportive fine net of non-absorbable polyvinylidene fluoride. An initial boost of TGF-beta 1 or TGF-beta 1 and hyaluronan was applied and compared with controls. Matrix formation was assessed at days 7 and 21 by (1) histological staining of the typical extracellular matrix molecules proteoglycan and type I and type II collagens and by (2) real-time gene expression analysis of aggrecan, decorin, biglycan, type I, II, III, and X collagens as well as of catabolic matrix metalloproteinases MMP-2 and MMP-13. Results An initial boost with TGF-beta 1 or TGF-beta 1 and hyaluronan did not enhance the expression of characteristic AF matrix molecules in our 3D culture system. AF cells showed high viability in the progressively degrading biomaterial. Stratification by grade of intervertebral disc degeneration showed that AF cells from both, slightly degenerated, or severely degenerated tissue are capable of significant up-regulations of characteristic matrix molecules in 3D culture. AF cells from severely degenerated tissue, however, displayed significantly lower up-regulations in some matrix molecules such as aggrecan. Conclusions We failed to show a supportive effect of an initial boost with TGF-beta 1 in our 3D culture system. This underlines the need for further investigations on growth factor releasing systems.
Collapse
Affiliation(s)
- Aldemar Andres Hegewald
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Evans C. Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. INTERNATIONAL ORTHOPAEDICS 2014; 38:1761-9. [PMID: 25038968 DOI: 10.1007/s00264-014-2423-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Traditional tissue engineering approaches to the restoration of orthopaedic tissues promise to be expensive and not well suited to treating large numbers of patients. Advances in gene transfer technology offer the prospect of developing expedited techniques in which all manipulations can be performed percutaneously or in a single operation. This rests on the ability of gene delivery to provoke the sustained synthesis of relevant gene products in situ without further intervention. Regulated gene expression is also possible, but its urgency is reduced by our ignorance of exactly what levels and periods of expression are needed for specific gene products. This review describes various strategies by which gene therapy can be used to expedite the repair and regeneration of orthopaedic tissues. Strategies include the direct injection of vectors into sites of injury, the use of genetically modified, allogeneic cell lines and the intra-operative harvest of autologous tissues that are quickly transduced and returned to the body, either intact or following rapid cell isolation. Data obtained from pre-clinical experiments in animal models have provided much encouragement that such approaches may eventually find clinical application in human and veterinary medicine.
Collapse
Affiliation(s)
- Christopher Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA,
| |
Collapse
|
27
|
Nanotechnology biomimetic cartilage regenerative scaffolds. Arch Plast Surg 2014; 41:231-40. [PMID: 24883273 PMCID: PMC4037768 DOI: 10.5999/aps.2014.41.3.231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 06/29/2013] [Accepted: 06/30/2013] [Indexed: 11/08/2022] Open
Abstract
Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery.
Collapse
|
28
|
Balasundaram G, Storey DM, Webster TJ. Novel nano-rough polymers for cartilage tissue engineering. Int J Nanomedicine 2014; 9:1845-53. [PMID: 24790427 PMCID: PMC3998868 DOI: 10.2147/ijn.s55865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU) and polycaprolactone (PCL). Nanoembossed polyurethane (NPU) and nanoembossed polycaprolactone (NPCL) were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti) surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes). All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells) functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary, the present in vitro results of increased chondrocyte functions on NPU and NPCL suggest these materials may be suitable for numerous polymer-based cartilage tissue-engineering applications and, thus, deserve further investigation.
