1
|
van Poelgeest EP, Handoko ML, Muller M, van der Velde N. Diuretics, SGLT2 inhibitors and falls in older heart failure patients: to prescribe or to deprescribe? A clinical review. Eur Geriatr Med 2023; 14:659-674. [PMID: 36732414 PMCID: PMC10447274 DOI: 10.1007/s41999-023-00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Both heart failure and its treatment with diuretics or SGLT2 inhibitors increase fall risk in older adults. Therefore, decisions to continue or deprescribe diuretics or SGLT2 inhibitors in older heart failure patients who have fallen are generally highly complex and challenging for clinicians. However, a comprehensive overview of information required for rationale and safe decision-making is lacking. The aim of this clinical review was to assist clinicians in safe (de)prescribing of these drug classes in older heart failure patients. METHODS We comprehensively searched and summarized published literature and international guidelines on the efficacy, fall-related safety issues, and deprescribing of the commonly prescribed diuretics and SGLT2 inhibitors in older adults. RESULTS Both diuretics and SGLT2 inhibitors potentially cause various fall-related adverse effects. Their fall-related side effect profiles partly overlap (e.g., tendency to cause hypotension), but there are also important differences; based on the currently available evidence of this relatively new drug class, SGLT2 inhibitors seem to have a favorable fall-related adverse effect profile compared to diuretics (e.g., low/absent tendency to cause hyperglycemia or electrolyte abnormalities, low risk of worsening chronic kidney disease). In addition, SGLT2 inhibitors have potential beneficial effects (e.g., disease-modifying effects in heart failure, renoprotective effects), whereas diuretic effects are merely symptomatic. CONCLUSION (De)prescribing diuretics and SGLT2 inhibitors in older heart failure patients who have fallen is often highly challenging, but this clinical review paper assists clinicians in individualized and patient-centered rational clinical decision-making: we provide a summary of available literature on efficacy and (subclass-specific) safety profiles of diuretics and SGLT2 inhibitors, and practical guidance on safe (de)prescribing of these drugs (e.g. a clinical decision tree for deprescribing diuretics in older adults who have fallen).
Collapse
Affiliation(s)
- Eveline P van Poelgeest
- Department of Internal Medicine/Geriatrics, Amsterdam University Medical Centers, Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Aging and Later Life, Amsterdam, The Netherlands.
| | - M Louis Handoko
- Department of Cardiology, Amsterdam University Medical Centers, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - Majon Muller
- Department of Internal Medicine/Geriatrics, Amsterdam University Medical Centers, Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - Nathalie van der Velde
- Department of Internal Medicine/Geriatrics, Amsterdam University Medical Centers, Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Aging and Later Life, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Li N, Gu HF. Genetic and Biological Effects of SLC12A3, a Sodium-Chloride Cotransporter, in Gitelman Syndrome and Diabetic Kidney Disease. Front Genet 2022; 13:799224. [PMID: 35591852 PMCID: PMC9111839 DOI: 10.3389/fgene.2022.799224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The SLC12A3 (Solute carrier family 12 member 3) gene encodes a sodium-chloride cotransporter and mediates Na+ and Cl− reabsorption in the distal convoluted tubule of kidneys. An experimental study has previously showed that with knockdown of zebrafish ortholog, slc12a3 led to structural abnormality of kidney pronephric distal duct at 1-cell stage, suggesting that SLC12A3 may have genetic effects in renal disorders. Many clinical reports have demonstrated that the function-loss mutations in the SLC12A3 gene, mainly including Thr60Met, Asp486Asn, Gly741Arg, Leu859Pro, Arg861Cys, Arg913Gln, Arg928Cys and Cys994Tyr, play the pathogenic effects in Gitelman syndrome. This kidney disease is inherited as an autosomal recessive trait. In addition, several population genetic association studies have indicated that the single nucleotide variant Arg913Gln in the SLC12A3 gene is associated with diabetic kidney disease in type 2 diabetes subjects. In this review, we first summarized bioinformatics of the SLC12A3 gene and its genetic variation. We then described the different genetic and biological effects of SLC12A3 in Gitelman syndrome and diabetic kidney disease. We also discussed about further genetic and biological analyses of SLC12A3 as pharmacokinetic targets of diuretics.
