1
|
Hu W, Cao M, Liao L, Liao Y, He Y, Ma M, Wang S, Guan Y. An Automated Digital Microfluidic System Based on Inkjet Printing. MICROMACHINES 2024; 15:1285. [PMID: 39597098 PMCID: PMC11596180 DOI: 10.3390/mi15111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Cellular interactions, such as intercellular communication and signal transduction, can be enhanced within three-dimensional cell spheroids, contributing significantly to cellular viability and proliferation. This is crucial for advancements in cancer research, drug testing, and personalized medicine. The dimensions of the cell spheroids play a pivotal role in their functionality, affecting cell proliferation and differentiation, intercellular interactions, gene expression, protein synthesis, drug penetration, and metabolism. Consequently, different spheroid sizes may be required for various drug sensitivity experiments. However, conventional 3D cell spheroid cultures suffer from challenges such as size inconsistency, poor uniformity, and low throughput. To address these issues, we have developed an automated, intelligent system based on inkjet printing. This system allows for precise control of droplet volume by adjusting algorithms, thereby enabling the formation of spheroids of varying sizes. For spheroids of a single size, the printing pattern can be modified to achieve a coefficient of variation within 10% through a bidirectional compensation method. Furthermore, the system is equipped with an automatic pipetting module, which facilitates the high-throughput preparation of cell spheroids. We have implemented a 3 × 3 spheroid array in a 24-well plate, printing a total of 216 spheroids in just 11 min. Last, we attempted to print mouse small intestinal organoids and cultured them for 7 days, followed by immunofluorescent staining experiments. The results indicate that our equipment is capable of supporting the culture of organoids, which is of great significance for high-throughput drug screening and personalized medicine.
Collapse
Affiliation(s)
- Wansheng Hu
- School of Microelectronics, Shanghai University, Shanghai 201800, China;
| | - Ming Cao
- Shanghai Aure Technology Limited Company, Shanghai 201800, China
| | - Lingni Liao
- Shanghai Aure Technology Limited Company, Shanghai 201800, China
| | - Yuanhong Liao
- Shanghai Aure Technology Limited Company, Shanghai 201800, China
| | - Yuhan He
- Shanghai Aure Technology Limited Company, Shanghai 201800, China
| | - Mengxiao Ma
- Shanghai Aure Technology Limited Company, Shanghai 201800, China
| | - Simao Wang
- Shanghai Aure Technology Limited Company, Shanghai 201800, China
| | - Yimin Guan
- School of Microelectronics, Shanghai University, Shanghai 201800, China;
- Shanghai Aure Technology Limited Company, Shanghai 201800, China
| |
Collapse
|
2
|
Arora S, Singh S, Mittal A, Desai N, Khatri DK, Gugulothu D, Lather V, Pandita D, Vora LK. Spheroids in cancer research: Recent advances and opportunities. J Drug Deliv Sci Technol 2024; 100:106033. [DOI: 10.1016/j.jddst.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
3
|
Pirayeshfard L, Luo S, Githaka JM, Saini A, Touret N, Goping IS, Julien O. Comparing the BAD Protein Interactomes in 2D and 3D Cell Culture Using Proximity Labeling. J Proteome Res 2024; 23:3433-3443. [PMID: 38959414 PMCID: PMC11302415 DOI: 10.1021/acs.jproteome.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Protein-protein interaction studies using proximity labeling techniques, such as biotin ligase-based BioID, have become integral in understanding cellular processes. Most studies utilize conventional 2D cell culture systems, potentially missing important differences in protein behavior found in 3D tissues. In this study, we investigated the protein-protein interactions of a protein, Bcl-2 Agonist of cell death (BAD), and compared conventional 2D culture conditions to a 3D system, wherein cells were embedded within a 3D extracellular matrix (ECM) mimic. Using BAD fused to the engineered biotin ligase miniTurbo (BirA*), we identified both overlapping and distinct BAD interactomes under 2D and 3D conditions. The known BAD binding proteins 14-3-3 isoforms and Bcl-XL interacted with BAD in both 2D and 3D. Of the 131 BAD-interactors identified, 56% were specific to 2D, 14% were specific to 3D, and 30% were common to both conditions. Interaction network analysis demonstrated differential associations between 2D and 3D interactomes, emphasizing the impact of the culture conditions on protein interactions. The 2D-3D overlap interactome encapsulated the apoptotic program, which is a well-known role of BAD. The 3D unique pathways were enriched in ECM signaling, suggestive of hitherto unknown functions for BAD. Thus, exploring protein-protein interactions in 3D provides novel clues into cell behavior. This exciting approach has the potential to bridge the knowledge gap between tractable 2D cell culture and organoid-like 3D systems.
Collapse
Affiliation(s)
- Leila Pirayeshfard
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shu Luo
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Arashdeep Saini
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nicolas Touret
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department
of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
4
|
Dennison NR, Fusenig M, Grönnert L, Maitz MF, Ramirez Martinez MA, Wobus M, Freudenberg U, Bornhäuser M, Friedrichs J, Westenskow PD, Werner C. Precision Culture Scaling to Establish High-Throughput Vasculogenesis Models. Adv Healthc Mater 2024; 13:e2400388. [PMID: 38465502 DOI: 10.1002/adhm.202400388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 03/12/2024]
Abstract
Hydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells. Variations of cell density, growth factor supplementation, and media composition are systematically explored to induce vasculogenesis in endothelial mono- and cocultures with mesenchymal stromal cells or retinal microvascular pericytes in 384-well plate formats. The developed cultures are shown to respond to vasculogenesis inhibitors in a compound- and dose-dependent manner, demonstrating the scope and power of PCS-X in creating parallelized tissue and disease models for drug discovery and individualized therapies.
Collapse
Affiliation(s)
- Nicholas R Dennison
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Maximilian Fusenig
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Lisa Grönnert
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Manja Wobus
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Martin Bornhäuser
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Peter D Westenskow
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Center for Regenerative Therapies Dresden and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
5
|
Addario G, Eussen D, Djudjaj S, Boor P, Moroni L, Mota C. 3D Printed Tubulointerstitium Chip as an In Vitro Testing Platform. Macromol Biosci 2024; 24:e2300440. [PMID: 37997523 DOI: 10.1002/mabi.202300440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Chronic kidney disease (CKD) ranks as the twelfth leading cause of death worldwide with limited treatment options. The development of in vitro models replicating defined segments of the kidney functional units, the nephrons, in a physiologically relevant and reproducible manner can facilitate drug testing. The aim of this study was to produce an in vitro organ-on-a-chip platform with extrusion-based three-dimensional (3D) printing. The manufacturing of the tubular platform was produced by printing sacrificial fibers with varying diameters, providing a suitable structure for cell adhesion and proliferation. The chip platform was seeded with primary murine tubular epithelial cells and human umbilical vein endothelial cells. The effect of channel geometry, its reproducibility, coatings for cell adhesion, and specific cell markers were investigated. The developed chip presents single and dual channels, mimicking segments of a renal tubule and the capillary network, together with an extracellular matrix gel analogue placed in the middle of the two channels, envisioning the renal tubulointerstitium in vitro. The 3D printed platform enables perfusable circular cross-section channels with fully automated, rapid, and reproducible manufacturing processes at low costs. This kidney tubulointerstitium on-a-chip provides the first step toward the production of more complex in vitro models for drug testing.
