1
|
Wang SY, Zhang YZ, Liu XH, Guo XC, Wang XF, Han FT, Zhang Y, Wang CL. Endomorphin-2 analogs with C-terminal esterification display potent antinociceptive effects in the formalin pain test in mice. Peptides 2024; 171:171116. [PMID: 37951356 DOI: 10.1016/j.peptides.2023.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Previously, we have investigated three C-terminal esterified endomorphin-2 (EM-2) analogs EM-2-Me, EM-2-Et and EM-2-Bu with methyl, ethyl and tert-butyl ester modifications, respectively. These analogs produced significant antinociception in acute pain at the spinal and supraspinal levels, with reduced tolerance and gastrointestinal side effects. The present study was undertaken to determine the analgesic effects and opioid mechanisms of these three analogs in the formalin pain test. Our results demonstrated that intracerebroventricular (i.c.v.) administration of 0.67-20 nmol EM-2 analogs EM-2-Me, EM-2-Et and EM-2-Bu produced dose-dependent antinociceptive effects in both phase Ⅰ and phase Ⅱ of formalin pain. EM-2-Me and EM-2-Bu displayed more potent antinociception than morphine. Especially, EM-2-Bu exhibited the highest antinociception in phase Ⅱ of formalin pain, with the ED50 value being 2.1 nmol. Naloxone (80 nmol, i.c.v.) completely antagonized the antinociceptive effects of EM-2-Me, EM-2-Et and EM-2-Bu (20 nmol, i.c.v.) in both phase I and phase Ⅱ of formalin pain, suggesting a central opioid mechanism. Nevertheless, the antinociception induced by EM-2-Me might be involved in the release of dynorphin A, which subsequently acted on κ- opioid receptor. EM-2-Bu produced the antinociception probably by the direct activation of both μ- and δ-opioid receptors. EM-2-Me, EM-2-Et and EM-2-Bu also produced significant analgesic effects after peripheral administration, and the central opioid receptors were involved. Furthermore, EM-2-Bu had no influence on the locomotor activity after i.c.v. injection. The present investigation demonstrated that C-terminal esterified modifications of EM-2 will be beneficial for developing novel therapeutics in formalin pain.
Collapse
Affiliation(s)
- Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Han Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xue-Ci Guo
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | | | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
2
|
Jao SW, Hsiao KH, Lin HC, Lee CC, Lin TC, Chen WS, Lin CC, Lee TY, Jiang JK, Wu CC, Hu OYP. Safety and Efficacy of Oral Nalbuphine on Postoperative Pain in Hemorrhoidectomy Patients: A Randomized, Double-blind, Placebo-controlled, Pivotal Trial. Clin J Pain 2023; 39:686-694. [PMID: 37732966 DOI: 10.1097/ajp.0000000000001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Severe postoperative pain requiring opioid treatment has been reported in 20% to 40% of hemorrhoidectomy patients. Compared with morphine, nalbuphine offers better hemodynamic stability, a lower risk of respiratory depression, and a lower potential for addiction. Nalbuphine was developed from the intravenous form into an oral form (PHN131) to alleviate moderate-to-severe pain. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled, multiple-dose, parallel-design trial was conducted to evaluate the safety and efficacy of PHN131 in patients undergoing hemorrhoidectomy. Eligible patients were randomly assigned to receive either PHN131 soft capsules containing nalbuphine hydrochloride 60 mg or placebo capsules. Intramuscular diclofenac was the rescue analgesic. Pain was measured by the area under the curve of mean Visual Analog Scale pain intensity scores. RESULTS Visual Analog Scale results in patients receiving PHN131 were significantly lower than placebo group scores through 48 hours postoperatively (149.2±75.52 vs. 179.6±65.97; P =0.0301). According to Brief Pain Inventory Short-Form scores, the impact of pain on quality of life was significantly smaller for the PHN131 group than for the placebo group. Time to the first use of diclofenac postoperatively was significantly longer in the PHN131 group than in the placebo group. The cumulative dosage of diclofenac in the PHN131 group was only around half of that in the placebo group ( P <0.0001). Drug-related adverse events were mild-to-moderate and resolved by the treatment end. No drug-related severe adverse events were observed. DISCUSSION Our findings demonstrate that PHN131 is effective and well-tolerated in the treatment of moderate-to-severe post hemorrhoidectomy pain and may provide another option for patients to control their pain.