Collapse
Affiliation(s)
- Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Harvest F. Gu,
| |
Collapse
|
3
|
Horani T, Best RG, Edwards E, DiPette DJ. Genetics of Hypertension: What Is Next? CURRENT CARDIOVASCULAR RISK REPORTS 2015. [DOI: 10.1007/s12170-014-0429-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
de Las Fuentes L, Sung YJ, Schwander KL, Kalathiveetil S, Hunt SC, Arnett DK, Rao DC. The role of SNP-loop diuretic interactions in hypertension across ethnic groups in HyperGEN. Front Genet 2013; 4:304. [PMID: 24400021 PMCID: PMC3872290 DOI: 10.3389/fgene.2013.00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/10/2013] [Indexed: 01/11/2023] Open
Abstract
Blood pressure (BP) is significantly influenced by genetic factors; however, less than 3% of the BP variance has been accounted for by variants identified from genome-wide association studies (GWAS) of primarily European-descent cohorts. Other genetic influences, including gene-environment (GxE) interactions, may explain more of the unexplained variance in BP. African Americans (AA) have a higher prevalence and earlier age of onset of hypertension (HTN) as compared with European Americans (EA); responses to anti-hypertensive drugs vary across race groups. To examine potential interactions between the use of loop diuretics and HTN traits, we analyzed systolic (SBP) and diastolic (DBP) blood BP from 1222 AA and 1231 EA participants in the Hypertension Genetic Epidemiology Network (HyperGEN). Population-specific score tests were used to test associations of SBP and DBP, using a panel of genotyped and imputed single nucleotide polymorphisms (SNPs) for AA (2.9 million SNPs) and EA (2.3 million SNPs). Several promising loci were identified through gene-loop diuretic interactions, although no SNP reached genome-wide significance after adjustment for genomic inflation. In AA, SNPs in or near the genes NUDT12, CHL1, GRIA1, CACNB2, and PYHIN1 were identified for SBP, and SNPs near ID3 were identified for DBP. For EA, promising SNPs for SBP were identified in ESR1 and for DBP in SPATS2L and EYA2. Among these SNPs, none were common across phenotypes or population groups. Biologic plausibility exists for many of the identified genes, suggesting that these are candidate genes for regulation of BP and/or anti-hypertensive drug response. The lack of genome-wide significance is understandable in this small study employing gene-drug interactions. These findings provide a set of prioritized SNPs/candidate genes for future studies in HTN. Studies in more diversified population samples may help identify previously missed variants.
Collapse
Affiliation(s)
- Lisa de Las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of MedicineSt. Louis, MO, USA
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | - Karen L. Schwander
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | - Sonia Kalathiveetil
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| | - Steven C. Hunt
- Division of Cardiovascular Genetics, Department of Internal Medicine, University of Utah School of MedicineSalt Lake City, UT, USA
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at BirminghamBirmingham, AL, USA
| | - D. C. Rao
- Division of Biostatistics, Washington University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
5
|
Moss R, Grosse T, Marchant I, Lassau N, Gueyffier F, Thomas SR. Virtual patients and sensitivity analysis of the Guyton model of blood pressure regulation: towards individualized models of whole-body physiology. PLoS Comput Biol 2012; 8:e1002571. [PMID: 22761561 PMCID: PMC3386164 DOI: 10.1371/journal.pcbi.1002571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022] Open
Abstract
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a "virtual population" from which "virtual individuals" can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the "virtual individuals" that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models.
