1
|
Peng Y, Li Q, Gong Y, Yang Q, Dong Q, Han Y. RcPLATZ8 as a novel negative regulator of flowering in Rosa chinensis. PLANT CELL REPORTS 2025; 44:125. [PMID: 40397162 DOI: 10.1007/s00299-025-03513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
KEY MESSAGE Comprehensive analysis of the RcPLATZ gene family in Rosa chinensis reveals RcPLATZ8 as a novel negative regulator of flowering, offering insights for targeted breeding to manipulate flowering traits. Flowering regulation in Rosa chinensis is essential for improving ornamental and commercial traits, but its molecular mechanisms remain poorly understood. In this study, we identified and characterized ten members of the PLANT AT-RICH SEQUENCE AND ZINC-BINDING (PLATZ) protein family in R. chinensis through genome-wide analysis and protein domain validation using the Pfam database. Among these, we focused on RcPLATZ8, a novel negative regulator of flowering. Expression analysis via RT-qPCR revealed that RcPLATZ8 is predominantly expressed in floral organs, including stamens, pistils, and petals, and exhibits significant responsiveness to key plant hormones, such as abscisic acid (ABA), gibberellins (GA), and jasmonic acid (JA). Functional assays showed that overexpression of RcPLATZ8 in Arabidopsis resulted in delayed flowering and increased leaf number, whereas silencing RcPLATZ8 in R. chinensis led to early flowering. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) identified that RcPLATZ8 is part of the 'red module,' which is strongly associated with flowering-time regulatory genes, including SHORT VEGETATIVE PHASE (SVP). These findings provide new insights into the molecular regulation of flowering in roses, demonstrating that RcPLATZ8 may plays a key role in integrating hormonal signals and floral development. Our study not only expands the functional understanding of the PLATZ family but also offers potential strategies for molecular breeding aimed at improving flowering traits for horticultural applications.
Collapse
Affiliation(s)
- Yifang Peng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qi Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yao Gong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qian Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qijing Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Khosravi S, Hinrichs R, Rönspies M, Haghi R, Puchta H, Houben A. Epigenetic state and gene expression remain stable after CRISPR/Cas-mediated chromosomal inversions. THE NEW PHYTOLOGIST 2025; 245:2527-2539. [PMID: 39878102 PMCID: PMC11840415 DOI: 10.1111/nph.20403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
The epigenetic state of chromatin, gene activity and chromosomal positions are interrelated in plants. In Arabidopsis thaliana, chromosome arms are DNA-hypomethylated and enriched with the euchromatin-specific histone mark H3K4me3, while pericentromeric regions are DNA-hypermethylated and enriched with the heterochromatin-specific mark H3K9me2. We aimed to investigate how the chromosomal location affects epigenetic stability and gene expression by chromosome engineering. Two chromosomal inversions of different sizes were induced using CRISPR/Cas9 to move heterochromatic, pericentric sequences into euchromatic regions. The epigenetic status of these lines was investigated using whole-genome bisulfite sequencing and chromatin immunoprecipitation. Gene expression changes following the induction of the chromosomal inversions were studied via transcriptome analysis. Both inversions had a minimal impact on the global distribution of histone marks and DNA methylation patterns, although minor epigenetic changes were observed across the genome. Notably, the inverted chromosomal regions and their borders retained their original epigenetic profiles. Gene expression analysis showed that only 0.5-1% of genes were differentially expressed genome-wide following the induction of the inversions. CRISPR/Cas-induced chromosomal inversions minimally affect epigenetic landscape and gene expression, preserving their profiles in subsequent generations.
Collapse
Affiliation(s)
- Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| | - Rebecca Hinrichs
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Michelle Rönspies
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Reza Haghi
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| |
Collapse
|
3
|
Thakor A, Charles TC. Recombinant DNA: unlocking untapped microbial potential for innovation in crop agriculture. Trends Biotechnol 2025; 43:533-539. [PMID: 40015250 DOI: 10.1016/j.tibtech.2025.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/01/2025]
Abstract
The Asilomar Conference on Recombinant DNA, held in 1975, established guidelines for recombinant DNA (rDNA) research and laid the foundation for biotechnology regulations. While rDNA has driven significant advancements in pharmaceutical and crop biotechnology, the commercialization of plant-beneficial microbials developed using rDNA has lagged behind. This disparity may be attributed to a cumbersome regulatory framework shaped by the perception that rDNA products pose biosafety risks. To unlock the full potential of rDNA technology in addressing global challenges, regulatory reform for rDNA-derived microbial products for crop plants that reduce reliance on chemical fertilizers and pesticides is essential. Streamlining these barriers will enable greater societal benefits from microbial solutions in agriculture and beyond.
Collapse
Affiliation(s)
| | - Trevor C Charles
- University of Waterloo, Waterloo, Ontario, Canada; Metagenom Bio Life Science Inc., Waterloo, Ontario, Canada.
| |
Collapse
|
4
|
Batool F, Shireen H, Malik MF, Abrar M, Abbasi AA. The combinatorial binding syntax of transcription factors in forebrain-specific enhancers. Biol Open 2025; 14:BIO061751. [PMID: 39976127 PMCID: PMC11876843 DOI: 10.1242/bio.061751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Tissue-specific gene regulation in mammals involves the coordinated binding of multiple transcription factors (TFs). Using the forebrain as a model, we investigated the syntax of TF occupancy to determine tissue-specific enhancer regions. We analyzed forebrain-exclusive enhancers from the VISTA Enhancer Browser and a curated set of 23 TFs relevant to forebrain development and disease. Our findings revealed multiple distinct patterns of combinatorial TF binding, with the HES5-FOXP2-GATA3 triad being the most frequent in forebrain-specific enhancers. This syntactic structure was detected in 2614 enhancers from a genome-wide catalog of 25,000 predicted human forebrain enhancers. Notably, this catalog represents a computationally predicted dataset, distinct from the in vivo validated set of enhancers obtained from the VISTA Enhancer Browser. The shortlisted 2614 enhancers were further analyzed using genome-wide epigenetic data and evaluated for evolutionary conservation and disease relevance. Our findings highlight the value of these 2614 enhancers in forebrain-specific gene regulation and provide a framework for discovering tissue-specific enhancers, enhancing the understanding of enhancer function.
Collapse
Affiliation(s)
- Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Faizan Malik
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
5
|
Lee S, Kim H, Aqsa, Jeung K, Won M, Ro H. DAPE cloning with modified primers for producing designated lengths of 3' single-stranded ends in PCR products. PLoS One 2025; 20:e0318015. [PMID: 39946422 PMCID: PMC11825038 DOI: 10.1371/journal.pone.0318015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025] Open
Abstract
For in vitro DNA assembly, enzymes with exonuclease activities have been utilized to generate relatively long recessed ends on DNA fragments, which can anneal to other DNA fragments if they have complementary nucleotide sequences. The combined construct can be directly delivered to competent cells, where the gaps and nicks between the fragments are completely rectified. We introduce a versatile sequence- and ligation-independent cloning (SLIC) method called 'DNA Assembly with Phosphorothioate (PT) and T5 Exonuclease' (DAPE), which generates precise lengths of 3' overhangs at both ends of linearized DNA. In contrast to conventional SLIC techniques, which are not suitable for cloning DNA fragments smaller than 50 base pairs (bp) due to overzealous exonuclease activity, such as with gRNA and epitope tags, DAPE can efficiently and precisely assemble several fragments in a single reaction regardless of the size of the DNA. Thus, DAPE, as an advanced toolkit for DNA cloning and synthetic biology, may further expedite the construction of more elaborate multi-gene circuitry.
Collapse
Affiliation(s)
- Seoee Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK)
| | - Hyunyoung Kim
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK)
| | - Aqsa
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK)
| | - Kwangjin Jeung
- Biotechnology Process Engineering Center, KRIBB, Cheongju, Korea (ROK)
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, Korea (ROK)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea (ROK)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK)
| |
Collapse
|
6
|
Lu L, Gao X, Qi Y, Zha Z, Gao Z, Ma N, Wu J, Yang H, Yi H. Functional characterisation of WRKY transcription factor CrWRKY48 involved in regulating seed abortion of Ponkan (Citrus reticulata). PHYSIOLOGIA PLANTARUM 2025; 177:e70048. [PMID: 39829364 DOI: 10.1111/ppl.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Citrus fruits are one of the most important fruits in the world, and their seedless character is favored by consumers. WRKY is a plant-specific transcription factor family involved in all aspects of plant growth and development. However, the molecular mechanism of seedless fruit formation in citrus and the role of the WRKY gene family in seed abortion are still poorly understood. In this study, we identified 47 WRKY family genes in the citrus fruit Citrus reticulata and comprehensively characterized the WRKY gene family through gene structure and evolutionary relationships. The expression patterns and protein interaction networks of the WRKY gene family were analyzed based on citrus seed abortion transcriptome data, and several WRKY genes that may be involved in the seed abortion regulation were excavated. Furthermore, CrWRKY48 was verified to regulate seed abortion positively in Arabidopsis thaliana, and the rate of seed abortion caused by overexpression of CrWRKY48 reached 45.48%. Using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays, DNA affinity purification sequencing and yeast-one-hybrid assays, we found that CrWRKY48 activated excessive programmed cell death by regulating the expression of programmed cell death-related genes such as SOBIR1. Our results show the potential regulation of the WRKY gene family for citrus seed abortion and provide novel insights into the role of CrWRKY48 in mediating citrus seed abortion by activating programmed cell death.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiong Gao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yongjie Qi
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zixian Zha
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhenghui Gao
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Na Ma
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture Anhui Academy of Agricultural Sciences, Hefei, China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Shireen H, Batool F, Khatoon H, Parveen N, Sehar NU, Hussain I, Ali S, Abbasi AA. Predicting genome-wide tissue-specific enhancers via combinatorial transcription factor genomic occupancy analysis. FEBS Lett 2025; 599:100-119. [PMID: 39367524 DOI: 10.1002/1873-3468.15030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.