Collapse
Affiliation(s)
- Shu-Wen Jao
- Division of Colon and Rectal Surgery, Tri-Service General Hospital
- National Defense Medical Center
| | - Koung-Hung Hsiao
- Department of Colorectal Surgery, Taipei Tzu Chi Hospital, Taipei Branch
| | | | - Chia-Cheng Lee
- Division of Colon and Rectal Surgery, Tri-Service General Hospital
| | - Tzu-Chen Lin
- Division of Colon and Rectal Surgery, Taipei Veterans General Hospital
| | - Wei-Shone Chen
- Division of Colon and Rectal Surgery, En Chu Kong Hospital
| | - Chun-Chi Lin
- Division of Colon and Rectal Surgery, Taipei Veterans General Hospital
| | - Tsai-Yu Lee
- Division of Colon and Rectal Surgery, Sijhih Cathay General Hospital, New Taipei City
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Taipei Veterans General Hospital
| | - Chang-Chieh Wu
- National Defense Medical Center
- Division of Colon and Rectal Surgery, Tri-Service General Hospital Keelung Branch, Keelung City, Taiwan
| | - Oliver Yoa-Pu Hu
- School of Pharmacy, National Defense Medical Center
- School of Pharmacy, Taipei Medical University, Taipei City
| |
Collapse
|
3
|
Zhang M, Xu B, Li N, Zhang R, Zhang Q, Shi X, Xu K, Xiao J, Chen D, Niu J, Shi Y, Fang Q. Development of Multifunctional and Orally Active Cyclic Peptide Agonists of Opioid/Neuropeptide FF Receptors that Produce Potent, Long-Lasting, and Peripherally Restricted Antinociception with Diminished Side Effects. J Med Chem 2021; 64:13394-13409. [PMID: 34465090 DOI: 10.1021/acs.jmedchem.1c00694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously reported that a multifunctional opioid/neuropeptide FF receptor agonist, DN-9, achieved peripherally restricted analgesia with reduced side effects. To develop stable and orally bioavailable analogues of DN-9, eight lactam-bridged cyclic analogues of DN-9 between positions 2 and 5 were designed, synthesized, and biologically evaluated. In vitro cAMP assays revealed that these analogues, except 7, were multifunctional ligands that activated opioid and neuropeptide FF receptors. Analogue 1 exhibited improved potency for κ-opioid and NPFF2 receptors. All analogues exhibited potent, long-lasting, and peripherally restricted antinociception in the tail-flick test without tolerance development after subcutaneous administration and produced oral analgesia. Oral administration of the optimized compound analogue 1 exhibited powerful, peripherally restricted antinociceptive effects in mouse models of acute, inflammatory, and neuropathic pain. Remarkably, orally administered analogue 1 had no significant side effects, such as tolerance, dependence, constipation, or respiratory depression, at effective analgesic doses.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Kangtai Xu
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu Province 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, PR China
| |
Collapse
|
4
|
Yuan BY, Liu WZ, Wang XF, Zhang YZ, Yang DJ, Wang CL. Endomorphin-1 analogs with oligoarginine-conjugation at C-terminus produce potent antinociception with reduced opioid tolerance in paw withdrawal test. Peptides 2018; 106:96-101. [PMID: 30016700 DOI: 10.1016/j.peptides.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/01/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022]
Abstract
For clinical use, it is essential to develop potent endomorphin (EM) analogs with reduced antinociceptive tolerance. In the present study, the antinociceptive activities and tolerance development of four potent EM-1 analogs with C-terminal oligoarginine-conjugation was evaluated and compared in the radiant heat paw withdrawal test. Following intracerebroventricular (i.c.v.) administration, all analogs 1-4 produced potent and prolonged antinociceptive effects. Notably, analogs 2 and 4 with the introduction of D-Ala in position 2 exhibited relatively higher analgesic potencies than those of analogs 1 and 3 with β-Pro substitution, consistent with their μ-opioid binding characteristic. In addition, at a dose of 50 μmol/kg, endomorphin-1 (EM-1) failed to produce any significant antinociceptive activity after peripheral administration, whereas analogs 1-4 induced potent antinociceptive effects with an increased duration of action. Herein, our results indicated the development of antinociceptive tolerance to EM-1 and morphine at the supraspinal level on day 7. By contrast, analogs 1-4 decreased the antinociceptive tolerance. Furthermore, subcutaneous (s.c.) administration of morphine at 50 μmol/kg also developed the antinociceptive tolerance, whereas the extent of tolerance developed to analogs 1-4 was largely reduced. Especially, analog 4 exhibited non-tolerance-forming antinociception after peripheral administration. The present investigation gave the evidence that C-terminal conjugation of EM-1 with oligoarginine vector will facilitate the development of novel opioid analgesics with reduced opioid tolerance.