Collapse
Affiliation(s)
- Robert Moss
- IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France
- Institut Gustave Roussy, Villejuif, France
- Melbourne School of Population Health, The University of Melbourne, Melbourne, Australia
| | - Thibault Grosse
- IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France
- Institut Gustave Roussy, Villejuif, France
| | - Ivanny Marchant
- Escuela de Medicina, Departamento de Pre-clínicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalie Lassau
- IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France
- Institut Gustave Roussy, Villejuif, France
| | - François Gueyffier
- IMTh – Institute for Theoretical Medicine, Lyon, France
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
- INSERM, CIC 201, EPICIME, Lyon, France
- Service de Pharmacologie Clinique, Hop L Pradel, Centre Hospitalier Universitaire Lyon, Lyon, France
| | - S. Randall Thomas
- IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France
- Institut Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol 2008; 294:F867-73. [PMID: 18216144 DOI: 10.1152/ajprenal.00528.2007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Organic anion transporter (OAT) genes have been implicated in renal secretion of organic anions, but the individual in vivo contributions of OAT1 (first identified as NKT) and OAT3 remain unclear. Potential substrates include loop diuretics (e.g., furosemide) and thiazide diuretics (e.g., bendroflumethiazide), which reach their tubular sites of action mainly by proximal tubular secretion. Previous experiments in Oat1 knockout (-/-) mice revealed an almost complete loss of renal secretion of the prototypic organic anion p-aminohippurate (PAH) and a role of OAT1 in tubular secretion of furosemide (Eraly SA, Vallon V, Vaughn D, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK. J Biol Chem 281: 5072-5083, 2006). In this study we found that both furosemide and bendroflumethiazide inhibited mOat1- and mOat3-mediated uptake of a labeled tracer in Xenopus oocytes injected with cRNA, consistent with their being substrates for mouse OAT1 and OAT3. Experiments in Oat3(-/-) mice revealed intact renal secretion of PAH, but the dose-natriuresis curves for furosemide and bendroflumethiazide were shifted to the right and urinary furosemide excretion was impaired similar to the defect in Oat1(-/-) mice. Thus, whereas OAT1 (in contrast to OAT3) is the classic basolateral PAH transporter of the proximal tubule, both OAT1 and OAT3 contribute similarly to normal renal secretion of furosemide and bendroflumethiazide, and a lack of either one is not fully compensated by the other. Although microarray expression analysis in the kidneys of Oat1(-/-) and Oat3(-/-) mice revealed somewhat altered expression of a small number of transport-related genes, none were common to both knockout models. When searching for polymorphisms involved in human diuretic responsiveness, it may be necessary to consider both OAT1 and OAT3, among other genes.
Collapse
Affiliation(s)
- Volker Vallon
- Dept. of Medicine, Univ. of California, San Diego and VASDHCS, 3350 La Jolla Village Drive (9151) San Diego, CA 92161, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Marteau JB, Gambier N, Jeannesson E, Siest G, Visvikis-Siest S. Pharmacogenomics and antihypertensive drugs: a path toward personalized medicine. Per Med 2007; 4:393-412. [DOI: 10.2217/17410541.4.4.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pharmacogenomics focuses on genes and the transcriptome and proteome. It has the potential to enhance healthcare management by improving disease diagnosis and implementing treatments adapted to each patient. Previously, pharmacogenetics of candidate genes focused on clinical research. It is now extended by using genome-wide approaches to elucidate the inherited basis of differences between individuals in their response to drugs. We summarize relevant polymorphisms of genes involved in the pharmacokinetics and pharmacodynamics of antihypertensive drugs and we give an overview of the state of pharmacogenomic research in hypertension medicine. Even if things are getting better, current pharmacogenetic studies still lack power, adequate selection of candidate genes and knowledge of their functions at the physiological level. Finally, some specific end point phenotypes (i.e., peptides or proteins related to the metabolic cycle targeted by the drug) should be integrated to propose data that are easily applicable to personalized medicine.
Collapse
Affiliation(s)
- Jean-Brice Marteau
- Équipe INSERM, Génétique Cardiovasculaire, du CIC 9501, Univ Nancy I, Nancy, F-54000, France
| | - Nicolas Gambier
- Équipe INSERM, Génétique Cardiovasculaire, du CIC 9501, Univ Nancy I, Nancy, F-54000, France
| | - Elise Jeannesson
- Équipe INSERM, Génétique Cardiovasculaire, du CIC 9501, Univ Nancy I, Nancy, F-54000, France
| | - Gérard Siest
- Équipe INSERM, Génétique Cardiovasculaire, du CIC 9501, Univ Nancy I, Nancy, F-54000, France
| | - Sophie Visvikis-Siest
- Équipe Inserm, Génétique Cardiovasculaire, du CIC 9501, Faculté de Pharmacie, Université Henri Poincaré, Nancy I, 30 rue Lionnois, 54000 Nancy, France
| |
Collapse
|
9
|
Vormfelde SV, Sehrt D, Toliat MR, Schirmer M, Meineke I, Tzvetkov M, Nürnberg P, Brockmöller J. Genetic Variation in the Renal Sodium Transporters NKCC2, NCC, and ENaC in Relation to the Effects of Loop Diuretic Drugs. Clin Pharmacol Ther 2007; 82:300-9. [PMID: 17460608 DOI: 10.1038/sj.clpt.6100131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is little data on genetic predictors of loop diuretic efficacy in humans. Therefore, we investigated the diuretic effects of single oral doses of bumetanide, frusemide, and torsemide in a crossover study in 97 healthy Caucasians in relation to genetic variation in the renal sodium transporters NKCC2 (coded by SLC12A1), NCC (SLC12A3), and ENaC (three subunits coded by SCNN1A, SCNN1B, and SCNN1G). The NCC alanine 264 allele (Gly264Ala) and the most frequent SCNN1B haplotype were associated with stronger diuresis, indicating lower reabsorbing function of these alleles. The variant alleles of the tightly coupled polymorphisms rs5723 (Leu649Leu) and rs5729 in SCNN1G were associated with weaker diuresis, indicating higher activity. Extended haplotype homozygosity implied evolutionary selection of the NCC alanine 264 allele. In conclusion, acute diuretic effects of loop diuretics were affected by genetic variation in sodium transporters that, in the nephron, are located distally from NKCC2.