Collapse
Affiliation(s)
- Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hizran Khatoon
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nazia Parveen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Noor Us Sehar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Irfan Hussain
- Centre for Regenerative Medicine and Stem Cells Research, Agha Khan University hospital, Karachi, Pakistan
| | - Shahid Ali
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
8
|
Kong L, Sun J, Zhang W, Zhan Z, Piao Z. Functional analysis of the key BrSWEET genes for sugar transport involved in the Brassica rapa-Plasmodiophora brassicae interaction. Gene 2024; 927:148708. [PMID: 38885818 DOI: 10.1016/j.gene.2024.148708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.
Collapse
Affiliation(s)
- Liyan Kong
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jiadi Sun
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenjun Zhang
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
9
|
Gao Y, Zhao L, Wang B, Song Z, Jiao F, Wu X, Feng Z, Chen X, Gao L, Li Y. A tonoplast-localized TPK-type K + transporter (TPKa) regulates potassium accumulation in tobacco. Gene 2024; 926:148576. [PMID: 38763364 DOI: 10.1016/j.gene.2024.148576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Potassium ion (K+) is one of the most essential nutrients for the growth and development of tobacco (Nicotiana tabacum L.), however, the molecular regulation of K+ concentration in tobacco remains unclear. In this study, a two-pore K (TPK) channel gene NtTPKa was cloned from tobacco, and NtTPKa protein contains the unique K+ selection motif GYGD and its transmembrane region primarily locates in the tonoplast membrane. The expression of NtTPKa gene was significantly increased under low-potassium stress conditions. The concentrations of K+ in tobacco were significantly increased in the NtTPKa RNA interference lines and CRISPR/Cas9 knockout mutants. In addition, the transport of K+ by NtTPKa was validated using patch clamp technique, and the results showed that NtTPKa channel protein exclusively transported K+ in a concentration-dependent manner. Together, our results strongly suggested that NtTPKa is a key gene in maintaining K+ homeostasis in tobacco, and it could provide a new genetic resource for increasing the concentration of K+ in tobacco.
Collapse
Affiliation(s)
- Yulong Gao
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Xingfu Wu
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Zhiyu Feng
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Xuejun Chen
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center, Kunming, China.
| |
Collapse
|
10
|
Asma H, Tieke E, Deem KD, Rahmat J, Dong T, Huang X, Tomoyasu Y, Halfon MS. Regulatory genome annotation of 33 insect species. eLife 2024; 13:RP96738. [PMID: 39392676 PMCID: PMC11469670 DOI: 10.7554/elife.96738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Annotation of newly sequenced genomes frequently includes genes, but rarely covers important non-coding genomic features such as the cis-regulatory modules-e.g., enhancers and silencers-that regulate gene expression. Here, we begin to remedy this situation by developing a workflow for rapid initial annotation of insect regulatory sequences, and provide a searchable database resource with enhancer predictions for 33 genomes. Using our previously developed SCRMshaw computational enhancer prediction method, we predict over 2.8 million regulatory sequences along with the tissues where they are expected to be active, in a set of insect species ranging over 360 million years of evolution. Extensive analysis and validation of the data provides several lines of evidence suggesting that we achieve a high true-positive rate for enhancer prediction. One, we show that our predictions target specific loci, rather than random genomic locations. Two, we predict enhancers in orthologous loci across a diverged set of species to a significantly higher degree than random expectation would allow. Three, we demonstrate that our predictions are highly enriched for regions of accessible chromatin. Four, we achieve a validation rate in excess of 70% using in vivo reporter gene assays. As we continue to annotate both new tissues and new species, our regulatory annotation resource will provide a rich source of data for the research community and will have utility for both small-scale (single gene, single species) and large-scale (many genes, many species) studies of gene regulation. In particular, the ability to search for functionally related regulatory elements in orthologous loci should greatly facilitate studies of enhancer evolution even among distantly related species.
Collapse
Affiliation(s)
- Hasiba Asma
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New YorkBuffaloUnited States
| | - Ellen Tieke
- Department of Biology, Miami UniversityOxfordUnited States
| | - Kevin D Deem
- Department of Biology, Miami UniversityOxfordUnited States
| | - Jabale Rahmat
- Department of Biology, Miami UniversityOxfordUnited States
| | - Tiffany Dong
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
| | - Xinbo Huang
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
| | | | - Marc S Halfon
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biomedical Informatics, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biological Sciences, University at Buffalo-State University of New YorkBuffaloUnited States
| |
Collapse
|
11
|
Ayala FM, Hernández-Sánchez IE, Chodasiewicz M, Wulff BBH, Svačina R. Engineering a One Health Super Wheat. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:193-215. [PMID: 38857542 DOI: 10.1146/annurev-phyto-121423-042128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Wheat is the predominant crop worldwide, contributing approximately 20% of protein and calories to the human diet. However, the yield potential of wheat faces limitations due to pests, diseases, and abiotic stresses. Although conventional breeding has improved desirable traits, the use of modern transgenesis technologies has been limited in wheat in comparison to other crops such as maize and soybean. Recent advances in wheat gene cloning and transformation technology now enable the development of a super wheat consistent with the One Health goals of sustainability, food security, and environmental stewardship. This variety combines traits to enhance pest and disease resistance, elevate grain nutritional value, and improve resilience to climate change. In this review, we explore ways to leverage current technologies to combine and transform useful traits into wheat. We also address the requirements of breeders and legal considerations such as patents and regulatory issues.
Collapse
Affiliation(s)
- Francisco M Ayala
- Bioceres Crop Solutions, Rosario, Santa Fe, Argentina
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Itzell Eurídice Hernández-Sánchez
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Monika Chodasiewicz
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Radim Svačina
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| |
Collapse
|
12
|
Ezeduru V, Shao ARQ, Venegas FA, McKay G, Rich J, Nguyen D, Thibodeaux CJ. Defining the functional properties of cyclopropane fatty acid synthase from Pseudomonas aeruginosa PAO1. J Biol Chem 2024; 300:107618. [PMID: 39095026 PMCID: PMC11387697 DOI: 10.1016/j.jbc.2024.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria. We report the first characterization of the CFAS enzyme from Pseudomonas aeruginosa (PA), an opportunistic human pathogen with complex membrane biology that is frequently associated with antimicrobial resistance and high tolerance to various external stressors. We demonstrate that CFAs are produced by a single enzyme in PA and that cfas gene expression is upregulated during the transition to stationary phase and in response to oxidative stress. Analysis of PA lipid extracts reveal a massive increase in CFA production as PA cells enter stationary phase and help define the optimal membrane composition for in vitro assays. The purified PA-CFAS enzyme forms a stable homodimer and preferentially modifies phosphatidylglycerol lipid substrates and membranes with a higher content of unsaturated acyl chains. Bioinformatic analysis across bacterial phyla shows highly divergent amino acid sequences within the lipid-binding domain of CFAS enzymes, perhaps suggesting distinct membrane-binding properties among different orthologs. This work lays an important foundation for further characterization of CFAS in P. aeruginosa and for examining the functional differences between CFAS enzymes from different bacteria.
Collapse
Affiliation(s)
- Vivian Ezeduru
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Annie R Q Shao
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Felipe A Venegas
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jacquelyn Rich
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Martín-Merchán A, Lavatelli A, Engler C, González-Miguel V, Moro B, Rosano G, Bologna N. Arabidopsis AGO1 N-terminal extension acts as an essential hub for PRMT5 interaction and post-translational modifications. Nucleic Acids Res 2024; 52:8466-8482. [PMID: 38769059 PMCID: PMC11317149 DOI: 10.1093/nar/gkae387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Plant ARGONAUTE (AGO) proteins play pivotal roles regulating gene expression through small RNA (sRNA) -guided mechanisms. Among the 10 AGO proteins in Arabidopsis thaliana, AGO1 stands out as the main effector of post-transcriptional gene silencing. Intriguingly, a specific region of AGO1, its N-terminal extension (NTE), has garnered attention in recent studies due to its involvement in diverse regulatory functions, including subcellular localization, sRNA loading and interactions with regulatory factors. In the field of post-translational modifications (PTMs), little is known about arginine methylation in Arabidopsis AGOs. In this study, we show that NTE of AGO1 (NTEAGO1) undergoes symmetric arginine dimethylation at specific residues. Moreover, NTEAGO1 interacts with the methyltransferase PRMT5, which catalyzes its methylation. Notably, we observed that the lack of symmetric dimethylarginine has no discernible impact on AGO1's subcellular localization or miRNA loading capabilities. However, the absence of PRMT5 significantly alters the loading of a subgroup of sRNAs into AGO1 and reshapes the NTEAGO1 interactome. Importantly, our research shows that symmetric arginine dimethylation of NTEs is a common process among Arabidopsis AGOs, with AGO1, AGO2, AGO3 and AGO5 undergoing this PTM. Overall, this work deepens our understanding of PTMs in the intricate landscape of RNA-associated gene regulation.