Collapse
Affiliation(s)
- Bi-Yu Yuan
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Wei-Zhe Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of traditional Chinese Medicine, Nanchang, China
| | - Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Dai-Jun Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
Enzymatic clickable functionalization of peptides via computationally engineered peptide amidase. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Piekielna-Ciesielska J, Mollica A, Pieretti S, Fichna J, Szymaszkiewicz A, Zielińska M, Kordek R, Janecka A. Antinociceptive potency of a fluorinated cyclopeptide Dmt-c[D-Lys-Phe-p-CF 3-Phe-Asp]NH 2. J Enzyme Inhib Med Chem 2018. [PMID: 29513114 PMCID: PMC6010070 DOI: 10.1080/14756366.2018.1441839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Opioid peptides and opiate drugs such as morphine, mediate their analgesic effects, but also undesired side effects, mostly through activation of the mu opioid receptor. However, delta- and kappa-opioid receptors can also contribute to the analgesic effects of opioids. Recent findings showed that simultaneous activation of multiple opioid receptors may result in additional analgesia with fewer side effects. Here, we evaluated the pharmacological profile of our formerly developed mixed mu/kappa-opioid receptor ligands, Dmt-c[D-Lys-Phe-Phe-Asp]NH2 (C-36) and Dmt-c[D-Lys-Phe-p-CF3-Phe-Asp]NH2 (F-81). The ability of these peptides to cross the blood–brain barrier was tested in the parallel artificial membrane permeability (PAMPA) assay. On the basis of the hot-plate test in mice after central and peripheral administration, analog F-81 was selected for the anti-nociceptive and anti-inflammatory activity assessment after peripheral administration.
Collapse
Affiliation(s)
| | - Adriano Mollica
- b Department of Pharmacy , University "'G. d'Annunzio"' of Chieti-Pescara , Chieti , Italy
| | - Stefano Pieretti
- c Istituto Superiore di Sanità , National Center for Drug Research and Evaluation , Rome , Italy
| | - Jakub Fichna
- d Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Poland
| | - Agata Szymaszkiewicz
- d Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Poland
| | - Marta Zielińska
- d Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Poland
| | - Radzisław Kordek
- e Department of Pathology, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Anna Janecka
- a Department of Biomolecular Chemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
7
|
Wang CL, Yang DJ, Yuan BY, Wang Y. C-terminal hydrazide modification changes the spinal antinociceptive profiles of endomorphins in mice. Peptides 2018; 99:128-133. [PMID: 28888771 DOI: 10.1016/j.peptides.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023]
Abstract
Previously, we have demonstrated that endomorphins (EMs) analogs with C-terminal hydrazide modification retained the μ-opioid receptor affinity and selectivity, and exhibited potent antinociception after intracerebroventricular (i.c.v.) administration. In the present study, we extended our studies to evaluate the antinociceptive profiles of EMs and their analogs EM-1-NHNH2, EM-2-NHNH2 given spinally in the radiant heat paw withdrawal test. Following intrathecal (i.t.) administration, EM-1, EM-2, EM-1-NHNH2 and EM-2-NHNH2 dose-dependently increased the latency for paw withdrawal response. EM-1-NHNH2 displayed the highest antinociceptive effects, with the ED50 values being 1.63 nmol, more potent than the parent EM-1 (1.96 nmol), but with no significant difference. By contrast, the analgesic activities of EM-2 and its analog EM-2-NHNH2 were almost equivalent (P>0.05). Naloxone and β-funaltrexamine (β-FNA) almost completely attenuated the antinociceptive effects of EMs and their analogs EM-1-NHNH2, EM-2-NHNH2 (10 nmol, i.t.), indicating the involvement of μ-opioid receptors. Notably, the antinociception of EM-1 was not significantly antagonized by naloxonazine, a selective μ1-opioid receptor antagonist, but partially reversed the effects of EM-2, suggesting that EM-1 and EM-2 may produce antinociception through distinct μ1- and μ2-opioid receptor subtypes. Moreover, naloxonazine didn't significantly block the antinociceptive effects of EM-1-NHNH2 and EM-2-NHNH2, and nor-BNI, the κ-opioid receptor antagonist, attenuated the analgesic effects of EM-2, but not EM-1, EM-1-NHNH2 or EM-2-NHNH2. These results indicated that C-terminal amide to hydrazide conversion changed the antinociceptive opioid mechanisms of EM-2 but not EM-1 at the spinal level. Herein, the acute antinociceptive tolerance were further determined and compared. EM-1-NHNH2 and EM-2-NHNH2 shifted the dose-response curve rightward by only 2.8 and 1.5-fold as determined by tolerance ratio, whereas EM-1 and EM-2 by 3.4 and 4.6-fold, respectively, indicating substantially reduced antinociceptive tolerance. The present study demonstrated that C-terminal hydrazide modification changes the spinal antinociceptive profiles of EMs.