Collapse
Affiliation(s)
- S V Vormfelde
- Department of Clinical Pharmacology, University Medical Centre, Georg-August-University Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Vormfelde SV, Schirmer M, Hagos Y, Toliat MR, Engelhardt S, Meineke I, Burckhardt G, Nürnberg P, Brockmöller J. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. Br J Clin Pharmacol 2007; 62:323-35. [PMID: 16934049 PMCID: PMC1885129 DOI: 10.1111/j.1365-2125.2006.02655.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS To investigate the association between torsemide renal clearance and genetic variation in the basolaterally expressed renal organic anion transporters OAT1 and OAT3 and in the luminally situated OAT4. METHODS We analysed 22 polymorphisms in the OAT coding genes SLC22A6, SLC22A8 and SLC22A11 and their haplotypes and measured torsemide renal clearance in 95 healthy men. In addition, the effect of torsemide on the OAT-mediated transport was studied in vitro. RESULTS In stably transfected HEK293 cells torsemide (100 microm) inhibited the uptake by human OAT1, OAT3 and OAT4 by 63.1, 58.1 and 68.0%, respectively. Torsemide renal clearance ranged from 6.5 to 43.1 ml min(-1) with a log-normal distribution and a geometric mean of 15.6 ml min(-1) (15.0-16.1 +/- SEM). No clear outlier group was observed. AA carriers of the polymorphism rs11231809 in SLC22A11 had a torsemide renal clearance of 13.3 ml min(-1) (12.7-13.9) compared with 15.1 ml min(-1) (14.5-15.8) in AT and 18.0 ml min(-1) (16.7-19.5) in TT carriers (P = 0.002). The two most frequent haplotypes at SLC22A11 showed an association with torsemide renal clearance. Homozygous carriage of these two haplotypes resulted in renal clearances of 21.2 ml min(-1) (19.0-23.7) and 11.8 ml min(-1) (10.5-13.5), respectively. No association between reanl clearance and genetic variation in SLC22A6 or SLC22A8 was observed. CONCLUSIONS Genetic variation in the gene encoding the luminally expressed OAT4 rather than in the basolaterally expressed OATs may affect the renal clearance of torsemide.
Collapse
Affiliation(s)
- Stefan V Vormfelde
- Centre of Physiology and Pathophysiology, Georg-August University Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
van der Vorst MMJ, Kist JE, van der Heijden AJ, Burggraaf J. Diuretics in pediatrics : current knowledge and future prospects. Paediatr Drugs 2006; 8:245-64. [PMID: 16898855 DOI: 10.2165/00148581-200608040-00004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This review summarizes current knowledge on the pharmacology, pharmacokinetics, pharmacodynamics, and clinical application of the most commonly used diuretics in children. Diuretics are frequently prescribed drugs in children. Their main indication is to reduce fluid overload in acute and chronic disease states such as congestive heart failure and renal failure. As with most drugs used in children, optimal dosing schedules are largely unknown and empirical. This is undesirable as it can potentially result in either under- or over-treatment with the possibility of unwanted effects. The pharmacokinetics of diuretics vary in the different pediatric age groups as well as in different disease states. To exert their action, all diuretics, except spironolactone, have to reach the tubular lumen by glomerular filtration and/or proximal tubular secretion. Therefore, renal maturation and function influence drug delivery and consequently pharmacodynamics. Currently advised doses for diuretics are largely based on adult pharmacokinetic and pharmacodynamic studies. Therefore, additional pharmacokinetic and pharmacodynamic studies for the different pediatric age groups are necessary to develop dosing regimens based on pharmacokinetic and pharmacodynamic models for all routes of administration.