Collapse
Affiliation(s)
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA ; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Kong N, Lin K, Li H, Chang J. Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. J Mater Chem B 2014; 2:1100-1110. [PMID: 32261627 DOI: 10.1039/c3tb21529f] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper (Cu) has been reported to be able to stimulate vascularization/angiogenesis, which is critical for regeneration of vascularized tissue in tissue engineering. Silicate bioceramics have also been reported to have stimulatory effects on vascularization due to the silicon (Si) ions released from silicate biomaterials. Therefore, we hypothesize that a combination of Cu and Si ions may show synergy effects on vascularization. Therefore, a copper-doped calcium silicate bioceramic (Cu-CaSiO3, Cu-CS) was designed and synthesized with the purpose to enhance the stimulatory effects of copper salts or pure silicate bioceramics on vascularization by combining the effects of Cu and Si ions. The cytocompatibility of Cu-CS was firstly assessed by testing the influence of Cu-CS ion extracts on proliferation of human umbilical vein endothelial cells (HUVECs). Thereafter, vascularization of HUVECs on ECMatrix™ gel or co-cultured with human dermal fibroblasts (HDFs) in Cu-CS extracts was evaluated and expression of angiogenic growth factors was analyzed. Results revealed that, as compared to CS extracts and media containing soluble CuSO4, Cu-CS extracts possessed stronger stimulatory effects on upregulation of angiogenic growth factors, which finally resulted in better stimulatory effects on vascularization. During the vascularization process, paracrine effects dominated in the co-culture system. In addition, lower concentrations of Cu and Si ions released from Cu-CS than those released from pure CS or CuSO4 were enough to stimulate vascularization, which indicated that there were synergy effects between Cu and Si ions during stimulation of vascularization by Cu-CS. Taken together, the designed Cu-CS may be suitable as a new biomaterial for regenerating blood vessels in tissue engineering.
Collapse
Affiliation(s)
- Ni Kong
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, 1954 HuaShan Road, Shanghai 200030, China.
| | | | | | | |
Collapse
|
30
|
Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct. Arch Plast Surg 2013; 40:676-86. [PMID: 24286039 PMCID: PMC3840173 DOI: 10.5999/aps.2013.40.6.676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/21/2013] [Accepted: 09/05/2013] [Indexed: 01/31/2023] Open
Abstract
Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.
Collapse
|
31
|
Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:106-25. [PMID: 23815376 DOI: 10.1089/ten.teb.2013.0271] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.
Collapse
Affiliation(s)
- Henning Madry
- 1 Center of Experimental Orthopaedics, Saarland University , Homburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Li H, Chang J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater 2013; 9:5379-89. [PMID: 23088882 DOI: 10.1016/j.actbio.2012.10.019] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/29/2012] [Accepted: 10/13/2012] [Indexed: 01/01/2023]
Abstract
Angiogenesis is critical for bone tissue engineering. Stimulating proangiogenesis in an engineered bone construct using bioglass or bioceramic is now attracting much attention. However, the specific ion that plays important roles in the stimulation of proangiogenesis has not yet been elucidated. In this study, calcium silicate (CS), an osteogenic bioceramic containing only Ca and Si ions, significantly stimulated proangiogenesis of human umbilical vein endothelial cells (HUVECs). The determination of the ionic dissolution product indicates that Si ion concentrations of the CS extracts were significantly higher than that of the calcium phosphate ceramic extracts and control medium. However, the concentrations of Ca and P ions of both ceramic extracts and normal medium were at the same level. With the specific Si ion and its effective concentrations, CS extracts stimulated the proliferation of HUVECs, up-regulated the expression of vascular endothelial growth factor, basic fibroblast growth factor and their receptors, and finally stimulated the proangiogenesis. As the Si ion played an important role in osteogenesis stimulated by Si-containing bioceramics, confirmation of the Si ion's specific role and its effective ion concentrations in CS-induced angiogenesis may be extremely useful in designing osteogenic and angiogenic bioactive materials for bone tissue engineering.
Collapse
|
33
|
Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2012; 2:403-30. [PMID: 22432625 DOI: 10.1146/annurev-chembioeng-061010-114257] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The past three decades have seen the emergence of an endeavor called tissue engineering and regenerative medicine in which scientists, engineers, and physicians apply tools from a variety of fields to construct biological substitutes that can mimic tissues for diagnostic and research purposes and can replace (or help regenerate) diseased and injured tissues. A significant portion of this effort has been translated to actual therapies, especially in the areas of skin replacement and, to a lesser extent, cartilage repair. A good amount of thoughtful work has also yielded prototypes of other tissue substitutes such as nerve conduits, blood vessels, liver, and even heart. Forward movement to clinical product, however, has been slow. Another offshoot of these efforts has been the incorporation of some new exciting technologies (e.g., microfabrication, 3D printing) that may enable future breakthroughs. In this review we highlight the modest beginnings of the field and then describe three application examples that are in various stages of development, ranging from relatively mature (skin) to ongoing proof-of-concept (cartilage) to early stage (liver). We then discuss some of the major issues that limit the development of complex tissues, some of which are fundamentals-based, whereas others stem from the needs of the end users.