Collapse
Affiliation(s)
- Andrea Martín-Merchán
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Antonela Lavatelli
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Camila Engler
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Víctor M González-Miguel
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Belén Moro
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Germán L Rosano
- Institute of Molecular and Cellular Biology of Rosario, Rosario, Argentina
| | - Nicolas G Bologna
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
14
|
Santo Domingo M, Orduña L, Navarro D, Mayobre C, Santiago A, Valverde L, Alexiou KG, Matus JT, Pujol M, Garcia-Mas J. The ethylene-responsive transcription factor ERF024 is a novel regulator of climacteric fruit ripening in melon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1844-1858. [PMID: 38900073 DOI: 10.1111/tpj.16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Fruit ripening is an essential developmental stage in Angiosperms triggered by hormonal signals such as ethylene, a major player in climacteric ripening. Melon is a unique crop showing both climacteric and non-climacteric cultivars, offering an ideal model for dissecting the genetic mechanisms underpinning this process. The major quantitative trait locus ETHQV8.1 was previously identified as a key regulator of melon fruit ripening. Here, we narrowed down ETHQV8.1 to a precise genomic region containing a single gene, the transcription factor CmERF024. Functional validation using CRISPR/Cas9 knock-out plants unequivocally identified CmERF024 as the causal gene governing ETHQV8.1. The erf024 mutants exhibited suppression of ethylene production, leading to a significant delay and attenuation of fruit ripening. Integrative multi-omic analyses encompassing RNA-seq, DAP-seq, and DNase-seq revealed the association of CmERF024 with chromatin accessibility and gene expression dynamics throughout fruit ripening. Our data suggest CmERF024 as a novel regulator of climacteric fruit ripening in melon.
Collapse
Affiliation(s)
- Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - David Navarro
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Laura Valverde
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Konstantinos G Alexiou
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
15
|
Han F, Zhang X, Chen Y, Zhao H, Wu J, Yu Y, Wang Y. A Simple Allelic Exchange Method for Efficient Seamless Knockout of Up to 34-kbp-Long Gene Cassettes in Pseudomonas. Appl Biochem Biotechnol 2024; 196:5616-5630. [PMID: 38103122 DOI: 10.1007/s12010-023-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Gene knockout is a widely used technique for engineering bacterial genomes, investigating the roles of genes in metabolism, and conferring biological characteristics. Herein, we developed a rapid, efficient, and simple method for the knockout of long gene cassettes in Pseudomonas spp., based on a traditional allelic exchange strategy. The upstream and downstream sequences of the target gene cluster to be deleted were amplified using primers with 5'-end sequences identical to the multiple cloning sites of a suicide plasmid (mutant allele insert vector). The sequences were then fused with the linearized suicide plasmid in one step via seamless cloning. The resulting allelic exchange vector (recombinant plasmid) was introduced from the donor strain (Escherichia coli SM 10) into recipient cells (Pseudomonas putida, P. composti, and P. khazarica) via conjugation. Single-crossover merodiploids (integrates the vector into host chromosome by homologous recombination) were screened based on antibiotic resistance conferred by the plasmid, and double-crossover haploids (deleting the target gene clusters and inserted alien plasmid backbone) were selected using sucrose-mediated counterselection. Unlike other approaches, the method described herein introduces no selective marker genes into the genomes of the knockout mutants. Using our method, we successfully deleted polysaccharide-encoding gene clusters in P. putida, P. composti, and P. khazarica and generated four mutants with single-gene cassette deletions up to 18 kbp and one mutant with double-gene cassette deletion of approximately 34 kbp. Collectively, our results indicate that this method is ideal for the deletion of long genetic sequences, yielding seamless mutants of various Pseudomonas spp.
Collapse
Affiliation(s)
- Feng Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xiaoya Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yunfei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haixia Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jieer Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
16
|
Ossa-Hernández N, Marins LF, Almeida DV. Combination of error-prone PCR (epPCR) and Circular Polymerase Extension Cloning (CPEC) for improving the coverage of random mutagenesis libraries. Sci Rep 2024; 14:15874. [PMID: 38982265 PMCID: PMC11233677 DOI: 10.1038/s41598-024-66584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Random mutagenesis, such as error-prone PCR (epPCR), is a technique capable of generating a wide variety of a single gene. However, epPCR can produce a large number of mutated gene variants, posing a challenge in ligating these mutated PCR products into plasmid vectors. Typically, the primers for mutagenic PCRs incorporate artificial restriction enzyme sites compatible with chosen plasmids. Products are cleaved and ligated to linearized plasmids, then recircularized by DNA ligase. However, this cut-and-paste method known as ligation-dependent process cloning (LDCP), has limited efficiency, as the loss of potential mutants is inevitable leading to a significant reduction in the library's breadth. An alternative to LDCP is the circular polymerase extension cloning (CPEC) method. This technique involves a reaction where a high-fidelity DNA polymerase extends the overlapping regions between the insert and vector, forming a circular molecule. In this study, our objective was to compare the traditional cut-and-paste enzymatic method with CPEC in producing a variant library from the gene encoding the red fluorescent protein (DsRed2) obtained by epPCR. Our findings suggest that CPEC can accelerate the cloning process in gene library generation, enabling the acquisition of a greater number of gene variants compared to methods reliant on restriction enzymes.
Collapse
Affiliation(s)
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - Daniela Volcan Almeida
- Instituto de Biologia, Universidade Federal de Pelotas - UFPEL, Campus Universitário Capão do Leão s/n, Pelotas, RS, 96160-000, Brazil.
| |
Collapse
|
17
|
Aliakbari M, Karkhane AA. In vivo cloning of PCR product via site-specific recombination in Escherichia coli. Appl Microbiol Biotechnol 2024; 108:400. [PMID: 38951186 PMCID: PMC11217044 DOI: 10.1007/s00253-024-13239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Over the past years, several methods have been developed for gene cloning. Choosing a cloning strategy depends on various factors, among which simplicity and affordability have always been considered. The aim of this study, on the one hand, is to simplify gene cloning by skipping in vitro assembly reactions and, on the other hand, to reduce costs by eliminating relatively expensive materials. We investigated a cloning system using Escherichia coli harboring two plasmids, pLP-AmpR and pScissors-CmR. The pLP-AmpR contains a landing pad (LP) consisting of two genes (λ int and λ gam) that allow the replacement of the transformed linear DNA using site-specific recombination. After the replacement process, the inducible expressing SpCas9 and specific sgRNA from the pScissors-CmR (CRISPR/Cas9) vector leads to the removal of non-recombinant pLP-AmpR plasmids. The function of LP was explored by directly transforming PCR products. The pScissors-CmR plasmid was evaluated for curing three vectors, including the origins of pBR322, p15A, and pSC101. Replacing LP with a PCR product and fast-eradicating pSC101 origin-containing vectors was successful. Recombinant colonies were confirmed following gene replacement and plasmid curing processes. The results made us optimistic that this strategy may potentially be a simple and inexpensive cloning method. KEY POINTS: •The in vivo cloning was performed by replacing the target gene with the landing pad. •Fast eradication of non-recombinant plasmids was possible by adapting key vectors. •This strategy is not dependent on in vitro assembly reactions and expensive materials.
Collapse
Affiliation(s)
- Moein Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
18
|
Eschrig S, Schäffer M, Shu LJ, Illig T, Eibel S, Fernandez A, Ranf S. LORE receptor homomerization is required for 3-hydroxydecanoic acid-induced immune signaling and determines the natural variation of immunosensitivity within the Arabidopsis genus. THE NEW PHYTOLOGIST 2024; 242:2163-2179. [PMID: 38532564 DOI: 10.1111/nph.19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
The S-domain-type receptor-like kinase (SD-RLK) LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) from Arabidopsis thaliana is a pattern recognition receptor that senses medium-chain 3-hydroxy fatty acids, such as 3-hydroxydecanoic acid (3-OH-C10:0), to activate pattern-triggered immunity. Here, we show that LORE homomerization is required to activate 3-OH-C10:0-induced immune signaling. Fluorescence lifetime imaging in Nicotiana benthamiana demonstrates that AtLORE homomerizes via the extracellular and transmembrane domains. Co-expression of AtLORE truncations lacking the intracellular domain exerts a dominant negative effect on AtLORE signaling in both N. benthamiana and A. thaliana, highlighting that homomerization is essential for signaling. Screening for 3-OH-C10:0-induced reactive oxygen species production revealed natural variation within the Arabidopsis genus. Arabidopsis lyrata and Arabidopsis halleri do not respond to 3-OH-C10:0, although both possess a putative LORE ortholog. Both LORE orthologs have defective extracellular domains that bind 3-OH-C10:0 to a similar level as AtLORE, but lack the ability to homomerize. Thus, ligand binding is independent of LORE homomerization. Analysis of AtLORE and AlyrLORE chimera suggests that the loss of AlyrLORE homomerization is caused by several amino acid polymorphisms across the extracellular domain. Our findings shed light on the activation mechanism of LORE and the loss of 3-OH-C10:0 perception within the Arabidopsis genus.