Collapse
Affiliation(s)
- Chang-Lin Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| | - Dai-Jun Yang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Bi-Yu Yuan
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yu Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| |
Collapse
|
8
|
Wang CL, Yang DJ, Yuan BY, Qiu TT. Antiallodynic Effects of Endomorphin-1 and Endomorphin-2 in the Spared Nerve Injury Model of Neuropathic Pain in Mice. Anesth Analg 2017; 125:2123-2133. [PMID: 28787346 DOI: 10.1213/ane.0000000000002318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The spared nerve injury (SNI) model is a new animal model that can mimic several characteristics of clinical neuropathic pain. Opioids are recommended as treatment of neuropathic pain. Therefore, the present study was conducted to investigate the antinociceptive effects of endomorphin-1 (EM-1) and endomorphin-2 (EM-2) given centrally and peripherally in the SNI model of neuropathic pain in mice. METHODS The SNI model was made in mice by sparing the sural nerve intact, when the other 2 of 3 terminal branches of the sciatic nerve (common peroneal and tibial nerves) were tightly ligated and cut. Von Frey monofilaments were used to measure the SNI-induced mechanical allodynia-like behavior. The antiallodynic effects of EM-1 and EM-2 were determined after central and peripheral administration in the SNI model of neuropathic pain. Also, the specific opioid receptor antagonists were used to determine the opioid mechanisms of EMs involved in neuropathic pain. Values were expressed as the mean ± standard deviation. RESULTS Our results showed that the SNI mice developed prolonged mechanical allodynia-like behavior in ipsilateral paw after surgery, with the withdrawal threshold value being 0.061 ± 0.02 g after 14 days. EM-1 and EM-2 produced significant antiallodynic effects in ipsilateral paw after intracerebroventricular (i.c.v.) administration, more effective than that of morphine. The peak withdrawal thresholds of 10 nmol EM-1 and EM-2 determined at 5 minutes after injection were 0.92 ± 0.36 and 0.87 ± 0.33 g, respectively, higher than that of morphine (0.46 ± 0.20 g). Moreover, both EMs (10 nmol, i.c.v.) exerted significant antiallodynic effects in the contralateral paw, whereas no significant antinociceptive activity was seen after i.c.v. administration of morphine with equimolar dose. It was noteworthy that EM-1 and EM-2 produced antinociception through distinct μ1- and μ2-opioid receptor subtypes, and the EM-2-induced antiallodynia contained an additional component that was mediated by the release of endogenous dynorphin A, acting on κ-opioid receptor. In addition, the antiallodynic activities of peripheral administration of EM-1, EM-2, and morphine were also investigated. Intraplantar, but not subcutaneous administration of EM-1 and EM-2 also exhibited potent antinociception, establishing the peripheral and local effects. Both μ1- and μ2-opioid receptor subtypes, but not the δ- or κ-opioid receptors were involved in the peripheral antiallodynia of EMs. CONCLUSIONS The present investigation demonstrated that both EM-1 and EM-2 given centrally and peripherally produced potent antiallodynic activities in SNI mice, and differential opioid mechanisms were involved.