Collapse
Affiliation(s)
- François Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
34
|
Sukarto A, Amsden BG. Low melting point amphiphilic microspheres for delivery of bone morphogenetic protein-6 and transforming growth factor-β3 in a hydrogel matrix. J Control Release 2012; 158:53-62. [DOI: 10.1016/j.jconrel.2011.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 11/25/2022]
|
35
|
Miller RE, Kopesky PW, Grodzinsky AJ. Growth factor delivery through self-assembling peptide scaffolds. Clin Orthop Relat Res 2011; 469:2716-24. [PMID: 21503788 PMCID: PMC3171545 DOI: 10.1007/s11999-011-1891-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The best strategy for delivering growth factors to cells for the purpose of cartilage tissue engineering remains an unmet challenge. Tethering biotinylated insulin-like growth factor-1 (bIGF-1) to the self-assembling peptide scaffold (RADA)(4) effectively delivers bioactive bIGF-1 to cardiac tissue. QUESTIONS/PURPOSES We therefore asked whether: (1) soluble bIGF-1 could stimulate proteoglycan production by chondrocytes; (2) bIGF-1 could be adsorbed or tethered to the self-assembling peptide scaffold (KLDL)(3); (3) adsorbed or tethered bIGF-1 could stimulate proteoglycan production; and (4) transforming growth factor-β1 (TGF-β1) could be adsorbed or tethered and stimulate proteoglycan production by bone marrow stromal cells (BMSCs). METHODS Chondrocytes or BMSCs were encapsulated in (KLDL)(3). The growth factors were (1) delivered solubly in the medium; (2) adsorbed to (KLDL)(3); or (3) tethered to (KLDL)(3) through biotin-streptavidin bonds. Fluorescently tagged streptavidin was used to determine IGF-1 kinetics; sGAG and DNA content was measured. RESULTS Soluble bIGF-1 stimulated comparable sGAG accumulation as soluble IGF-1. Tethering IGF-1 to (KLDL)(3) increased retention of IGF-1 in (KLDL)(3) compared with adsorption, but neither method increased sGAG or DNA accumulation above control. Adsorbing TGF-β1 increased proteoglycan accumulation above control, but tethering did not affect sGAG levels. CONCLUSIONS Although TGF-β1 can be effectively delivered by adsorption to (KLDL)(3), IGF-1 cannot. Additionally, although tethering these factors provided long-term sequestration, tethering did not stimulate proteoglycan production. CLINICAL RELEVANCE Tethering growth factors to (KLDL)(3) results in long-term delivery, but tethering does not necessarily result in the same bioactivity as soluble delivery, indicating presentation of proteins is vital when considering a delivery strategy.
Collapse
Affiliation(s)
- Rachel E. Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, NE47-377, Cambridge, MA 02139 USA
| | - Paul W. Kopesky
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Alan J. Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, NE47-377, Cambridge, MA 02139 USA ,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
36
|
Rainer A, Spadaccio C, Sedati P, De Marco F, Carotti S, Lusini M, Vadalà G, Di Martino A, Morini S, Chello M, Covino E, Denaro V, Trombetta M. Electrospun Hydroxyapatite-Functionalized PLLA Scaffold: Potential Applications in Sternal Bone Healing. Ann Biomed Eng 2011; 39:1882-90. [DOI: 10.1007/s10439-011-0289-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
|
37
|
Lemon G, Howard D, Rose FR, King JR. Individual-based modelling of angiogenesis inside three-dimensional porous biomaterials. Biosystems 2011; 103:372-83. [DOI: 10.1016/j.biosystems.2010.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/05/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
38
|
Arany PR, Mooney DJ. At the edge of translation - materials to program cells for directed differentiation. Oral Dis 2010; 17:241-51. [PMID: 20860763 DOI: 10.1111/j.1601-0825.2010.01735.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral Diseases (2011) 17, 241-251 The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino vs a switchboard model, to highlight the use of single vs multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care.