Collapse
Affiliation(s)
- Gabriele Addario
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Daphne Eussen
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
- Division of Nephrology, RWTH University of Aachen, 52074, Aachen, Germany
- Electron Microscopy Facility, RWTH University of Aachen, 52074, Aachen, Germany
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
6
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
8
|
Lyophilized Gelatin@non-Woven Scaffold to Promote Spheroids Formation and Enrich Cancer Stem Cell Incidence. NANOMATERIALS 2022; 12:nano12050808. [PMID: 35269296 PMCID: PMC8912757 DOI: 10.3390/nano12050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
A gelatin@non-woven fabric (gelatin@NWF) hybrid scaffold with tailored micropore structures was fabricated by lyophilizing, using gelatin to support cells and the NWF matrix as a frame to enforce the mechanical stability of gelatin. By freezing the gelatin and NWF hybrid in liquid nitrogen and subsequently lyophilizing and crosslinking the process, the gelatin@NWF scaffold was prepared to support cell growth and promote cell aggregation and spheroids’ formation. The results indicated that by tuning the lyophilizing temperature, the micropore size on the gelatin could be tailored. Consequently, tumor spheroids can be formed on gelatin@NWF scaffolds with honeycomb-like pores around 10 µm. The cell spheroids formed on the tailored gelatin@NWF scaffold were characterized in cancer stem cell (CSC)-associated gene expression, chemotherapy drug sensitivity, and motility. It was found that the expression of the CSC-associated biomarkers SOX2, OCT4, and ALDH1A1 in gene and protein levels in DU 145 cell spheres formed on gelatin@NWF scaffolds were significantly higher than in those cells grown as monolayers. Moreover, cells isolated from spheroids grown on gelatin@NWF scaffold showed higher drug resistance and motility. Tumor spheroids can be formed on a long-term storage scaffold, highlighting the potential of gelatin@NWF as a ready-to-use scaffold for tumor cell sphere generation and culturing.
Collapse
|
9
|
Fanizza F, Campanile M, Forloni G, Giordano C, Albani D. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. J Tissue Eng 2022; 13:20417314221095339. [PMID: 35570845 PMCID: PMC9092580 DOI: 10.1177/20417314221095339] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/04/2022] [Indexed: 01/15/2023] Open
Abstract
The Organ-on-a-Chip (OoC) technology shows great potential to revolutionize the drugs development pipeline by mimicking the physiological environment and functions of human organs. The translational value of OoC is further enhanced when combined with patient-specific induced pluripotent stem cells (iPSCs) to develop more realistic disease models, paving the way for the development of a new generation of patient-on-a-chip devices. iPSCs differentiation capacity leads to invaluable improvements in personalized medicine. Moreover, the connection of single-OoC into multi-OoC or body-on-a-chip allows to investigate drug pharmacodynamic and pharmacokinetics through the study of multi-organs cross-talks. The need of a breakthrough thanks to this technology is particularly relevant within the field of neurodegenerative diseases, where the number of patients is increasing and the successful rate in drug discovery is worryingly low. In this review we discuss current iPSC-based OoC as drug screening models and their implication in development of new therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Francesca Fanizza
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Marzia Campanile
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di
Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di
Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
10
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
11
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
12
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic pathological disorder that targets alveoli interstitial tissues and is characterized by the progressive stiffening of alveolar membrane. The median survival rate of the patients with IPF is less than 5 years. Currently, IPF has no cure and there are few options to alleviate the progress of this disease. A critical roadblock in developing new anti-fibrosis therapies is the absence of reliable cell based in vitro models that can recapitulate the progressive features of this disease. Here a novel fibrotic microtissue on a chip system is created to model the fibrotic transition of the lung interstitial tissue and the effect of anti-fibrosis drugs on such transitions. This system will not only help to expedite the efficacy analysis of anti-fibrotic therapies but also help to unveil their potential mode of action.
Collapse
|
13
|
Akashi M, Akagi T. Composite Materials by Building Block Chemistry Using Weak Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Gracioso Martins AM, Wilkins MD, Ligler FS, Daniele MA, Freytes DO. Microphysiological System for High-Throughput Computer Vision Measurement of Microtissue Contraction. ACS Sens 2021; 6:985-994. [PMID: 33656335 DOI: 10.1021/acssensors.0c02172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to measure microtissue contraction in vitro can provide important information when modeling cardiac, cardiovascular, respiratory, digestive, dermal, and skeletal tissues. However, measuring tissue contraction in vitro often requires the use of high number of cells per tissue construct along with time-consuming microscopy and image analysis. Here, we present an inexpensive, versatile, high-throughput platform to measure microtissue contraction in a 96-well plate configuration using one-step batch imaging. More specifically, optical fiber microprobes are embedded in microtissues, and contraction is measured as a function of the deflection of optical signals emitted from the end of the fibers. Signals can be measured from all the filled wells on the plate simultaneously using a digital camera. An algorithm uses pixel-based image analysis and computer vision techniques for the accurate multiwell quantification of positional changes in the optical microprobes caused by the contraction of the microtissues. Microtissue constructs containing 20,000-100,000 human ventricular cardiac fibroblasts (NHCF-V) in 6 mg/mL collagen type I showed contractile displacements ranging from 20-200 μm. This highly sensitive and versatile platform can be used for the high-throughput screening of microtissues in disease modeling, drug screening for therapeutics, physiology research, and safety pharmacology.
Collapse
Affiliation(s)
- Ana Maria Gracioso Martins
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Michael D. Wilkins
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Frances S. Ligler
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
15
|
Delle Cave D, Rizzo R, Sainz B, Gigli G, del Mercato LL, Lonardo E. The Revolutionary Roads to Study Cell-Cell Interactions in 3D In Vitro Pancreatic Cancer Models. Cancers (Basel) 2021; 13:930. [PMID: 33672435 PMCID: PMC7926501 DOI: 10.3390/cancers13040930] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.