Collapse
|
12
|
Lazar A, Zimmermann T, Koch W, Gründemann D, Schömig A, Kastrati A, Schömig E. Lower prevalence of the OCT2 Ser270 allele in patients with essential hypertension. Clin Exp Hypertens 2006; 28:645-53. [PMID: 17060063 DOI: 10.1080/10641960600946411] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Impairment of the renal dopaminergic pathway has been shown to result in essential hypertension. The Organic Cation Transporter 2, OCT2 (SLC22A2), has been implicated in renal dopamine handling as well as in the inactivation of circulating catecholamines and is supposed to be involved in blood pressure regulation. This study investigated the association of the OCT2 Ala270Ser polymorphism with essential hypertension and its impact on blood pressure status in 607 Caucasian patients who underwent left heart catheterization. Clinical characteristics and diagnosis were recorded and blood pressure was determined by intravascular measurement. A comparison of genotypes revealed that patients with the Ser270 allele were less frequently affected by the clinical diagnosis of hypertension than homozygous carriers of the wild type allele Ala270 (Kruskal Wallis test, p = 0.028). This relation was even more pronounced in the subgroup of patients without diabetes mellitus (Kruskal Wallis test, p = 0.013). In summary, the first data on OCT2 are presented in the context of a candidate gene analysis. The Ala270Ser polymorphism was significantly associated with essential hypertension in the present sample. This study further suggests a function of OCT2 in blood pressure homeostasis and points to the potential role of the transporter in the development of essential hypertension.
Collapse
Affiliation(s)
- Andreas Lazar
- Department of Pharmacology, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Vormfelde SV, Sehrt D, Bolte D, Pahl S, Tzvetkov M, Brockmöller J. Hydrochlorothiazide efficacy and polymorphisms in ACE, ADD1 and GNB3 in healthy, male volunteers. Eur J Clin Pharmacol 2006; 62:195-201. [PMID: 16450155 DOI: 10.1007/s00228-005-0081-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The antihypertensive effect of thiazide diuretics has recently been associated with genetic variation in the angiotensin I-converting enzyme (ACE), alpha-adducin (ADD1) and the G protein subunit beta3 (GNB3). Analysis of short-term diuretic effects may provide insight into the mechanisms behind these findings. METHODS A total of 103 male volunteers took 25 and 100 mg hydrochlorothiazide (HCT) after a placebo day, each. We measured volume, sodium, chloride, potassium, calcium excretion, blood pressure and heart rate. RESULTS Excretion and cardiovascular parameters were highly constant between the 2 placebo days. The resting heart rate was 2-3 beats/minute (bpm) higher per ACE insertion allele on all 4 study days. The HCT-induced excretion of sodium, chloride and volume was independent of the genotypes. The additional potassium excretion induced by 100 mg HCT was 44+/-21, 33+/-27 and 16+/-26 mmol (mean+/-SD, p<0.001) in ACE II, ID and DD carriers and the same trend was observed after 25 mg HCT. As a second finding, the 100 mg HCT-induced calcium retention was 0.2+/-1.2, 0.7+/-0.8 and 1.7+/-2.1 mmol in ADD1 Gly/Gly, Gly/Trp and Trp/Trp carriers (p=0.002) and the same trend existed after 25 mg HCT. CONCLUSION The effects of genetic polymorphisms were stronger with the higher diuretic dose. ACE insertion allele carriers appeared to be more prone to hypokalaemia than deletion allele carriers. ADD1 Trp460 carriers may especially benefit from the calcium-sparing effect of thiazides. Both associations should be further studied in long-term treatment with thiazide diuretics.