Collapse
Affiliation(s)
- Sabine Eschrig
- TUM School of Life Sciences, Chair of Phytopathology, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
| | - Milena Schäffer
- TUM School of Life Sciences, Chair of Phytopathology, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
| | - Lin-Jie Shu
- TUM School of Life Sciences, Chair of Phytopathology, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Tina Illig
- TUM School of Life Sciences, Chair of Phytopathology, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
| | - Sonja Eibel
- TUM School of Life Sciences, Chair of Phytopathology, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
| | - Atiara Fernandez
- TUM School of Life Sciences, Chair of Phytopathology, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
| | - Stefanie Ranf
- TUM School of Life Sciences, Chair of Phytopathology, Technical University of Munich, Freising-Weihenstephan, 85354, Germany
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| |
Collapse
|
19
|
Jin Y, Miyama T, Brown A, Hayase T, Song X, Singh AK, Huang L, Flores II, McDaniel LK, Glover I, Halsey TM, Prasad R, Chapa V, Ahmed S, Zhang J, Rai K, Peterson CB, Lizee G, Karmouch J, Hayase E, Molldrem JJ, Chang CC, Tsai WB, Jenq RR. Tsyn-Seq: a T-cell Synapse-Based Antigen Identification Platform. Cancer Immunol Res 2024; 12:530-543. [PMID: 38363296 PMCID: PMC11065584 DOI: 10.1158/2326-6066.cir-23-0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/02/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Tools for genome-wide rapid identification of peptide-major histocompatibility complex targets of T-cell receptors (TCR) are not yet universally available. We present a new antigen screening method, the T-synapse (Tsyn) reporter system, which includes antigen-presenting cells (APC) with a Fas-inducible NF-κB reporter and T cells with a nuclear factor of activated T cells (NFAT) reporter. To functionally screen for target antigens from a cDNA library, productively interacting T cell-APC aggregates were detected by dual-reporter activity and enriched by flow sorting followed by antigen identification quantified by deep sequencing (Tsyn-seq). When applied to a previously characterized TCR specific for the E7 antigen derived from human papillomavirus type 16 (HPV16), Tsyn-seq successfully enriched the correct cognate antigen from a cDNA library derived from an HPV16-positive cervical cancer cell line. Tsyn-seq provides a method for rapidly identifying antigens recognized by TCRs of interest from a tumor cDNA library. See related Spotlight by Makani and Joglekar, p. 515.
Collapse
Affiliation(s)
- Yimei Jin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Takahiko Miyama
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Alexandria Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Anand K. Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Licai Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ivonne I. Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Lauren K. McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Israel Glover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Taylor M. Halsey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Valerie Chapa
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Saira Ahmed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jennifer Karmouch
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jeffrey J. Molldrem
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Wen-Bin Tsai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
20
|
Van Duyne GD, Landy A. Bacteriophage lambda site-specific recombination. Mol Microbiol 2024; 121:895-911. [PMID: 38372210 PMCID: PMC11096046 DOI: 10.1111/mmi.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
21
|
Schmidt K, Cox RJ. Investigation of chain-length selection by the tenellin iterative highly-reducing polyketide synthase. RSC Adv 2024; 14:8963-8970. [PMID: 38495992 PMCID: PMC10941261 DOI: 10.1039/d3ra08463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
The programming of widely distributed iterative fungal hr-PKS is mysterious, yet it is central for generating polyketide natural product diversity by controlling the chain length, β-processing level and methylation patterns of fungal polyketides. For the iterative hr-PKS TENS, responsible for producing the pentaketide-tyrosine hybrid pretenellin A 1, the chain length programming is known to be determined by the KR domain. Structure prediction of the KR domain enabled the identification of a relevant substrate binding helix, which was the focus of swap experiments with corresponding sequences from the related hr-PKS DMBS and MILS that produce similar hexa- and heptaketides (2, 3). The investigations of chimeric TENS variants expressed in vivo in the host Aspergillus oryzae NSAR1 revealed the substrate binding helix as a promising target for further investigations, evidenced by observed increase of the chain length during swap experiments. Building on these findings, rational engineering of TENS was applied based on structural analysis and sequence alignment. A minimal set of four simultaneous amino acid mutations achieved the re-programming of TENS by producing hexaketides in minor amounts. To refine our understanding and minimize the number of mutations impacting polyketide chain length, we conducted an alanine scan, pinpointing crucial amino acid positions. Our findings give indications on the intrinsic programming of hr-PKS domains by minimal changes in the amino acid sequence as one influence factor for programming.
Collapse
Affiliation(s)
- Katharina Schmidt
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Russell J Cox
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
22
|
He J, Blazeski A, Nilanthi U, Menéndez J, Pirani SC, Levic DS, Bagnat M, Singh MK, Raya JG, García-Cardeña G, Torres-Vázquez J. Plxnd1-mediated mechanosensing of blood flow controls the caliber of the Dorsal Aorta via the transcription factor Klf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.576555. [PMID: 38328196 PMCID: PMC10849625 DOI: 10.1101/2024.01.24.576555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The cardiovascular system generates and responds to mechanical forces. The heartbeat pumps blood through a network of vascular tubes, which adjust their caliber in response to the hemodynamic environment. However, how endothelial cells in the developing vascular system integrate inputs from circulatory forces into signaling pathways to define vessel caliber is poorly understood. Using vertebrate embryos and in vitro-assembled microvascular networks of human endothelial cells as models, flow and genetic manipulations, and custom software, we reveal that Plexin-D1, an endothelial Semaphorin receptor critical for angiogenic guidance, employs its mechanosensing activity to serve as a crucial positive regulator of the Dorsal Aorta's (DA) caliber. We also uncover that the flow-responsive transcription factor KLF2 acts as a paramount mechanosensitive effector of Plexin-D1 that enlarges endothelial cells to widen the vessel. These findings illuminate the molecular and cellular mechanisms orchestrating the interplay between cardiovascular development and hemodynamic forces.
Collapse
Affiliation(s)
- Jia He
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Uthayanan Nilanthi
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
| | - Javier Menéndez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Samuel C. Pirani
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Manvendra K. Singh
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609
| | - José G Raya
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Simoni EB, Oliveira CC. The Split-Luciferase Complementation Assay to Detect and Quantify Protein-Protein Interactions in Planta. Methods Mol Biol 2024; 2724:247-255. [PMID: 37987911 DOI: 10.1007/978-1-0716-3485-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Protein-protein interactions play a critical role in plant viral infection and defense responses against pathogens. This protocol provides a detailed and reliable methodology for investigating protein-protein interactions using a luciferase-based complementation assay that includes easy luminescence-based normalization within a single plate. The protocol includes step-by-step procedures, reagent lists, and considerations for data interpretation, ensuring robust and reproducible results. By following this protocol, researchers can advance on understanding of the crucial role of protein-protein interactions in plant viral infection and defense responses to other pathogen attacks.
Collapse
Affiliation(s)
- Eduardo Bassi Simoni
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Célio Cabral Oliveira
- Brazilian Center for Research in Energy and Materials, Brazilian Biorenewables National Laboratory, Campinas, SP, Brazil.