Collapse
Affiliation(s)
- P R Arany
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA
| | | |
Collapse
|
39
|
Gorustovich AA, Roether JA, Boccaccini AR. Effect of Bioactive Glasses on Angiogenesis: A Review of In Vitro and In Vivo Evidences. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:199-207. [DOI: 10.1089/ten.teb.2009.0416] [Citation(s) in RCA: 471] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alejandro A. Gorustovich
- Research Laboratory, National Atomic Energy Commission (CNEA-Reg. Noroeste), Salta, Argentina
- National Research Council (CONICET), Buenos Aires, Argentina
| | - Judith A. Roether
- Department of Materials, Imperial College London, London, United Kingdom
| | - Aldo R. Boccaccini
- Department of Materials, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng 2009; 37:1376-89. [PMID: 19418224 DOI: 10.1007/s10439-009-9704-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
Cartilage and bone tissue engineering has been widely investigated but is still hampered by cell differentiation and transplant integration issues within the constructs. Scaffolds represent the pivotal structure of the engineered tissue and establish an environment for neo-extracellular matrix synthesis. They can be associated to signals to modulate cell activity. In this study, considering the well reported role of hydroxyapatite (HA) in cartilage repair, we focused on the putative chondrogenic differentiation of human mesenchymal stem cells (hMSCs) following culture on membranes of electrospun fibers of poly-L-lactic acid (PLLA) loaded with nanoparticles of HA. hMSCs were seeded on PLLA/HA and bare PLLA membranes and cultured in basal medium, using chondrogenic differentiation medium as a positive control. After 14 days of culture, SOX-9 positive cells could be detected in the PLLA/HA group. Cartilage specific proteoglycan immunostain confirmed the presence of neo-extracellular-matrix production. Co-expression of CD29, a typical surface marker of MSCs and SOX-9, suggested different degrees in the differentiation process. We developed a hydroxyapatite functionalized scaffold with the aim to recapitulate the native histoarchitecture and the molecular signaling of osteochondral tissue to facilitate cell differentiation toward chondrocyte. PLLA/HA nanocomposites induced differentiation of hMSCs in a chondrocyte-like phenotype with generation of a proteoglycan based matrix. This nanocomposite could be an amenable alternative scaffold for cartilage tissue engineering using hMSCs.
Collapse
|
41
|
[Regenerative potential of human adult precursor cells: cell therapy--an option for treating cartilage defects?]. Z Rheumatol 2009; 68:234-8. [PMID: 19384550 DOI: 10.1007/s00393-008-0396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cell-based therapeutical approaches are already in clinical use and are attracting growing interest for the treatment of joint defects. Mesenchymal stem and precursor cells (MSC) cover a wide range of properties that are useful for the regeneration process of bone and cartilage defects. The following article is an overview of the regenerative potential of MSC and discusses how the properties of these cells can be used for the development of new strategies in regenerative medicine.
Collapse
|
42
|
Abstract
Diseases such as degenerative or rheumatoid arthritis are accompanied by joint destruction. Clinically applied tissue engineering technologies like autologous chondrocyte implantation, matrix-assisted chondrocyte implantation, or in situ recruitment of bone marrow mesenchymal stem cells target the treatment of traumatic defects or of early osteoarthritis. Inflammatory conditions in the joint hamper the application of tissue engineering during chronic joint diseases. Here, most likely, cartilage formation is impaired and engineered neocartilage will be degraded. Based on the observations that mesenchymal stem cells (a) develop into joint tissues and (b) in vitro and in vivo show immunosuppressive and anti-inflammatory qualities indicating a transplant-protecting activity, these cells are prominent candidates for future tissue engineering approaches for the treatment of rheumatic diseases. Tissue engineering also provides highly organized three-dimensional in vitro culture models of human cells and their extracellular matrix for arthritis research.
Collapse
Affiliation(s)
- Jochen Ringe
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tucholskystr 2, 10117 Berlin, Germany.
| | | |
Collapse
|