Collapse
Affiliation(s)
- Donatella Delle Cave
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain;
- Spain and Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Arnesano, 73100 Lecce, Italy
| | - Loretta L. del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Enza Lonardo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
16
|
Salman MI, Emran MA, Al-Shammari AM. Spheroid-formation 3D engineering model assay for in vitro assessment and expansion of cancer cells. AIP CONFERENCE PROCEEDINGS 2021. [DOI: 10.1063/5.0065362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Chang Y, Huynh CTT, Bastin KM, Rivera BN, Siddens LK, Tilton SC. Classifying polycyclic aromatic hydrocarbons by carcinogenic potency using in vitro biosignatures. Toxicol In Vitro 2020; 69:104991. [PMID: 32890658 PMCID: PMC7572825 DOI: 10.1016/j.tiv.2020.104991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 01/26/2023]
Abstract
One of the most difficult challenges for risk assessment is evaluation of chemicals that predominately co-occur in mixtures like polycyclic aromatic hydrocarbons (PAHs). We previously developed a classification model in which systems biology data collected from mice short-term after chemical exposure accurately predict tumor outcome. The present study demonstrates translation of this approach into a human in vitro model in which chemical-specific bioactivity profiles from 3D human bronchial epithelial cells (HBEC) classify PAHs by carcinogenic potency. Gene expression profiles were analyzed from HBEC exposed to carcinogenic and non-carcinogenic PAHs and classification accuracies were identified for individual pathway-based gene sets. Posterior probabilities of best performing gene sets were combined via Bayesian integration resulting in a classifier with four gene sets, including aryl hydrocarbon receptor signaling, regulation of epithelial mesenchymal transition, regulation of angiogenesis, and cell cycle G2-M. In addition, transcriptional benchmark dose modeling of benzo[a]pyrene (BAP) showed that the most sensitive gene sets to BAP regulation were largely dissimilar from those that best classified PAH carcinogenicity challenging current assumptions that BAP carcinogenicity (and subsequent mode of action) is reflective of overall PAH carcinogenicity. These results illustrate utility of using systems toxicology approaches to analyze global gene expression towards carcinogenic hazard assessment.
Collapse
Affiliation(s)
- Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Celine Thanh Thu Huynh
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Kelley M Bastin
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Brianna N Rivera
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Susan C Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
18
|
Benchaprathanphorn K, Sakulaue P, Siriwatwechakul W, Muangman P, Chinaroonchai K, Viravaidya-Pasuwat K. Preparation and characterization of human keratinocyte-fibroblast cell sheets constructed using PNIAM-co-AM grafted surfaces for burn wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:126. [PMID: 33247815 DOI: 10.1007/s10856-020-06469-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/04/2020] [Indexed: 05/13/2023]
Abstract
Autologous skin grafting, the standard treatment for severe burns, is sometimes not possible due to the limited available skin surfaces for the procedure. With advances in tissue engineering, various cell-based skin substitutes have been developed to serve as skin replacements and to promote tissue regeneration and healing. In this work, we propose the use of cell sheet technology to fabricate keratinocyte-fibroblast tissue constructs from the temperature-responsive poly(N-isoproprylacrylamide-co-acrylamide) (PNIAM-co-AM) grafted surfaces for the treatment of burn wounds. The characteristics of the human keratinocyte and fibroblast cell sheets harvested using PNIAM-co-AM grafted surfaces were similar to those cell sheets detached from the commercially-available UpCellTM plates. Upon lowering the incubation temperature, confluent keratinocytes and fibroblasts could be detached as intact sheets, consisting of biologically active cells, as indicated by their high cell viability and their reattachment, migratory, and proliferative activities. A histological analysis of the stratified keratinocyte-fibroblast cell sheets revealed the evidence of cell migration and tissue reorganization to form two distinct epidermal and dermal layers, quite similar to the skin tissue's structure. In addition, the keratinocyte-fibroblast sheets could synthesize and release significant amounts of essential cytokines and growth factors involved in regulating the wound healing process, including IL-1α, IL-6, TNF-α, VEGF, and bFGF, implying the therapeutic effect of these cell sheets, which could be beneficial to accelerate tissue repair and regeneration, leading to faster wound healing.
Collapse
Affiliation(s)
- Kanokaon Benchaprathanphorn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Phongphot Sakulaue
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Wanwipa Siriwatwechakul
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Pornprom Muangman
- Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kusuma Chinaroonchai
- Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
19
|
Parrish J, Lim K, Zhang B, Radisic M, Woodfield TBF. New Frontiers for Biofabrication and Bioreactor Design in Microphysiological System Development. Trends Biotechnol 2019; 37:1327-1343. [PMID: 31202544 PMCID: PMC6874730 DOI: 10.1016/j.tibtech.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
Abstract
Microphysiological systems (MPSs) have been proposed as an improved tool to recreate the complex biological features of the native niche with the goal of improving in vitro-in vivo extrapolation. In just over a decade, MPS technologies have progressed from single-tissue chips to multitissue plates with integrated pumps for perfusion. Concurrently, techniques for biofabrication of complex 3D constructs for regenerative medicine and 3D in vitro models have evolved into a diverse toolbox for micrometer-scale deposition of cells and cell-laden bioinks. However, as the complexity of biological models increases, experimental throughput is often compromised. This review discusses the existing disparity between MPS complexity and throughput, then examines an MPS-terminated biofabrication line to identify the hurdles and potential approaches to overcoming this disparity.
Collapse
Affiliation(s)
- Jonathon Parrish
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada; The Heart and Stroke/Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand.
| |
Collapse
|
20
|
Lim KS, Baptista M, Moon S, Woodfield TB, Rnjak-Kovacina J. Microchannels in Development, Survival, and Vascularisation of Tissue Analogues for Regenerative Medicine. Trends Biotechnol 2019; 37:1189-1201. [DOI: 10.1016/j.tibtech.2019.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
|
21
|
Ham J, Lever L, Fox M, Reagan MR. In Vitro 3D Cultures to Reproduce the Bone Marrow Niche. JBMR Plus 2019; 3:e10228. [PMID: 31687654 PMCID: PMC6820578 DOI: 10.1002/jbm4.10228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
Over the past century, the study of biological processes in the human body has progressed from tissue culture on glass plates to complex 3D models of tissues, organs, and body systems. These dynamic 3D systems have allowed for more accurate recapitulation of human physiology and pathology, which has yielded a platform for disease study with a greater capacity to understand pathophysiology and to assess pharmaceutical treatments. Specifically, by increasing the accuracy with which the microenvironments of disease processes are modeled, the clinical manifestation of disease has been more accurately reproduced in vitro. The application of these models is crucial in all realms of medicine, but they find particular utility in diseases related to the complex bone marrow niche. Osteoblast, osteoclasts, bone marrow adipocytes, mesenchymal stem cells, and red and white blood cells represent some of cells that call the bone marrow microenvironment home. During states of malignant marrow disease, neoplastic cells migrate to and join this niche. These cancer cells both exploit and alter the niche to their benefit and to the patient's detriment. Malignant disease of the bone marrow, both primary and secondary, is a significant cause of morbidity and mortality today. Innovative study methods are necessary to improve patient outcomes. In this review, we discuss the evolution of 3D models and compare them to the preceding 2D models. With a specific focus on malignant bone marrow disease, we examine 3D models currently in use, their observed efficacy, and their potential in developing improved treatments and eventual cures. Finally, we comment on the aspects of 3D models that must be critically examined as systems continue to be optimized so that they can exert greater clinical impact in the future. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin Ham
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Lauren Lever
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Maura Fox
- University of New EnglandBiddefordMEUSA
| | - Michaela R Reagan
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of Maine Graduate School of Biomedical Science and EngineeringOronoMEUSA,Sackler School of Graduate Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
22
|
Booij TH, Price LS, Danen EHJ. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:615-627. [PMID: 30817892 PMCID: PMC6589915 DOI: 10.1177/2472555219830087] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
The introduction of more relevant cell models in early preclinical drug discovery, combined with high-content imaging and automated analysis, is expected to increase the quality of compounds progressing to preclinical stages in the drug development pipeline. In this review we discuss the current switch to more relevant 3D cell culture models and associated challenges for high-throughput screening and high-content analysis. We propose that overcoming these challenges will enable front-loading the drug discovery pipeline with better biology, extracting the most from that biology, and, in general, improving translation between in vitro and in vivo models. This is expected to reduce the proportion of compounds that fail in vivo testing due to a lack of efficacy or to toxicity.