| |
Collapse
|
24
|
Zhang Y, Qin K, Fernie AR. Plant Tissue Culture and Metabolite Profiling for High-Value Natural Product Synthesis. Methods Mol Biol 2024; 2827:405-416. [PMID: 38985285 DOI: 10.1007/978-1-0716-3954-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The engineering of plant cell cultures to produce high-value natural products is suggested to be a safe, low-cost, and environmentally friendly route to produce a wide range of chemicals. Given that the expression of heterologous biosynthetic pathways in plant tissue culture is limited by a lack of detailed protocols, the biosynthesis of high-value metabolites in plant cell culture is constrained compared with that in microbes. However, both Arabidopsis thaliana and Nicotiana benthamiana can be efficiently transformed with multigene constructs to produce high-value natural products in stable plant cell cultures. This chapter provides a detailed protocol as to how to engineer the plant cell culture as bio-factories for metabolite biosynthesis.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Kezhen Qin
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
25
|
Kirchenwitz M, Halfen J, von Peinen K, Prettin S, Kollasser J, Zur Lage S, Blankenfeldt W, Brakebusch C, Rottner K, Steffen A, Stradal TEB. RhoB promotes Salmonella survival by regulating autophagy. Eur J Cell Biol 2023; 102:151358. [PMID: 37703749 DOI: 10.1016/j.ejcb.2023.151358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Salmonella enterica serovar Typhimurium manipulates cellular Rho GTPases for host cell invasion by effector protein translocation via the Type III Secretion System (T3SS). The two Guanine nucleotide exchange (GEF) mimicking factors SopE and -E2 and the inositol phosphate phosphatase (PiPase) SopB activate the Rho GTPases Rac1, Cdc42 and RhoA, thereby mediating bacterial invasion. S. Typhimurium lacking these three effector proteins are largely invasion-defective. Type III secretion is crucial for both early and later phases of the intracellular life of S. Typhimurium. Here we investigated whether and how the small GTPase RhoB, known to localize on endomembrane vesicles and at the invasion site of S. Typhimurium, contributes to bacterial invasion and to subsequent steps relevant for S. Typhimurium lifestyle. We show that RhoB is significantly upregulated within hours of Salmonella infection. This effect depends on the presence of the bacterial effector SopB, but does not require its phosphatase activity. Our data reveal that SopB and RhoB bind to each other, and that RhoB localizes on early phagosomes of intracellular S. Typhimurium. Whereas both SopB and RhoB promote intracellular survival of Salmonella, RhoB is specifically required for Salmonella-induced upregulation of autophagy. Finally, in the absence of RhoB, vacuolar escape and cytosolic hyper-replication of S. Typhimurium is diminished. Our findings thus uncover a role for RhoB in Salmonella-induced autophagy, which supports intracellular survival of the bacterium and is promoted through a positive feedback loop by the Salmonella effector SopB.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jessica Halfen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kristin von Peinen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Silvia Prettin
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Susanne Zur Lage
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
26
|
Zeng D, Jing C, Tang L, He P, Zhang J. Pyramiding stacking of multigenes (PSM): a simple, flexible and efficient multigene stacking system based on Gibson assembly and gateway cloning. Front Bioeng Biotechnol 2023; 11:1263715. [PMID: 38026899 PMCID: PMC10668122 DOI: 10.3389/fbioe.2023.1263715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Genetic engineering of complex metabolic pathways and multiple traits often requires the introduction of multiple genes. The construction of plasmids carrying multiple DNA fragments plays a vital role in these processes. In this study, the Gibson assembly and Gateway cloning combined Pyramiding Stacking of Multigenes (PSM) system was developed to assemble multiple transgenes into a single T-DNA. Combining the advantages of Gibson assembly and Gateway cloning, the PSM system uses an inverted pyramid stacking route and allows fast, flexible and efficient stacking of multiple genes into a binary vector. The PSM system contains two modular designed entry vectors (each containing two different attL sites and two selectable markers) and one Gateway-compatible destination vector (containing four attR sites and two negative selection markers). The target genes are primarily assembled into the entry vectors via two parallel rounds of Gibson assembly reactions. Then, the cargos in the entry constructs are integrated into the destination vector via a single tube Gateway LR reaction. To demonstrate PSM's capabilities, four and nine gene expression cassettes were respectively assembled into the destination vector to generate two binary expression vectors. The transgenic analysis of these constructs in Arabidopsis demonstrated the reliability of the constructs generated by PSM. Due to its flexibility, simplicity and versatility, PSM has great potential for genetic engineering, synthetic biology and the improvement of multiple traits.
Collapse
Affiliation(s)
- Dongdong Zeng
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Cuiyuan Jing
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Tang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Peng He
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
27
|
Kind L, Driver M, Raasakka A, Onck PR, Njølstad PR, Arnesen T, Kursula P. Structural properties of the HNF-1A transactivation domain. Front Mol Biosci 2023; 10:1249939. [PMID: 37908230 PMCID: PMC10613711 DOI: 10.3389/fmolb.2023.1249939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Hepatocyte nuclear factor 1α (HNF-1A) is a transcription factor with important gene regulatory roles in pancreatic β-cells. HNF1A gene variants are associated with a monogenic form of diabetes (HNF1A-MODY) or an increased risk for type 2 diabetes. While several pancreatic target genes of HNF-1A have been described, a lack of knowledge regarding the structure-function relationships in HNF-1A prohibits a detailed understanding of HNF-1A-mediated gene transcription, which is important for precision medicine and improved patient care. Therefore, we aimed to characterize the understudied transactivation domain (TAD) of HNF-1A in vitro. We present a bioinformatic approach to dissect the TAD sequence, analyzing protein structure, sequence composition, sequence conservation, and the existence of protein interaction motifs. Moreover, we developed the first protocol for the recombinant expression and purification of the HNF-1A TAD. Small-angle X-ray scattering and synchrotron radiation circular dichroism suggested a disordered conformation for the TAD. Furthermore, we present functional data on HNF-1A undergoing liquid-liquid phase separation, which is in line with in silico predictions and may be of biological relevance for gene transcriptional processes in pancreatic β-cells.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mark Driver
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
28
|
Schulz C, Herzog N, Kubick S, Jung F, Küpper JH. Stable Chinese Hamster Ovary Suspension Cell Lines Harboring Recombinant Human Cytochrome P450 Oxidoreductase and Human Cytochrome P450 Monooxygenases as Platform for In Vitro Biotransformation Studies. Cells 2023; 12:2140. [PMID: 37681872 PMCID: PMC10486802 DOI: 10.3390/cells12172140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
In the liver, phase-1 biotransformation of drugs and other xenobiotics is largely facilitated by enzyme complexes consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs). Generated from human liver-derived cell lines, recombinant in vitro cell systems with overexpression of defined phase-1 enzymes are widely used for pharmacological and toxicological drug assessment and laboratory-scale production of drug-specific reference metabolites. Most, if not all, of these cell lines, however, display some background activity of several CYPs, making it difficult to attribute effects to defined CYPs. The aim of this study was to generate cell lines with stable overexpression of human phase-1 enzymes based on Chinese hamster ovary (CHO) suspension cells. Cells were sequentially modified with cDNAs for human CPR in combination with CYP1A2, CYP2B6, or CYP3A4, using lentiviral gene transfer. In parallel, CYP-overexpressing cell lines without recombinant CPR were generated. Successful recombinant expression was demonstrated by mRNA and protein analyses. Using prototypical CYP-substrates, generated cell lines proved to display specific enzyme activities of each overexpressed CYP while we did not find any endogenous activity of those CYPs in parental CHO cells. Interestingly, cell lines revealed some evidence that the dependence of CYP activity on CPR could vary between CYPs. This needs to be confirmed in further studies. Recombinant expression of CPR was also shown to enhance CYP3A4-independent metabolisation of testosterone to androstenedione in CHO cells. We propose the novel serum-free CHO suspension cell lines with enhanced CPR and/or defined CYP activity as a promising "humanised" in vitro model to study the specific effects of those human CYPs. This could be relevant for toxicology and/or pharmacology studies in the pharmaceutical industry or medicine.
Collapse
Affiliation(s)
- Christian Schulz
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany;
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany;
| | - Natalie Herzog
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany;
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| | - Jan-Heiner Küpper
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany;
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; (N.H.); (F.J.)
| |
Collapse
|
29
|
Kuruba B, Starks N, Josten MR, Naveh O, Wayman G, Mikhaylova M, Kostyukova AS. Effects of Tropomodulin 2 on Dendritic Spine Reorganization and Dynamics. Biomolecules 2023; 13:1237. [PMID: 37627302 PMCID: PMC10515316 DOI: 10.3390/biom13081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Dendritic spines are actin-rich protrusions that receive a signal from the axon at the synapse. Remodeling of cytoskeletal actin is tightly connected to dendritic spine morphology-mediated synaptic plasticity of the neuron. Remodeling of cytoskeletal actin is required for the formation, development, maturation, and reorganization of dendritic spines. Actin filaments are highly dynamic structures with slow-growing/pointed and fast-growing/barbed ends. Very few studies have been conducted on the role of pointed-end binding proteins in the regulation of dendritic spine morphology. In this study, we evaluated the role played by tropomodulin 2 (Tmod2)-a brain-specific isoform, on the dendritic spine re-organization. Tmod2 regulates actin nucleation and polymerization by binding to the pointed end via actin and tropomyosin (Tpm) binding sites. We studied the effects of Tmod2 overexpression in primary hippocampal neurons on spine morphology using confocal microscopy and image analysis. Tmod2 overexpression decreased the spine number and increased spine length. Destroying Tpm-binding ability increased the number of shaft synapses and thin spine motility. Eliminating the actin-binding abilities of Tmod2 increased the number of mushroom spines. Tpm-mediated pointed-end binding decreased F-actin depolymerization, which may positively affect spine stabilization; the nucleation ability of Tmod2 appeared to increase shaft synapses.
Collapse
Affiliation(s)
- Balaganesh Kuruba
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (B.K.); (N.S.); (O.N.)
| | - Nickolas Starks
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (B.K.); (N.S.); (O.N.)
| | - Mary Rose Josten
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA; (M.R.J.); (G.W.)
| | - Ori Naveh
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (B.K.); (N.S.); (O.N.)
| | - Gary Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA; (M.R.J.); (G.W.)
| | - Marina Mikhaylova
- Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (B.K.); (N.S.); (O.N.)
- Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| |
Collapse
|
30
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
31
|
Zare-Mehrjerdi O, Trader G, Kirik V. Overlap extension cloning of PCR products into a Gateway-compatible plasmid vector. Biotechniques 2023. [PMID: 37424091 PMCID: PMC10388215 DOI: 10.2144/btn-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
A PCR cloning method that combines a dual selection pGATE-1 plasmid vector and an improved overlap extension cloning was developed. This efficient and cost-effective method allows for the introduction of DNA fragments into the Gateway cloning pipeline. The cloning efficiency is facilitated by a dual selection that includes the ccdB gene and gentamicin resistance. For users of the Gateway cloning system, substantial cost saving comes from eliminating BP recombination and ligation reactions to introduce DNA fragments into pDONR or pENTR vectors. Beyond the Gateway technology, this recombination-based cloning system can be used to efficiently clone PCR amplicons by adding 24-base pair adaptor sequences that are utilized by bacterial homologous recombination mechanism.