Collapse
Affiliation(s)
- Chang-Lin Wang
- From the School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | | | | | | |
Collapse
|
9
|
Adamska-Bartłomiejczyk A, De Marco R, Gentilucci L, Kluczyk A, Janecka A. Design and characterization of opioid ligands based on cycle-in-macrocycle scaffold. Bioorg Med Chem 2017; 25:2399-2405. [DOI: 10.1016/j.bmc.2017.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
|
10
|
Endomorphin-2 analogs with C-terminal esterification produce potent systemic antinociception with reduced tolerance and gastrointestinal side effects. Neuropharmacology 2017; 116:98-109. [DOI: 10.1016/j.neuropharm.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 01/28/2023]
|
11
|
Deekonda S, Cole J, Sunna S, Rankin D, Largent-Milnes TM, Davis P, BassiriRad NM, Lai J, Vanderah TW, Porecca F, Hruby VJ. Enkephalin analogues with N-phenyl-N-(piperidin-2-ylmethyl)propionamide derivatives: Synthesis and biological evaluations. Bioorg Med Chem Lett 2016; 26:222-7. [PMID: 26611918 PMCID: PMC4873255 DOI: 10.1016/j.bmcl.2015.10.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
N-Phenyl-N-(piperidin-2-ylmethyl)propionamide based bivalent ligands are unexplored for the design of opioid based ligands. Two series of hybrid molecules bearing N-phenyl-N-(piperidin-2-ylmethyl)propionamide derived small molecules conjugated with an enkephalin analogues with and without a linker (β-alanine) were designed and synthesized. Both bivalent ligand series exhibited remarkable binding affinities from nanomolar to subnanomolar range at both μ and δ opioid receptors and displayed potent agonist activities as well. The replacement of Tyr with Dmt and introduction of a linker between the small molecule and enkephalin analogue resulted in highly potent ligands. Both series of ligands showed excellent binding affinities at both μ (0.6-0.9nM) and δ (0.2-1.2nM) opioid receptors respectively. Similarly, these bivalent ligands exhibited potent agonist activities in both MVD and GPI assays. Ligand 17 was evaluated for in vivo antinociceptive activity in non-injured rats following spinal administration. Ligand 17 was not significantly effective in alleviating acute pain. The most likely explanations for this low intrinsic efficacy in vivo despite high in vitro binding affinity, moderate in vitro activity are (i) low potency suggesting that higher doses are needed; (ii) differences in experimental design (i.e. non-neuronal, high receptor density for in vitro preparations versus CNS site of action in vitro); (iii) pharmacodynamics (i.e. engaging signalling pathways); (iv) pharmacokinetics (i.e. metabolic stability). In summary, our data suggest that further optimisation of this compound 17 is required to enhance intrinsic antinociceptive efficacy.
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Jacob Cole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Sydney Sunna
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | | | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Neemah M BassiriRad
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Frank Porecca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
12
|
Deekonda S, Wugalter L, Rankin D, Largent-Milnes TM, Davis P, Wang Y, Bassirirad NM, Lai J, Kulkarni V, Vanderah TW, Porreca F, Hruby VJ. Design and synthesis of novel bivalent ligands (MOR and DOR) by conjugation of enkephalin analogues with 4-anilidopiperidine derivatives. Bioorg Med Chem Lett 2015; 25:4683-8. [PMID: 26323872 PMCID: PMC4642889 DOI: 10.1016/j.bmcl.2015.07.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 11/16/2022]
Abstract
We describe the design and synthesis of novel bivalent ligands based on the conjugation of 4-anilidopiperidine derivatives with enkephalin analogues. The design of non-peptide analogues is explored with 5-amino substituted (tetrahydronaphthalen-2yl) methyl containing 4-anilidopiperidine derivatives, while non-peptide-peptide ligands are explored by conjugating the C-terminus of enkephalin analogues (H-Xxx-DAla-Gly-Phe-OH) to the amino group of 4-anilidopiperidine small molecule derivatives with and without a linker. These novel bivalent ligands are evaluated for biological activities at μ and δ opioid receptors. They exhibit very good affinities at μ and δ opioid receptors, and potent agonist activities in MVD and GPI assays. Among these the lead bivalent ligand 17 showed excellent binding affinities (0.1 nM and 0.5 nM) at μ and δ opioid receptors respectively, and was found to have very potent agonist activities in MVD (56 ± 5.9 nM) and GPI (4.6 ± 1.9 nM) assays. In vivo the lead bivalent ligand 17 exhibited a short duration of action (<15 min) comparable to 4-anilidopiperidine derivatives, and moderate analgesic activity. The ligand 17 has limited application against acute pain but may have utility in settings where a highly reversible analgesic is required.