Collapse
Affiliation(s)
- Tijmen H. Booij
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- NEXUS Personalized Health Technologies, ETH Zürich, Switzerland
| | - Leo S. Price
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- OcellO B.V., Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
23
|
A Novel 3D In Vitro Platform for Pre-Clinical Investigations in Drug Testing, Gene Therapy, and Immuno-oncology. Sci Rep 2019; 9:7154. [PMID: 31073193 PMCID: PMC6509120 DOI: 10.1038/s41598-019-43613-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Tumors develop within complex cell-to-cell interactions, with accessory cells playing a relevant role starting in the early phases of cancer progression. This event occurs in a three-dimensional (3D) environment, which to date, has been difficult to reproduce in vitro due to its complexity. While bi-dimensional cultures have generated substantial data, there is a progressive awareness that 3D culture strategies may rapidly increase the understanding of tumor development and be used in anti-cancer compound screening and for predicting response to new drugs utilizing personalized approaches. However, simple systems capable of rapidly rebuilding cancer tissues ex-vivo in 3D are needed and could be used for a variety of applications. Therefore, we developed a flat, handheld and versatile 3D cell culture bioreactor that can be loaded with tumor and/or normal cells in combination which can be monitored using a variety of read-outs. This biocompatible device sustained 3D growth of tumor cell lines representative of various cancers, such as pancreatic and breast adenocarcinoma, sarcoma, and glioblastoma. The cells repopulated the thin matrix which was completely separated from the outer space by two gas-permeable membranes and was monitored in real-time using both microscopy and luminometry, even after transportation. The device was tested in 3D cytotoxicity assays to investigate the anti-cancer potential of chemotherapy, biologic agents, and cell-based therapy in co-cultures. The addition of luciferase in target cancer cells is suitable for comparative studies that may also involve parallel in vivo investigations. Notably, the system was challenged using primary tumor cells harvested from lung cancer patients as an innovative predictive functional assay for cancer responsiveness to checkpoint inhibitors, such as nivolumab. This bioreactor has several novel features in the 3D-culture field of research, representing a valid tool useful for cancer investigations, drug screenings, and other toxicology approaches.
Collapse
|
24
|
Braham MVJ, Alblas J, Dhert WJA, Öner FC, Minnema MC. Possibilities and limitations of an in vitro three-dimensional bone marrow model for the prediction of clinical responses in patients with relapsed multiple myeloma. Haematologica 2019; 104:e523-e526. [PMID: 31004023 DOI: 10.3324/haematol.2018.213355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Wouter J A Dhert
- Department of Orthopaedics, University Medical Center Utrecht.,Faculty of Veterinary Medicine, Utrecht University
| | - F Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, the Netherlands
| |
Collapse
|
25
|
Replica moulded poly(dimethylsiloxane) microwell arrays induce localized endothelial cell immobilization for coculture with pancreatic islets. Biointerphases 2019; 14:011002. [PMID: 30700091 DOI: 10.1116/1.5087737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PolyJet three-dimensional (3D) printing allows for the rapid manufacturing of 3D moulds for the fabrication of cross-linked poly(dimethylsiloxane) microwell arrays (PMAs). As this 3D printing technique has a resolution on the micrometer scale, the moulds exhibit a distinct surface roughness. In this study, the authors demonstrate by optical profilometry that the topography of the 3D printed moulds can be transferred to the PMAs and that this roughness induced cell adhesive properties to the material. In particular, the topography facilitated immobilization of endothelial cells on the internal walls of the microwells. The authors also demonstrate that upon immobilization of endothelial cells to the microwells, a second population of cells, namely, pancreatic islets could be introduced, thus producing a 3D coculture platform.
Collapse
|
26
|
Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2019; 138:276-292. [PMID: 30639258 DOI: 10.1016/j.addr.2019.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Cell transplantation is a promising approach for promoting tissue regeneration in the treatment of damaged tissues or organs. Although cells have conventionally been delivered by direct injection to damaged tissues, cell injection has limited efficiency to deliver therapeutic cells to the target sites. Progress in tissue engineering has moved scaffold-based cell/tissue delivery into the mainstream of tissue regeneration. A variety of scaffolds can be fabricated from natural or synthetic polymers to provide the appropriate culture conditions for cell growth and achieve in-vitro tissue formation. Tissue engineering has now become the primary approach for cell-based therapies. However, there are still serious limitations, particularly for engineering of cell-dense tissues. "Cell sheet engineering" is a scaffold-free tissue technology that holds even greater promise in the field of tissue engineering and regenerative medicine. Thermoresponsive poly(N-isopropylacrylamide)-grafted surfaces allow the fabrication of a tissue-like cell monolayer, a "cell sheet", and efficiently delivers this cell-dense tissue to damaged sites without the use of scaffolds. At present, this unique approach has been applied to human clinical studies in regenerative medicine. Furthermore, this thermally triggered cell manipulation system allows us to produce various types of 3D tissue models not only for regenerative medicine but also for tissue modeling, which can be used for drug discovery. Here, new cell sheet-based technologies are described including vascularization for scaled-up 3D tissue constructs, induced pluripotent stem (iPS) cell technology for human cell sheet fabrication and microfabrication for arranging tissue microstructures, all of which are expected to produce more complex tissues based on cell sheet tissue engineering.
Collapse
|
27
|
Znidar K, Bosnjak M, Jesenko T, Heller LC, Cemazar M. Upregulation of DNA Sensors in B16.F10 Melanoma Spheroid Cells After Electrotransfer of pDNA. Technol Cancer Res Treat 2018; 17:1533033818780088. [PMID: 29879868 PMCID: PMC6009088 DOI: 10.1177/1533033818780088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased expression of cytosolic DNA sensors, a category of pattern recognition receptor, after control plasmid DNA electrotransfer was observed in our previous studies on B16.F10 murine melanoma cells. This expression was correlated with the upregulation of proinflammatory cytokines and chemokines and was associated with cell death. Here, we expanded our research to include the influence of features of cells in a 3-dimensional environment, which better represents the tumors' organization in vivo. Our results show that lower number of cells were transfected in spheroids compared to 2-dimensional cultures, that growth was delayed after electroporation alone or after electrotransfer of plasmid DNA, and that DNA sensors DDX60, DAI/ZBP1, and p204 were upregulated 4 hours and 24 hours after electrotransfer of plasmid DNA. Moreover, the cytokines interferon β and tumor necrosis factor α were also upregulated but only 4 hours after electrotransfer of plasmid DNA. Thus, our results confirm the results obtained in 2-dimensional cell cultures demonstrating that electrotransfer of plasmid DNA to tumor cells in spheroids also upregulated cytosolic DNA sensors and cytokines.