Collapse
Affiliation(s)
- Omid Zare-Mehrjerdi
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | - Gracie Trader
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | - Viktor Kirik
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| |
Collapse
|
32
|
Pilat JM, Brown RE, Chen Z, Berle NJ, Othon AP, Washington MK, Anant SA, Kurokawa S, Ng VH, Thompson JJ, Jacobse J, Goettel JA, Lee E, Choksi YA, Lau KS, Short SP, Williams CS. SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions. J Clin Invest 2023; 133:e165988. [PMID: 37166989 PMCID: PMC10313376 DOI: 10.1172/jci165988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Program in Cancer Biology
- Medical Scientist Training Program, and
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
| | - Nathaniel J. Berle
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Suguru Kurokawa
- Department of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | | | | | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ethan Lee
- Program in Cancer Biology
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ken S. Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Surgery, VUMC, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher S. Williams
- Program in Cancer Biology
- Medical Scientist Training Program, and
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Xiong X, Lu Z, Ma L, Zhai C. Applications of Programmable Endonucleases in Sequence- and Ligation-Independent Seamless DNA Assembly. Biomolecules 2023; 13:1022. [PMID: 37509059 PMCID: PMC10377497 DOI: 10.3390/biom13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Programmable endonucleases, such as Cas (Clustered Regularly-Interspaced Short Repeats-associated proteins) and prokaryotic Argonaute (pAgo), depend on base pairing of the target DNA with the guide RNA or DNA to cleave DNA strands. Therefore, they are capable of recognizing and cleaving DNA sequences at virtually any arbitrary site. The present review focuses on the commonly used in vivo and in vitro recombination-based gene cloning methods and the application of programmable endonucleases in these sequence- and ligation-independent DNA assembly methods. The advantages and shortcomings of the programmable endonucleases utilized as tools for gene cloning are also discussed in this review.
Collapse
Affiliation(s)
- Xingchen Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiwen Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
34
|
Boss L, Kędzierska B. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Toxins (Basel) 2023; 15:380. [PMID: 37368681 DOI: 10.3390/toxins15060380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. They consist of stable toxins and unstable antitoxins that are classified into distinct groups based on their structure and biological activity. TA systems are mostly related to mobile genetic elements and can be easily acquired through horizontal gene transfer. The ubiquity of different homologous and non-homologous TA systems within a single bacterial genome raises questions about their potential cross-interactions. Unspecific cross-talk between toxins and antitoxins of non-cognate modules may unbalance the ratio of the interacting partners and cause an increase in the free toxin level, which can be deleterious to the cell. Moreover, TA systems can be involved in broadly understood molecular networks as transcriptional regulators of other genes' expression or modulators of cellular mRNA stability. In nature, multiple copies of highly similar or identical TA systems are rather infrequent and probably represent a transition stage during evolution to complete insulation or decay of one of them. Nevertheless, several types of cross-interactions have been described in the literature to date. This implies a question of the possibility and consequences of the TA system cross-interactions, especially in the context of the practical application of the TA-based biotechnological and medical strategies, in which such TAs will be used outside their natural context, will be artificially introduced and induced in the new hosts. Thus, in this review, we discuss the prospective challenges of system cross-talks in the safety and effectiveness of TA system usage.
Collapse
Affiliation(s)
- Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| |
Collapse
|
35
|
Avidan N, Levy M, Daube SS, Bar-Ziv RH. Toward Memory in a DNA Brush: Site-Specific Recombination Responsive to Polymer Density, Orientation, and Conformation. J Am Chem Soc 2023; 145:9729-9736. [PMID: 37071757 PMCID: PMC10161217 DOI: 10.1021/jacs.3c01375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Site-specific recombination is a cellular process for the integration, inversion, and excision of DNA segments that could be tailored for memory transactions in artificial cells. Here, we demonstrate the compartmentalization of cascaded gene expression reactions in a DNA brush, starting from the cell-free synthesis of a unidirectional recombinase that exchanges information between two DNA molecules, leading to gene expression turn-on/turn-off. We show that recombination yield in the DNA brush was responsive to gene composition, density, and orientation, with kinetics faster than in a homogeneous dilute bulk solution reaction. Recombination yield scaled with a power law greater than 1 with respect to the fraction of recombining DNA polymers in a dense brush. The exponent approached either 1 or 2, depending on the intermolecular distance in the brush and the position of the recombination site along the DNA contour length, suggesting that a restricted-reach effect between the recombination sites governs the recombination yield. We further demonstrate the ability to encode the DNA recombinase in the same DNA brush with its substrate constructs, enabling multiple spatially resolved orthogonal recombination transactions within a common reaction volume. Our results highlight the DNA brush as a favorable compartment to study DNA recombination, with unique properties for encoding autonomous memory transactions in DNA-based artificial cells.
Collapse
Affiliation(s)
- Noa Avidan
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Levy
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shirley S Daube
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roy H Bar-Ziv
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
36
|
Tipper E, Leitão N, Dangeville P, Lawson DM, Charpentier M. A novel mutant allele of AtCNGC15 reveals a dual function of nuclear calcium release in the root meristem. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2572-2584. [PMID: 36715622 PMCID: PMC10112680 DOI: 10.1093/jxb/erad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 06/06/2023]
Abstract
Calcium release to the nucleoplasm of root meristem cells was demonstrated to modulate root development. The calcium channel encoded by cyclic nucleotide-gated channel (CNGC) 15 localizes at the nuclear envelope in young Arabidopsis seedlings. In contrast, at later stages of root growth, overexpression analysis showed that AtCNGC15 can relocalize to the plasma membrane to mediate primary nitrate-induced gene expression. This raises the question as to whether nuclear localized AtCNGC15 is required for root apical meristem development in young Arabidopsis seedlings, and whether nitrate signalling occurs independently of nuclear localized AtCNGC15 at this developmental stage. In this study, we characterize a novel mutant allele of AtCNGC15 and demonstrate that the mutation of a highly conserved aspartic acid in the C-linker domain is sufficient to impair the gating of AtCNCG15. We demonstrate that AtCNGC15 mediates the nuclear calcium release that modulates root apical meristem development and nitrate-induced LBD39 expression. We also show that, in the presence of nitrate, the relocalization of AtCNGC15 at the plasma membrane occurs specifically in the columella cells. Our results further suggest that the induction of LBD37, LBD38, and LBD39 in the presence of nitrate is modulated by different inputs of cytoplasmic or nuclear calcium release.
Collapse
Affiliation(s)
- Emily Tipper
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | - Pierre Dangeville
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
37
|
Fang W, Liao C, Zhang Q. Optimized protocols for chromatin immunoprecipitation of exogenously expressed epitope-tagged proteins. STAR Protoc 2023; 4:102050. [PMID: 36853721 PMCID: PMC9876949 DOI: 10.1016/j.xpro.2023.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Chromatin immunoprecipitation (ChIP) assay is widely used for investigating the interaction between DNA and DNA-binding proteins such as transcription factors, co-factors, or chromatin-associated proteins. However, a successful ChIP assay largely depends on the quality of a ChIP-grade primary antibody. In cases where specific antibodies are unavailable or with low binding affinity, here, we describe a tailored protocol to achieve robust and reproducible chromatin binding by expressing an exogenous epitope-tagged protein in cells, followed by ChIP assays using a tag-specific antibody. For complete details on the use and execution of this protocol, please refer to Fang et al. (2021)1 and Kidder et al. (2011).2.
Collapse
Affiliation(s)
- Wentong Fang
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
39
|
Ntefidou M, Eklund DM, Le Bail A, Schulmeister S, Scherbel F, Brandl L, Dörfler W, Eichstädt C, Bannmüller A, Ljung K, Kost B. Physcomitrium patens PpRIC, an ancestral CRIB-domain ROP effector, inhibits auxin-induced differentiation of apical initial cells. Cell Rep 2023; 42:112130. [PMID: 36790931 DOI: 10.1016/j.celrep.2023.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/03/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
RHO guanosine triphosphatases are important eukaryotic regulators of cell differentiation and behavior. Plant ROP (RHO of plant) family members activate specific, incompletely characterized downstream signaling. The structurally simple land plant Physcomitrium patens is missing homologs of key animal and flowering plant RHO effectors but contains a single CRIB (CDC42/RAC interactive binding)-domain-containing RIC (ROP-interacting CRIB-containing) protein (PpRIC). Protonemal P. patens filaments elongate based on regular division and PpROP-dependent tip growth of apical initial cells, which upon stimulation by the hormone auxin differentiate caulonemal characteristics. PpRIC interacts with active PpROP1, co-localizes with this protein at the plasma membrane at the tip of apical initial cells, and accumulates in the nucleus. Remarkably, PpRIC is not required for tip growth but is targeted to the nucleus to block caulonema differentiation downstream of auxin-controlled gene expression. These observations establish functions of PpRIC in mediating crosstalk between ROP and auxin signaling, which contributes to the maintenance of apical initial cell identity.