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
| | - Lauren Wugalter
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Yue Wang
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Vinod Kulkarni
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA.
| |
Collapse
|
13
|
Wang CL, Qiu TT, Diao YX, Zhang Y, Gu N. Novel endomorphin-1 analogs with C-terminal oligoarginine-conjugation display systemic antinociceptive activity with less gastrointestinal side effects. Biochimie 2015; 116:24-33. [PMID: 26115815 DOI: 10.1016/j.biochi.2015.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
In recent study, in order to improve the bioavailability of endomorphin-1 (EM-1), we designed and synthesized a series of novel EM-1 analogs by replacement of L-Pro(2) by β-Pro, D-Ala or Sar, together with C-terminal oligoarginine-conjugation. Our results indicated that the introduction of D-Ala and β-Pro in position 2, along with oligoarginine-conjugation, didn't significantly decrease the μ-affinity and in vitro bioactivity, and the enhancement of arginine residues did not markedly influence the μ-affinity of these analogs. All analogs displayed a significant enhancement of stability, which may be due to increased resistance to proline-specific enzymatic degradation. Moreover, following intracerebroventricular (i.c.v.) administration, analogs 1, 2, 4 and 5 produced significant antinociception and increased duration of action, with the ED50 values being about 1.8- to 4.2-fold less potent than that of EM-1. In addition, our results indicated that no significant antinociceptive activity of EM-1 was seen following subcutaneous (s.c.) injection, whereas analogs 1, 2, 4 and 5 with equimolar dose induced significant and prolonged antinociception by an opioid and central mechanism. Herein, we further examined the gastrointestinal transit and colonic propulsive latencies of EM-1 and its four analogs administered centrally and peripherally. I.c.v. administration of EM-1 and analogs 1, 2, 4 and 5 significantly delayed gastrointestinal transit and colonic bead propulsion in mice, but the inhibitory effects induced by these analogs were largely attenuated. It is noteworthy that no significant gastrointestinal side effects induced by these four analogs were observed after s.c. administration. Our results demonstrated that combined modifications of EM-1 with unnatural amino acid substitutions and oligoarginine-conjugation gave an efficient strategy to improve the analgesic profile of EM-1 analogs but with less gastrointestinal side effects when administered peripherally.
Collapse
Affiliation(s)
- Chang-lin Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.
| | - Ting-ting Qiu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yu-xiang Diao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| |
Collapse
|
14
|
Abstract
There is some evidence for a partial opioid switching or an 'add on' approach to opioid dosing strategies. Preclinical and clinical findings suggest different activation profiles for the stimulation of the mu subtypes, raising the questions about what might occur with combinations of these substances. In the postoperative setting, it seems that the analgesic effect of the combination at equivalent doses is similar to that produced by the individual components, not adding particular advantages. However, adverse effects seem to be reduced with the combination of morphine/oxycodone, when given in doses equianalgesic to individual opioids. The reduction of opioid-induced postoperative adverse effects may have important clinical implications, given that adverse effects may prolong length of stay and hospitalization costs. Thus, in the acute postoperative setting, a reduction of adverse effects may be expected. In chronic pain, information is still in the infancy, but opioid combination therapy may have greater advantages in improving the opioid response. The possibility to clinically translate opioid combinations into practice, as demonstrated in some animal models, depends on a broad number of factors implicated in the pain process. More research is needed to better elucidate these issues in the near future.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Anesthesia and Intensive Care and Pain Relief and Palliative Care La Maddalena Cancer Center , Via san Lorenzo 312, 90145 Palermo , Italy +39 0916806521 ; +39 0916806110 ;
| |
Collapse
|
15
|
Liu X, Wang Y, Xing Y, Yu J, Ji H, Kai M, Wang Z, Wang D, Zhang Y, Zhao D, Wang R. Design, synthesis, and pharmacological characterization of novel endomorphin-1 analogues as extremely potent μ-opioid agonists. J Med Chem 2013; 56:3102-14. [PMID: 23477419 DOI: 10.1021/jm400195y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently we reported the synthesis and structure-activity study of endomorphin-1 (EM-1) analogues containing novel, unnatural α-methylene-β-aminopropanoic acids (Map). In the present study, we describe new EM-1 analogues containing Dmt(1), (R/S)-βPro(2), and (ph)Map(4)/(2-furyl)Map(4). All of the analogues showed a high affinity for the μ-opioid receptor (MOR) and increased stability in mouse brain homogenates. Of the new compounds, Dmt(1)-(R)-βPro(2)-Trp(3)-(2-furyl)Map(4) (analogue 12) displayed the highest affinity toward MOR, in the picomolar range (Ki(μ) = 3.72 pM). Forskolin-induced cAMP accumulation assays indicated that this analogue displayed an extremely high agonistic potency, in the subpicomolar range (EC50 = 0.0421 pM, Emax = 99.5%). This compound also displayed stronger in vivo antinociceptive activity after iv administration when compared to morphine in the tail-flick test, which indicates that this analogue was able to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|