Collapse
Affiliation(s)
- Katarina Znidar
- 1 Faculty of Health Sciences, University of Primorska, Koper, Slovenia
| | - Masa Bosnjak
- 2 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- 2 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Loree C Heller
- 3 Frank Reidy Research Center of Bioelectrics, Old Dominion University, Norfolk, VA, USA.,4 School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion, University, Norfolk, VA, USA
| | - Maja Cemazar
- 1 Faculty of Health Sciences, University of Primorska, Koper, Slovenia.,2 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT. Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discov 2018; 13:1115-1129. [PMID: 30384781 PMCID: PMC6494715 DOI: 10.1080/17460441.2018.1542427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Introduction: Although there have been significant contributions from the pharmaceutical industry to clinical practice, several diseases remain unconquered, with the discovery of new drugs remaining a paramount objective. The actual process of drug discovery involves many steps including pre-clinical and clinical testing, which are highly time- and resource-consuming, driving researchers to improve the process efficiency. The shift of modelling technology from two-dimensions (2D) to three-dimensions (3D) is one of such advancements. 3D Models allow for close mimicry of cellular interactions and tissue microenvironments thereby improving the accuracy of results. The advent of bioprinting for fabrication of tissues has shown potential to improve 3D culture models. Areas covered: The present review provides a comprehensive update on a wide range of bioprinted tissue models and appraise them for their potential use in drug discovery research. Expert opinion: Efficiency, reproducibility, and standardization are some impediments of the bioprinted models. Vascularization of the constructs has to be addressed in the near future. While much progress has already been made with several seminal works, the next milestone will be the commercialization of these models after due regulatory approval.
Collapse
Affiliation(s)
- Aishwarya Satpathy
- a Centre for Healthcare Science and Technology , Indian Institute of Engineering Science and Technology Shibpur , Howrah , India
| | - Pallab Datta
- a Centre for Healthcare Science and Technology , Indian Institute of Engineering Science and Technology Shibpur , Howrah , India
| | - Yang Wu
- b Engineering Science and Mechanics Department , Penn State University , University Park , PA , USA
- c The Huck Institutes of the Life Sciences, Penn State University , USA
| | - Bugra Ayan
- b Engineering Science and Mechanics Department , Penn State University , University Park , PA , USA
- c The Huck Institutes of the Life Sciences, Penn State University , USA
| | - Ertugrul Bayram
- d Medical Oncology Department , Agri State Hospital , Agri , Turkey
| | - Ibrahim T Ozbolat
- b Engineering Science and Mechanics Department , Penn State University , University Park , PA , USA
- c The Huck Institutes of the Life Sciences, Penn State University , USA
- e Biomedical Engineering Department , Penn State University , University Park , PA , USA
- f Materials Research Institute, Penn State University , USA
| |
Collapse
|
29
|
Hu M, Dailamy A, Lei XY, Parekh U, McDonald D, Kumar A, Mali P. Facile Engineering of Long-Term Culturable Ex Vivo Vascularized Tissues Using Biologically Derived Matrices. Adv Healthc Mater 2018; 7:e1800845. [PMID: 30369101 PMCID: PMC6478398 DOI: 10.1002/adhm.201800845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/02/2018] [Indexed: 01/17/2023]
Abstract
Recent advances in tissue engineering and 3D bioprinting have enabled construction of cell-laden scaffolds containing perfusable vascular networks. Although these methods partially address the nutrient-diffusion limitations present in engineered tissues, they are still restricted in both their viable vascular geometries and matrix material compatibility. To address this, tissue constructs are engineered via encapsulation of 3D printed, evacuable, free standing scaffolds of poly(vinyl alcohol) (PVA) in biologically derived matrices. The ease of printability and water-soluble nature of PVA grant compatibility with biologically relevant matrix materials and allow for easily repeatable generation of complex vascular patterns. This study confirms the ability of this approach to produce perfusable vascularized matrices capable of sustaining both cocultures of multiple cell types and excised tumor fragments ex vivo over multiple weeks. The study further demonstrates the ability of the approach to produce hybrid patterns allowing for coculture of vasculature and epithelial cell-lined lumens in close proximity, thereby enabling ex vivo recapitulation of gut-like systems. Taken together, the methodology is versatile, broadly applicable, and importantly, simple to use, enabling ready applicability in many research settings. It is believed that this technique has the potential to significantly accelerate progress in engineering and study of ex vivo organotypic tissue constructs.
Collapse
Affiliation(s)
- Michael Hu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin Yi Lei
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Udit Parekh
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniella McDonald
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
30
|
Sasmal P, Datta P, Wu Y, Ozbolat IT. 3D bioprinting for modelling vasculature. MICROPHYSIOLOGICAL SYSTEMS 2018; 2:9. [PMID: 30931432 PMCID: PMC6436836 DOI: 10.21037/mps.2018.10.02] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though in vivo models provide the most physiologically-relevant environment for studying tissue development and function, an in vitro substitute is being offered by the advancement of three-dimensional (3D) bioprinting technology, which is a reproducible and scalable fabrication strategy providing precise 3D control compared to conventional microfluidic tissue fabrication methods. In this review, vasculature models printed using extrusion-, droplet-, and laser-based bioprinting techniques are summarized and compared. Besides bioprinting of hydrogels as bioinks, an alternative method to obtain vascular models by bioprinting is to use exogenous biomaterial-free cell aggregates such as tissue spheroids and cell pellet, which has also been discussed here. In addition, there have been efforts to fabricate micro-vasculature constructs (e.g., capillaries) to overcome the practical limitations of bioprinting of large scale vascular networks. At the end of the review, limitations and prospective of bioprinting in vasculature modelling has also been expounded.
Collapse
Affiliation(s)
- Pranabesh Sasmal
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | - Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| |
Collapse
|
31
|
Siran W, Ghezzi CE, Cairns DM, Pollard RE, Chen Y, Gomes R, McKay TB, Pouli D, Jamali A, Georgakoudi I, Funderburgh JL, Kenyon K, Hamrah P, Kaplan DL. Human Corneal Tissue Model for Nociceptive Assessments. Adv Healthc Mater 2018; 7:e1800488. [PMID: 30091220 DOI: 10.1002/adhm.201800488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/28/2018] [Indexed: 12/13/2022]
Abstract
New in vitro tissue models to mimic in vivo conditions are needed to provide insight into mechanisms involved in peripheral pain responses, potential therapeutic strategies to address these responses, and to replace animal models for such indications. For example, the rabbit cornea Draize test has become the standard method used for decades to screen ophthalmic drug and consumer product toxicity. In vitro tissue models with functional innervation have the potential to replace in vivo animal testing and provide sophisticated bench tools to study ocular nociception and its amelioration. Herein, full thickness, innervated, 3D human corneal tissues are grown under physiologically relevant culture conditions to study nociceptive-related responses, by mimicking ocular environmental cues, including intraocular pressure (IOP) and tear flow (TF). Capsaicin, a chili pepper-derived irritant known to cause a burning sensation in mammalian tissues is utilized as a nociceptive stimulant to induce pain, while subsequent serum treatment is used to mimic healing. Pain mediators released upon capsaicin stimulation and cell regrowth after serum treatment are characterized to assess ocular responses in this new, innervated, human corneal tissue system for comparison of outcomes to established animal and related responses.