Collapse
Affiliation(s)
- Maria Ntefidou
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Aude Le Bail
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sylwia Schulmeister
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Franziska Scherbel
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Lisa Brandl
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Wolfgang Dörfler
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Chantal Eichstädt
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anna Bannmüller
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Benedikt Kost
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
40
|
Arfelli VC, Chang YC, Bagnoli JW, Kerbs P, Ciamponi FE, Paz LMDS, Pankivskyi S, de Matha Salone J, Maucuer A, Massirer KB, Enard W, Kuster B, Greif PA, Archangelo LF. UHMK1 is a novel splicing regulatory kinase. J Biol Chem 2023; 299:103041. [PMID: 36803961 PMCID: PMC10033318 DOI: 10.1016/j.jbc.2023.103041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
The U2AF Homology Motif Kinase 1 (UHMK1) is the only kinase that contains the U2AF homology motif, a common protein interaction domain among splicing factors. Through this motif, UHMK1 interacts with the splicing factors SF1 and SF3B1, known to participate in the 3' splice site recognition during the early steps of spliceosome assembly. Although UHMK1 phosphorylates these splicing factors in vitro, the involvement of UHMK1 in RNA processing has not previously been demonstrated. Here, we identify novel putative substrates of this kinase and evaluate UHMK1 contribution to overall gene expression and splicing, by integrating global phosphoproteomics, RNA-seq, and bioinformatics approaches. Upon UHMK1 modulation, 163 unique phosphosites were differentially phosphorylated in 117 proteins, of which 106 are novel potential substrates of this kinase. Gene Ontology analysis showed enrichment of terms previously associated with UHMK1 function, such as mRNA splicing, cell cycle, cell division, and microtubule organization. The majority of the annotated RNA-related proteins are components of the spliceosome but are also involved in several steps of gene expression. Comprehensive analysis of splicing showed that UHMK1 affected over 270 alternative splicing events. Moreover, splicing reporter assay further supported UHMK1 function on splicing. Overall, RNA-seq data demonstrated that UHMK1 knockdown had a minor impact on transcript expression and pointed to UHMK1 function in epithelial-mesenchymal transition. Functional assays demonstrated that UHMK1 modulation affects proliferation, colony formation, and migration. Taken together, our data implicate UHMK1 as a splicing regulatory kinase, connecting protein regulation through phosphorylation and gene expression in key cellular processes.
Collapse
Affiliation(s)
- Vanessa C Arfelli
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Yun-Chien Chang
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Paul Kerbs
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felipe E Ciamponi
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Laissa M da S Paz
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Serhii Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Katlin B Massirer
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Philipp A Greif
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leticia Fröhlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
41
|
Chandran L, Backer W, Schleutker R, Kong D, Beati SAH, Luschnig S, Müller HAJ. Src42A is required for E-cadherin dynamics at cell junctions during Drosophila axis elongation. Development 2023; 150:286529. [PMID: 36628974 DOI: 10.1242/dev.201119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Src kinases are important regulators of cell adhesion. Here, we have explored the function of Src42A in junction remodelling during Drosophila gastrulation. Src42A is required for tyrosine phosphorylation at bicellular (bAJ) and tricellular (tAJ) junctions in germband cells, and localizes to hotspots of mechanical tension. The role of Src42A was investigated using maternal RNAi and CRISPR-Cas9-induced germline mosaics. We find that, during cell intercalations, Src42A is required for the contraction of junctions at anterior-posterior cell interfaces. The planar polarity of E-cadherin is compromised and E-cadherin accumulates at tricellular junctions after Src42A knockdown. Furthermore, we show that Src42A acts in concert with Abl kinase, which has also been implicated in cell intercalations. Our data suggest that Src42A is involved in two related processes: in addition to establishing tension generated by the planar polarity of MyoII, it may also act as a signalling factor at tAJs to control E-cadherin residence time.
Collapse
Affiliation(s)
- Lenin Chandran
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| | - Wilko Backer
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - Raphael Schleutker
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - Deqing Kong
- Developmental Genetics, Fachbereich Biologie, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Seyed A H Beati
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| | - Stefan Luschnig
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - H-Arno J Müller
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| |
Collapse
|
42
|
Vázquez-Domínguez I, Duijkers L, Fadaie Z, Alaerds ECW, Post MA, van Oosten EM, O’Gorman L, Kwint M, Koolen L, Hoogendoorn ADM, Kroes HY, Gilissen C, Cremers FPM, Collin RWJ, Roosing S, Garanto A. The Predicted Splicing Variant c.11+5G>A in RPE65 Leads to a Reduction in mRNA Expression in a Cell-Specific Manner. Cells 2022; 11:3640. [PMID: 36429068 PMCID: PMC9688607 DOI: 10.3390/cells11223640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Pathogenic variants in RPE65 lead to retinal diseases, causing a vision impairment. In this work, we investigated the pathomechanism behind the frequent RPE65 variant, c.11+5G>A. Previous in silico predictions classified this change as a splice variant. Our prediction using novel software's suggested a 124-nt exon elongation containing a premature stop codon. This elongation was validated using midigenes-based approaches. Similar results were observed in patient-derived induced pluripotent stem cells (iPSC) and photoreceptor precursor cells. However, the splicing defect in all cases was detected at low levels and thereby does not fully explain the recessive condition of the resulting disease. Long-read sequencing discarded other rearrangements or variants that could explain the diseases. Subsequently, a more relevant model was employed: iPSC-derived retinal pigment epithelium (RPE) cells. In patient-derived iPSC-RPE cells, the expression of RPE65 was strongly reduced even after inhibiting a nonsense-mediated decay, contradicting the predicted splicing defect. Additional experiments demonstrated a cell-specific gene expression reduction due to the presence of the c.11+5G>A variant. This decrease also leads to the lack of the RPE65 protein, and differences in size and pigmentation between the patient and control iPSC-RPE. Altogether, our data suggest that the c.11+5G>A variant causes a cell-specific defect in the expression of RPE65 rather than the anticipated splicing defect which was predicted in silico.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Eef C. W. Alaerds
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Merel A. Post
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Edwin M. van Oosten
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Luke O’Gorman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Michael Kwint
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Louet Koolen
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anita D. M. Hoogendoorn
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Hester Y. Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, Clinical Genetics, University Medical Center of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
43
|
Bindics J, Khan M, Uhse S, Kogelmann B, Baggely L, Reumann D, Ingole KD, Stirnberg A, Rybecky A, Darino M, Navarrete F, Doehlemann G, Djamei A. Many ways to TOPLESS - manipulation of plant auxin signalling by a cluster of fungal effectors. THE NEW PHYTOLOGIST 2022; 236:1455-1470. [PMID: 35944559 DOI: 10.1111/nph.18315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling. We show that Tips induce auxin signalling by interfering with central corepressors of the TPL family. CRISPR-Cas9 mutants and deletion strain analysis indicate that the auxin signalling inducing subcluster effectors plays a redundant role in virulence. Although none of the Tips seem to have a conserved interaction motif, four of them bind solely to the N-terminal TPL domain and, for Tip1 and Tip4, we demonstrate direct competition with auxin/indole-3-acetic acid transcriptional repressors for their binding to TPL class of corepressors. Our findings reveal that TPL proteins, key regulators of growth-defence antagonism, are a major target of the U. maydis effectome.
Collapse
Affiliation(s)
- Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
| | - Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Benjamin Kogelmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Laura Baggely
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Daniel Reumann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Kishor D Ingole
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
| | - Alexandra Stirnberg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Anna Rybecky
- CEPLAS, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Martin Darino
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Fernando Navarrete
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Gunther Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
44
|
Yakovian O, Sajman J, Alon M, Arafeh R, Samuels Y, Sherman E. NRas activity is regulated by dynamic interactions with nanoscale signaling clusters at the plasma membrane. iScience 2022; 25:105282. [PMID: 36304112 PMCID: PMC9593252 DOI: 10.1016/j.isci.2022.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/07/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
NRas is a key mediator of the mitogenic pathway in normal cells and in cancer cells. Its dynamics and nanoscale organization at the plasma membrane (PM) facilitate its signaling. Here, we used two-color photoactivated localization microscopy to resolve the organization of individual NRas and associated signaling proteins in live melanoma cells, with resolution down to ∼20 nm. Upon EGF activation, a fraction of NRas and BRAF (dis)assembled synchronously at the PM in co-clusters. NRas and BRAF clusters associated with GPI-enriched domains, serving as possible nucleation sites for these clusters. NRas and BRAF association in mutual clusters was reduced by the NRas farnesylation inhibitor lonafarnib, yet enhanced by the BRAF inhibitor vemurafenib. Surprisingly, dispersed NRas molecules associated with the periphery of self-clusters of either Grb2 or NF1. Thus, NRas-mediated signaling, which is critical in health and disease, is regulated by dynamic interactions with functional clusters of BRAF or other related proteins at the PM.
Collapse
Affiliation(s)
- Oren Yakovian
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Rand Arafeh
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel,Department of Molecular Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel,Corresponding author
| |
Collapse
|
45
|
Zhu L, Pietiäinen M, Kontturi J, Turkkelin A, Elomaa P, Teeri TH. Polyketide reductases in defense-related parasorboside biosynthesis in Gerbera hybrida share processing strategies with microbial polyketide synthase systems. THE NEW PHYTOLOGIST 2022; 236:296-308. [PMID: 35719102 PMCID: PMC9541798 DOI: 10.1111/nph.18328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 05/14/2023]
Abstract
Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside. Their synthesis is known to be initiated by GERBERA 2-PYRONE SYNTHASE 1 (G2PS1), but the polyketide reductases (PKRs) that determine their final structure have not yet been identified. We identified two PKR candidates in the pathway, GERBERA REDUCTASE 1 (GRED1) and GRED2. Gene expression and metabolite analysis of different gerbera tissues, cultivars, and transgenic gerbera plants, and in vitro enzyme assays, were performed for functional characterization of the enzymes. GRED1 and GRED2 catalyze the second reduction step in parasorboside biosynthesis. They reduce the proximal keto domain of the linear CoA bound intermediate before lactonization. We identified a crucial tailoring step in an important gerbera PKS pathway and show that plant polyketide biosynthesis shares processing strategies with fungi and bacteria. The two tailoring enzymes are recruited from the ancient sporopollenin biosynthetic pathway to a defense-related PKS pathway in gerbera. Our data provide an example of how plants recruit conserved genes to new functions in secondary metabolism that are important for environmental adaptation.