Collapse
Affiliation(s)
- Stefan Viktor Vormfelde
- Department of Clinical Pharmacology University Medical Center, Georg-August-University, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem 2005; 281:5072-83. [PMID: 16354673 DOI: 10.1074/jbc.m508050200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The "classical" organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knock-out mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of approximately 60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Hypertension is a multifactorial disorder that probably results from the inheritance of a number of susceptibility genes and involves multiple environmental determinants. Existing evidence suggests that the genetic contribution to blood pressure variation is about 30-50%. Although a number of candidate genes have been studied in different ethnic populations, results from genetic analysis are still inconsistent and specific causes of hypertension remain unclear. Furthermore, the abundance of data in the literature makes it difficult to piece together the puzzle of hypertension and to define candidate genes involved in the dynamic of blood pressure regulation. In this review, we attempt to highlight the genetic basis of hypertension pathogenesis, focusing on the most important existing genetic variations of candidate genes and their potential role in the development of this disease. Our objective is to review current knowledge and discuss limitations to clinical applications of genotypic information in the diagnosis, evaluation and treatment of hypertension. Finally, some principles of pharmacogenomics are presented here along with future perspectives of hypertension.
Collapse
Affiliation(s)
- Jean-Brice Marteau
- INSERM U525, Equipe 4, Faculté de Pharmacie, Université Henri Poincare, Nancy, France
| | | | | | | |
Collapse
|
16
|
|
17
|
Roots I, Gerloff T, Meisel C, Kirchheiner J, Goldammer M, Kaiser R, Laschinski G, Brockmöller J, Cascorbi I, Kleeberg U, Hildebrandt AG. Pharmacogenetics‐Based New Therapeutic Concepts. Drug Metab Rev 2004; 36:617-38. [PMID: 15554239 DOI: 10.1081/dmr-200033458] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pharmacogenetics, one of the fields of clinical pharmacology, studies how genetic factors influence drug response. If hereditary traits are taken into account appropriately before starting drug treatment, the type of drug and its dosage can be tailored to the individual patient's needs. Pharmacogenetics adds a considerable amount of stringency to the doctor's therapeutic approach. Today, it is the relationship between dosage requirements and genetic variations in drug metabolizing enzymes like cytochrome P450 (CYP) 2D6 and CYP2C19, or in drug transporters like p-glycoprotein, that is substantiated best. A standard dose will bring about more adverse effects than usual if enzymatic activity is lacking or feeble. Sometimes, however, therapeutic response might be better due to higher concentrations: proton pump inhibitors for eradication of Helicobacter pylori are more efficacious in carriers of a deficient CYP2C19 variant. The drug's interaction with its target (e.g. receptor) also depends on genetic factors. In some cases genetic tests can help distinguish between responders and non-responders of a specific drug treatment. The first pharmacogenetic tests are already on the market.
Collapse
Affiliation(s)
- Ivar Roots
- Institut für Klinische Pharmakologie, Charité-Universitätsmedizin Berlin, Campus Charitè Mitte, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Siest G, Jeannesson E, Berrahmoune H, Maumus S, Marteau JB, Mohr S, Visvikis S. Pharmacogenomics and drug response in cardiovascular disorders. Pharmacogenomics 2004; 5:779-802. [PMID: 15469403 DOI: 10.1517/14622416.5.7.779] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
There are a total of 17 families of drugs that are used for treating the heterogeneous group of cardiovascular diseases. We propose a comprehensive pharmacogenomic approach in the field of cardiovascular therapy that considers the five following sources of variability: the genetics of pharmacokinetics, the genetics of pharmacodynamics (drug targets), genetics linked to a defined pathology and its corresponding drug therapies, the genetics of physiologic regulation, and environmental–genetic interactions. Examples of the genetics of pharmacokinetics are presented for phase I (cytochromes P450) and phase II (conjugating enzymes) drug-metabolizing enzymes and for phase III drug transporters. The example used to explain the genetics of pharmacodynamics is glycoprotein IIIa and the response to antiplatelet effects of aspirin. Genetics linked to a defined pathology and its corresponding drug therapies is exemplified by ADRB1, ACE, CETP and APOE and drug response in metabolic syndrome. The examples of cytochrome P450s, APOE and ADRB2 in relation to ethnicity, age and gender are presented to describe genetics of physiologic regulation. Finally, environmental–genetic interactions are exemplified by CYP7A1 and the effects of diet on plasma lipid levels, and by APOE and the effects of smoking in cardiovascular disease. We illustrate this five-tiered approach using examples of cardiovascular drugs in relation to genetic polymorphism.
Collapse
Affiliation(s)
- G Siest
- Université Henri Poincaré, INSERM U525, Nancy I, Faculté de Pharmacie, 30 rue Lionnois, 54000 Nancy, France.
| | | | | | | | | | | | | |
Collapse
|