Collapse
Affiliation(s)
- Wang Siran
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| | - Dana M. Cairns
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| | - Rachel E. Pollard
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| | - Ying Chen
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| | - Rachel Gomes
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
- School of MedicineDepartamento de Oftalmologia da Escola Paulista de MedicinaFederal University of São Paulo Botucatu, 822 – Vila Clementino São Paulo –SP 04023‐062 Brazil
| | - Tina B. McKay
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| | - Dimitra Pouli
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| | - Arsia Jamali
- New England Eye CenterTufts Medical Center 260 Tremont St, 9th Floor Boston MA 02111 USA
| | - Irene Georgakoudi
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| | - James L. Funderburgh
- Eye & Ear InstituteDepartment of OphthalmologyUniversity of Pittsburgh 203 Lothrop Street, Room 1011 Pittsburgh PA 15213 USA
| | - Kenneth Kenyon
- New England Eye CenterTufts Medical Center 260 Tremont St, 9th Floor Boston MA 02111 USA
| | - Pedram Hamrah
- New England Eye CenterTufts Medical Center 260 Tremont St, 9th Floor Boston MA 02111 USA
| | - David L. Kaplan
- Department of Biomedical EngineeringTufts University 4 Colby Street Medford MA 02155 USA
| |
Collapse
|
32
|
Jensen G, Morrill C, Huang Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm Sin B 2018; 8:756-766. [PMID: 30258764 PMCID: PMC6148716 DOI: 10.1016/j.apsb.2018.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and the tissue engineering model have shown promise in improving methods of drug delivery, drug action, and drug discovery in pharmaceutical research for the attenuation of the central nervous system inflammatory response. Such inflammation contributes to the lack of regenerative ability of neural cells, as well as the temporary and permanent loss of function associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review is focused specifically on the recent advances in the tissue engineering model made by altering scaffold biophysical and biochemical properties for use in the treatment of neurodegenerative diseases. A portion of this article will also be spent on the review of recent progress made in extracellular matrix decellularization as a new and innovative scaffold for disease treatment.
Collapse
Affiliation(s)
| | | | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
33
|
Cattin S, Ramont L, Rüegg C. Characterization and In Vivo Validation of a Three-Dimensional Multi-Cellular Culture Model to Study Heterotypic Interactions in Colorectal Cancer Cell Growth, Invasion and Metastasis. Front Bioeng Biotechnol 2018; 6:97. [PMID: 30065926 PMCID: PMC6056662 DOI: 10.3389/fbioe.2018.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third cause of cancer-related mortality in industrialized countries. Local invasion and metastasis formation are events associated with poor prognosis for which today there are no effective therapeutic options. Invasion and metastasis are strongly modulated by cells of the tumor microenvironment (TME), in particular fibroblasts and endothelial cells. Unraveling interactions between tumor cells and cells of the TME may identify novel mechanisms and therapeutic targets to prevent or treat metastasis. We report here the development and in vivo validation of a 3D tumor spheroid model to study the interactions between CRC cells, fibroblasts and endothelial cells in vitro. Co-cultured fibroblasts promoted SW620 and HCT116 CRC spheroid invasion, and this was prevented by the SRC and FGFR kinase inhibitors Dasatinib and Erdafitinib, respectively. To validate these findings in vivo, we injected SW620 cells alone or together with fibroblasts orthotopically in the caecum of mice. Co-injection with fibroblasts promoted lung metastasis growth, which was fully reversed by treatment with Dasatinib or Erdafitinib. Co-culture of SW620 or HCT116 CRC spheroids with endothelial cells suppressed spheroid growth while it had no effect on cancer cell migration or invasion. Consistent with this in vitro effect, co-injected endothelial cells significantly inhibited primary tumor growth in vivo. From these experiments we conclude that effects on cancer cell invasion and growth induced by co-cultured TME cells and drug treatment in the 3D spheroid model in vitro, are predictive of in vivo effects. The 3D spheroid model may be considered as an attractive model to study the effect of heterotypic cellular interactions and drug activities on cancer cells, as animal testing alternative. This model may be adapted and further developed to include different types of cancer and host cells and to investigate additional functions and drugs.
Collapse
Affiliation(s)
- Sarah Cattin
- Department of Oncology, Faculty of Science and Medicine, Immunology and Microbiology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Ramont
- Laboratory of Medical and Molecular Biology, Centre National de la Recherche Scientifique, Reims, France
| | - Curzio Rüegg
- Department of Oncology, Faculty of Science and Medicine, Immunology and Microbiology, University of Fribourg, Fribourg, Switzerland.,Swiss Integrative Center for Human Health, Fribourg, Switzerland
| |
Collapse
|
34
|
Zhang H, Zhu Y, Shen Y. Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800360. [PMID: 29806174 DOI: 10.1002/smll.201800360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/12/2018] [Indexed: 05/22/2023]
Abstract
Self-assembled drug delivery systems (sDDSs), made from nanocarriers and drugs, are one of the major types of nanomedicines, many of which are in clinical use, under preclinical investigation, or in clinical trials. One of the hurdles of this type of nanomedicine in real applications is the inherent complexity of their fabrication processes, which generally lack precise control over the sDDS structures and the batch-to-batch reproducibility. Furthermore, the classic 2D in vitro cell model, monolayer cell culture, has been used to evaluate sDDSs. However, 2D cell culture cannot adequately replicate in vivo tissue-level structures and their highly complex dynamic 3D environments, nor can it simulate their functions. Thus, evaluations using 2D cell culture often cannot correctly correlate with sDDS behaviors and effects in humans. Microfluidic technology offers novel solutions to overcome these problems and facilitates studying the structure-performance relationships for sDDS developments. In this Review, recent advances in microfluidics for 1) fabrication of sDDSs with well-defined physicochemical properties, such as size, shape, rigidity, and drug-loading efficiency, and 2) fabrication of 3D-cell cultures as "tissue/organ-on-a-chip" platforms for evaluations of sDDS biological performance are in focus.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yifeng Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Youqing Shen
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
35
|
Asmani M, Velumani S, Li Y, Wawrzyniak N, Hsia I, Chen Z, Hinz B, Zhao R. Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nat Commun 2018; 9:2066. [PMID: 29802256 PMCID: PMC5970268 DOI: 10.1038/s41467-018-04336-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a severe health problem characterized by progressive stiffening of tissues which causes organ malfunction and failure. A major bottleneck in developing new anti-fibrosis therapies is the lack of in vitro models that recapitulate dynamic changes in tissue mechanics during fibrogenesis. Here we create membranous human lung microtissues to model key biomechanical events occurred during lung fibrogenesis including progressive stiffening and contraction of alveolar tissue, decline in alveolar tissue compliance and traction force-induced bronchial dilation. With these capabilities, we provide proof of principle for using this fibrotic tissue array for multi-parameter, phenotypic analysis of the therapeutic efficacy of two anti-fibrosis drugs recently approved by the FDA. Preventative treatments with Pirfenidone and Nintedanib reduce tissue contractility and prevent tissue stiffening and decline in tissue compliance. In a therapeutic treatment regimen, both drugs restore tissue compliance. These results highlight the pathophysiologically relevant modeling capability of our novel fibrotic microtissue system.