Collapse
Affiliation(s)
- Lingping Zhu
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Milla Pietiäinen
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Juha Kontturi
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Anna Turkkelin
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| |
Collapse
|
46
|
Saado I, Chia KS, Betz R, Alcântara A, Pettkó-Szandtner A, Navarrete F, D'Auria JC, Kolomiets MV, Melzer M, Feussner I, Djamei A. Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to Ustilago maydis. THE PLANT CELL 2022; 34:2785-2805. [PMID: 35512341 PMCID: PMC9252493 DOI: 10.1093/plcell/koac105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/17/2022] [Indexed: 05/07/2023]
Abstract
As the gall-inducing smut fungus Ustilago maydis colonizes maize (Zea mays) plants, it secretes a complex effector blend that suppresses host defense responses, including production of reactive oxygen species (ROS) and redirects host metabolism to facilitate colonization. We show that the U. maydis effector ROS burst interfering protein 1 (Rip1), which is involved in pathogen-associated molecular pattern (PAMP)-triggered suppression of host immunity, is functionally conserved in several other monocot-infecting smut fungi. We also have identified a conserved C-terminal motif essential for Rip1-mediated PAMP-triggered suppression of the ROS burst. The maize susceptibility factor lipoxygenase 3 (Zmlox3) bound by Rip1 was relocalized to the nucleus, leading to partial suppression of the ROS burst. Relocalization was independent of its enzymatic activity, revealing a distinct function for ZmLox3. Most importantly, whereas Zmlox3 maize mutant plants showed increased resistance to U. maydis wild-type strains, rip1 deletion strains infecting the Zmlox3 mutant overcame this effect. This could indicate that Rip1-triggered host resistance depends on ZmLox3 to be suppressed and that lox3 mutation-based resistance of maize to U. maydis requires functional Rip1. Together, our results reveal that Rip1 acts in several cellular compartments to suppress immunity and that targeting of ZmLox3 by Rip1 is responsible for the suppression of Rip1-dependent reduced susceptibility of maize to U. maydis.
Collapse
Affiliation(s)
- Indira Saado
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter 7(VBC),Vienna 1030, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland D-06466, Germany
| | - Khong-Sam Chia
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter 7(VBC),Vienna 1030, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland D-06466, Germany
| | - Ruben Betz
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter 7(VBC),Vienna 1030, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland D-06466, Germany
| | - André Alcântara
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter 7(VBC),Vienna 1030, Austria
| | | | - Fernando Navarrete
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter 7(VBC),Vienna 1030, Austria
| | - John C D'Auria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland D-06466, Germany
| | | | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland D-06466, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), Göttingen 37077, Germany
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter 7(VBC),Vienna 1030, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland D-06466, Germany
| |
Collapse
|
47
|
Sing TL, Conlon K, Lu SH, Madrazo N, Morse K, Barker JC, Hollerer I, Brar GA, Sudmant PH, Ünal E. Meiotic cDNA libraries reveal gene truncations and mitochondrial proteins important for competitive fitness in Saccharomyces cerevisiae. Genetics 2022; 221:iyac066. [PMID: 35471663 PMCID: PMC9157139 DOI: 10.1093/genetics/iyac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Gametogenesis is an evolutionarily conserved developmental program whereby a diploid progenitor cell undergoes meiosis and cellular remodeling to differentiate into haploid gametes, the precursors for sexual reproduction. Even in the simple eukaryotic organism Saccharomyces cerevisiae, the meiotic transcriptome is very rich and complex, thereby necessitating new tools for functional studies. Here, we report the construction of 5 stage-specific, inducible complementary DNA libraries from meiotic cells that represent over 84% of the genes found in the budding yeast genome. We employed computational strategies to detect endogenous meiotic transcript isoforms as well as library-specific gene truncations. Furthermore, we developed a robust screening pipeline to test the effect of each complementary DNA on competitive fitness. Our multiday proof-of-principle time course revealed 877 complementary DNAs that were detrimental for competitive fitness when overexpressed. The list included mitochondrial proteins that cause dose-dependent disruption of cellular respiration as well as library-specific gene truncations that expose a dominant negative effect on competitive growth. Together, these high-quality complementary DNA libraries provide an important tool for systematically identifying meiotic genes, transcript isoforms, and protein domains that are important for a specific biological function.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Katie Conlon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie H Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicole Madrazo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kaitlin Morse
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Juliet C Barker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ina Hollerer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Ferigolo LF, Vicente MH, Nogueira FT. Brick into the Gateway (BiG): A novel approach for faster cloning combining Golden Gate and Gateway methods. Plasmid 2022; 121:102630. [DOI: 10.1016/j.plasmid.2022.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
|
49
|
Navarrete F, Gallei M, Kornienko AE, Saado I, Khan M, Chia KS, Darino MA, Bindics J, Djamei A. TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. PLANT COMMUNICATIONS 2022; 3:100269. [PMID: 35529945 PMCID: PMC9073326 DOI: 10.1016/j.xplc.2021.100269] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/21/2021] [Accepted: 11/21/2021] [Indexed: 05/05/2023]
Abstract
In plants, the antagonism between growth and defense is hardwired by hormonal signaling. The perception of pathogen-associated molecular patterns (PAMPs) from invading microorganisms inhibits auxin signaling and plant growth. Conversely, pathogens manipulate auxin signaling to promote disease, but how this hormone inhibits immunity is not fully understood. Ustilago maydis is a maize pathogen that induces auxin signaling in its host. We characterized a U. maydis effector protein, Naked1 (Nkd1), that is translocated into the host nucleus. Through its native ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, Nkd1 binds to the transcriptional co-repressors TOPLESS/TOPLESS-related (TPL/TPRs) and prevents the recruitment of a transcriptional repressor involved in hormonal signaling, leading to the de-repression of auxin and jasmonate signaling and thereby promoting susceptibility to (hemi)biotrophic pathogens. A moderate upregulation of auxin signaling inhibits the PAMP-triggered reactive oxygen species (ROS) burst, an early defense response. Thus, our findings establish a clear mechanism for auxin-induced pathogen susceptibility. Engineered Nkd1 variants with increased expression or increased EAR-mediated TPL/TPR binding trigger typical salicylic-acid-mediated defense reactions, leading to pathogen resistance. This implies that moderate binding of Nkd1 to TPL is a result of a balancing evolutionary selection process to enable TPL manipulation while avoiding host recognition.
Collapse
Affiliation(s)
- Fernando Navarrete
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Michelle Gallei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Aleksandra E Kornienko
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Indira Saado
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Mamoona Khan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Khong-Sam Chia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Martin A Darino
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| |
Collapse
|
50
|
Qin G, Wu S, Zhang L, Li Y, Liu C, Yu J, Deng L, Xiao G, Zhang Z. An Efficient Modular Gateway Recombinase-Based Gene Stacking System for Generating Multi-Trait Transgenic Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040488. [PMID: 35214820 PMCID: PMC8879548 DOI: 10.3390/plants11040488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
Transgenic technology can transfer favorable traits regardless of reproductive isolation and is an important method in plant synthetic biology and genetic improvement. Complex metabolic pathway modification and pyramiding breeding strategies often require the introduction of multiple genes at once, but the current vector assembly systems for constructing multigene expression cassettes are not completely satisfactory. In this study, a new in vitro gene stacking system, GuanNan Stacking (GNS), was developed. Through the introduction of Type IIS restriction enzyme-mediated Golden Gate cloning, GNS allows the modular, standardized assembly of target gene expression cassettes. Because of the introduction of Gateway recombination, GNS facilitates the cloning of superlarge transgene expression cassettes, allows multiple expression cassettes to be efficiently assembled in a binary vector simultaneously, and is compatible with the Cre enzyme-mediated marker deletion mechanism. The linked dual positive-negative marker selection strategy ensures the efficient acquisition of target recombinant plasmids without prokaryotic selection markers in the T-DNA region. The host-independent negative selection marker combined with the TAC backbone ensures the cloning and transfer of large T-DNAs (>100 kb). Using the GNS system, we constructed a binary vector containing five foreign gene expression cassettes and obtained transgenic rice carrying the target traits, proving that the method developed in this research is a powerful tool for plant metabolic engineering and compound trait transgenic breeding.
Collapse
Affiliation(s)
- Guannan Qin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suting Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
| | - Liying Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
| | - Yanyao Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmei Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghui Yu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
| | - Lihua Deng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (G.Q.); (Y.L.); (C.L.); (J.Y.); (L.D.)
| | - Guoying Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Correspondence: (G.X.); (Z.Z.)
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (L.Z.)
- Correspondence: (G.X.); (Z.Z.)
| |
Collapse
|