Collapse
Affiliation(s)
- Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Sanjana Velumani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yan Li
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Nicole Wawrzyniak
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Isaac Hsia
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhaowei Chen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, M5S 3E2, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
36
|
Bandyopadhyay A, Dewangan VK, Vajanthri KY, Poddar S, Mahto SK. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Lovitt CJ, Shelper TB, Avery VM. Cancer drug discovery: recent innovative approaches to tumor modeling. Expert Opin Drug Discov 2017; 11:885-94. [PMID: 27454169 DOI: 10.1080/17460441.2016.1214562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Cell culture models have been at the heart of anti-cancer drug discovery programs for over half a century. Advancements in cell culture techniques have seen the rapid evolution of more complex in vitro cell culture models investigated for use in drug discovery. Three-dimensional (3D) cell culture research has become a strong focal point, as this technique permits the recapitulation of the tumor microenvironment. Biologically relevant 3D cellular models have demonstrated significant promise in advancing cancer drug discovery, and will continue to play an increasing role in the future. AREAS COVERED In this review, recent advances in 3D cell culture techniques and their application in tumor modeling and anti-cancer drug discovery programs are discussed. The topics include selection of cancer cells, 3D cell culture assays (associated endpoint measurements and analysis), 3D microfluidic systems and 3D bio-printing. EXPERT OPINION Although advanced cancer cell culture models and techniques are becoming commonplace in many research groups, the use of these approaches has yet to be fully embraced in anti-cancer drug applications. Furthermore, limitations associated with analyzing information-rich biological data remain unaddressed.
Collapse
Affiliation(s)
- Carrie J Lovitt
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| | - Todd B Shelper
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| | - Vicky M Avery
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| |
Collapse
|
38
|
Charbe N, McCarron PA, Tambuwala MM. Three-dimensional bio-printing: A new frontier in oncology research. World J Clin Oncol 2017; 8:21-36. [PMID: 28246583 PMCID: PMC5309712 DOI: 10.5306/wjco.v8.i1.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/02/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023] Open
Abstract
Current research in oncology deploys methods that rely principally on two-dimensional (2D) mono-cell cultures and animal models. Although these methodologies have led to significant advancement in the development of novel experimental therapeutic agents with promising anticancer activity in the laboratory, clinicians still struggle to manage cancer in the clinical setting. The disappointing translational success is attributable mainly to poor representation and recreation of the cancer microenvironment present in human neoplasia. Three-dimensional (3D) bio-printed models could help to simulate this micro-environment, with recent bio-printing of live human cells demonstrating that effective in vitro replication is achievable. This literature review outlines up-to-date advancements and developments in the use of 3D bio-printed models currently being used in oncology research. These innovative advancements in 3D bio-printing open up a new frontier for oncology research and could herald an era of progressive clinical cancer therapeutics.
Collapse
|
39
|
Vanderburgh J, Sterling JA, Guelcher SA. 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening. Ann Biomed Eng 2017; 45:164-179. [PMID: 27169894 PMCID: PMC5106334 DOI: 10.1007/s10439-016-1640-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022]
Abstract
2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D vs. 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs.
Collapse
Affiliation(s)
- Joseph Vanderburgh
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN, 37232, USA
| | - Julie A Sterling
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 1235 MRB IV, 2222 Pierce Ave, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
40
|
Park JH, Jang J, Lee JS, Cho DW. Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med 2016; 13:612-621. [PMID: 30603443 PMCID: PMC6170865 DOI: 10.1007/s13770-016-8111-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023] Open
Abstract
Three-dimensional (3D) tissue/organ printing is a major aspect of recent innovation in the field of tissue engineering and regenerative medicine. 3D tissue/organ printing aims to create 3D living tissue/organ analogues, and have evolved along with advances in 3D printing techniques. A diverse range of computer-aided 3D printing techniques have been applied to dispose living cells together with biomaterials and supporting biochemical factors within pre-designed 3D tissue/organ analogues. Recent developments in printable biomaterials, such as decellularized extracellular matrix bio-inks have enabled improvements in the functionality of the resulting 3D tissue/organ analogues. Here, we provide an overview of the 3D printing techniques and biomaterials that have been used, including the development of 3D tissue/organ analogues. In addition, in vitro models are described, and future perspectives in 3D tissue/organ printing are identified.
Collapse
Affiliation(s)
- Jeong Hun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jung-Seob Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673 Korea
| |
Collapse
|
41
|
Amin J, Ramachandran K, Williams SJ, Lee A, Novikova L, Stehno-Bittel L. A simple, reliable method for high-throughput screening for diabetes drugs using 3D β-cell spheroids. J Pharmacol Toxicol Methods 2016; 82:83-89. [DOI: 10.1016/j.vascn.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022]
|
42
|
Rajangam T, Park MH, Kim SH. 3D Human Adipose-Derived Stem Cell Clusters as a Model for In Vitro Fibrosis. Tissue Eng Part C Methods 2016; 22:679-90. [DOI: 10.1089/ten.tec.2016.0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Thanavel Rajangam
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min Hee Park
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Depatment of Biomedical Engineering, University of Science and Technology, Daejon, Republic of Korea
| |
Collapse
|
43
|
ZEEBERG KATRINE, CARDONE ROSAANGELA, GRECO MARIARAFFAELLA, SACCOMANO MARA, NØHR-NIELSEN ASBJØRN, ALVES FRAUKE, PEDERSEN STINEFALSIG, RESHKIN STEPHANJOEL. Assessment of different 3D culture systems to study tumor phenotype and chemosensitivity in pancreatic ductal adenocarcinoma. Int J Oncol 2016; 49:243-52. [DOI: 10.3892/ijo.2016.3513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/13/2016] [Indexed: 11/05/2022] Open
|
44
|
Oliveira PA, Gil da Costa RM, Vasconcelos-Nóbrega C, Arantes-Rodrigues R, Pinto-Leite R. Challenges within vitroandin vivoexperimental models of urinary bladder cancer for novel drug discovery. Expert Opin Drug Discov 2016; 11:599-607. [DOI: 10.1080/17460441.2016.1174690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays. Acta Biomater 2016; 33:110-21. [PMID: 26821339 DOI: 10.1016/j.actbio.2016.01.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/08/2015] [Accepted: 01/23/2016] [Indexed: 12/31/2022]
Abstract
In vitro development of three-dimensional (3D) human cardiomyocyte (CM) tissues derived from human induced pluripotent stem cells (iPSCs) has long been desired in tissue regeneration and pharmaceutical assays. In particular, in vitro construction of 3D-iPSC-CM tissues with blood capillary networks have attracted much attention because blood capillaries are crucial for nutrient and oxygen supplies for CMs. Blood capillaries in 3D-iPSC-CM tissues will also be important for in vitro toxicity assay of prodrugs because of the signaling interaction between cardiomyocytes and endothelial cells. Here, we report construction of vascularized 3D-iPSC-CM tissues by a newly-discovered filtration-Layer-by-Layer (LbL) technique for cells, instead of our previous centrifugation-LbL technique. The filtration-LbL allowed us to fabricate nanometer-sized extracellular matrices (ECM), fibronectin and gelatin (FN-G), films onto iPSC-CM surfaces without any damage and with high yield, although centrifugation-LbL induced physical stress and a lower yield. The fabricated FN-G nanofilms interacted with integrin molecules on the cell membrane to construct 3D-tissues. We found that the introduction of normal human cardiac fibroblasts (NHCFs) into the iPSC-CM tissues modulated organization and synchronous beating depending on NHCF ratios. Moreover, co-culture with normal human cardiac microvascular endothelial cells (NHCMECs) successfully provided blood capillary-like networks in 3D-iPSC-CM tissues, depending on NHCF ratios. The vascularized 3D-iPSC-CM tissues indicated significantly different toxicity responses as compared to 2D-iPSC-CM cells by addition of doxorubicin as a model of a toxic drug. The constructed vascularized 3D-iPSC-CM tissues would be a promising tool for tissue regeneration and drug development. STATEMENT OF SIGNIFICANCE In vitro fabrication of vascularized three-dimensional (3D) human cardiomyocyte (CM) tissues derived from human induced pluripotent stem cells (iPSCs) has attracted much attention owing to their requirement of much amount of nutrition and oxygen, but not yet published. In this manuscript, we report construction of vascularized 3D-iPSC-CM tissues by a newly-discovered filtration-Layer-by-Layer (LbL) technique. The filtration-LbL fabricates nanometer-sized fibronectin and gelatin (FN-G) films onto iPSC-CM surfaces. The FN-G nanofilms induce cell-cell interactions via integrin molecules on cell surfaces, leading to construction of 3D-tissues. The constructed vascularized 3D-iPSC-CM tissues would be a promising tool for tissue regeneration and drug development. We believe that this manuscript has a strong impact and offers important suggestions to researchers concerned with biomaterials and tissue engineering.
Collapse
|
46
|
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| |
Collapse
|
47
|
Pati F, Gantelius J, Svahn HA. 3D Bioprinting of Tissue/Organ Models. Angew Chem Int Ed Engl 2016; 55:4650-65. [PMID: 26895542 DOI: 10.1002/anie.201505062] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/17/2022]
Abstract
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.
Collapse
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
48
|
Knowlton S, Cho Y, Li XJ, Khademhosseini A, Tasoglu S. Utilizing stem cells for three-dimensional neural tissue engineering. Biomater Sci 2016; 4:768-84. [DOI: 10.1039/c5bm00324e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional neural tissue engineering has significantly advanced the development of neural disease models and replacement tissues for patients by leveraging the unique capabilities of stem cells.
Collapse
Affiliation(s)
| | - Yongku Cho
- Department of Chemical & Biomolecular Engineering
- University of Connecticut
- Storrs
- USA
| | - Xue-Jun Li
- Department of Neuroscience
- University of Connecticut Health Center
- Farmington
- USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering
- Department of Medicine
- Brigham and Women's Hospital Harvard Medical School
- Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology
- Cambridge
| | - Savas Tasoglu
- Department of Biomedical Engineering
- University of Connecticut
- Storrs
- USA
- Department of Mechanical Engineering
| |
Collapse
|
49
|
Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2015; 18:539-553. [PMID: 28458612 PMCID: PMC5407188 DOI: 10.1016/j.mattod.2015.05.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell-cell, cell-matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing.
Collapse
Affiliation(s)
- Waseem Asghar
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Computer Engineering & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Rami El Assal
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Hadi Shafiee
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division of Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division of Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
50
|
Cardone RA, Greco MR, Zeeberg K, Zaccagnino A, Saccomano M, Bellizzi A, Bruns P, Menga M, Pilarsky C, Schwab A, Alves F, Kalthoff H, Casavola V, Reshkin SJ. A novel NHE1-centered signaling cassette drives epidermal growth factor receptor-dependent pancreatic tumor metastasis and is a target for combination therapy. Neoplasia 2015; 17:155-66. [PMID: 25748234 PMCID: PMC4351296 DOI: 10.1016/j.neo.2014.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers principally because of early invasion and metastasis. The epidermal growth factor receptor (EGFR) is essential for PDAC development even in the presence of Kras, but its inhibition with erlotinib gives only a modest clinical response, making the discovery of novel EGFR targets of critical interest. Here, we revealed by mining a human pancreatic gene expression database that the metastasis promoter Na+/H+ exchanger (NHE1) associates with the EGFR in PDAC. In human PDAC cell lines, we confirmed that NHE1 drives both basal and EGF-stimulated three-dimensional growth and early invasion via invadopodial extracellular matrix digestion. EGF promoted the complexing of EGFR with NHE1 via the scaffolding protein Na +/H + exchanger regulatory factor 1, engaging EGFR in a negative transregulatory loop that controls the extent and duration of EGFR oncogenic signaling and stimulates NHE1. The specificity of NHE1 for growth or invasion depends on the segregation of the transient EGFR/Na +/H + exchanger regulatory factor 1/NHE1 signaling complex into dimeric subcomplexes in different lipid raftlike membrane domains. This signaling complex was also found in tumors developed in orthotopic mice. Importantly, the specific NHE1 inhibitor cariporide reduced both three-dimensional growth and invasion independently of PDAC subtype and synergistically sensitized these behaviors to low doses of erlotinib.
Collapse
Affiliation(s)
- Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Katrine Zeeberg
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Angela Zaccagnino
- Institute for Experimental Cancer Research, Christian Albrechts University, Arnold-Heller-Str. 7, D-24105, Kiel, Germany
| | - Mara Saccomano
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075, Gottingen, Germany
| | - Antonia Bellizzi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Philipp Bruns
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27 b, D-48149, Muenster, Germany
| | - Marta Menga
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Christian Pilarsky
- University Hospital Carl Gustav Carus, Technical University of Dresden, TU Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27 b, D-48149, Muenster, Germany
| | - Frauke Alves
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075, Gottingen, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Christian Albrechts University, Arnold-Heller-Str. 7, D-24105, Kiel, Germany
| | - Valeria Casavola
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy; Centre of Excellence in Comparative Genomics (CEGBA), Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy; Centre of Excellence in Comparative Genomics (CEGBA), Bari, Italy.
| |
Collapse
|