1
|
Balasubramanian S, Perumal E. Integrated in silico analysis of transcriptomic alterations in nanoparticle toxicity across human and mouse models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174897. [PMID: 39053559 DOI: 10.1016/j.scitotenv.2024.174897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles, due to their exceptional physicochemical properties are used in our day-to-day environment. They are currently not regulated which might lead to increased levels in the biological systems causing adverse effects. However, the overall mechanism behind nanotoxicity remains elusive. Previously, we analysed the transcriptome datasets of copper oxide nanoparticles using in silico tools and identified IL-17, chemokine signaling pathway, and cytokine-cytokine receptor interaction as the key pathways altered. Based on the findings, we hypothesized a common pathway could be involved in transition metal oxide nanoparticles toxicity irrespective of the variables. Further, there could be unique transcriptome changes between metal oxide nanoparticles and other nanoparticles. To accomplish this, the overall transcriptome datasets of nanoparticles consisting of microarray and RNA-Seq were obtained. >90 studies for 17 different nanoparticles, performed in humans, rats, and mice were assessed. After initial screening, 24 mouse studies (with 196 datasets) and 34 human studies (with 200 datasets) were used for further analyses. The common genes that are dysregulated upon NPs exposure were identified for human and mouse datasets separately. Further, an overrepresentation functional enrichment analysis was performed. The common genes, their gene ontology, gene-gene, and protein-protein interactions were assessed. The overall results suggest that IL-17 and its related pathways might be commonly altered in nanoparticle exposure with lung as one of the major organs affected.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
2
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
4
|
Balci-Ozyurt A, Yirün A, Cakır DA, Zeybek ND, Oral D, Sabuncuoğlu S, Erkekoğlu P. Evaluation of possible cytotoxic, genotoxic and epigenotoxic effects of titanium dioxide nanoparticles and possible protective effect of melatonin. Toxicol Mech Methods 2024; 34:109-121. [PMID: 37794599 DOI: 10.1080/15376516.2023.2259980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Nanoparticles (NPs) are particles of matter that are between 1 to 100 nm in diameter. They are suggested to cause toxic effects in both humans and environment thorough different mechanisms. However, their toxicity profile may be different from the parent material. Titanium dioxide (TiO2) NPs are widely used in cosmetic, pharmaceutical and food industries. As a white pigment, the use of TiO2 is used in food coloring, industrial paints, clothing and UV filters has increased tremendously in recent years. Melatonin, on the other hand, is a well-known antioxidant and may prevent oxidative stress caused by a variety of different substances, including NPs. In the current study, we aimed to comparatively investigate the effects of normal-sized TiO2 (220 nm) and nano-sized TiO2 (21 nm) on cytopathology, cytotoxicity, oxidative damage (lipid peroxidation, protein oxidation and glutathione), genotoxicity (8-hydroxydeoxyguanosine), apoptosis (caspase 3, 8 and 9) and epigenetic alterations (global DNA methylation, H3 acetylation) on 3T3 fibroblast cells. In addition, the possible protective effects of melatonin, which is known to have strong antioxidant effects, against the toxicity of TiO2 were also evaluated. Study groups were: a. the control group; b. melatonin group; c. TiO2 group; d. nano-sized TiO2 group; e. TiO2 + melatonin group and f. nano-sized TiO2 + melatonin group. We observed that both normal-sized and nano-sized TiO2 NPs showed significant toxic effects. However, TiO2 NPs caused higher DNA damage and global DNA methylation compared to normal-sized TiO2 whereas normal-sized TiO2 led to lower H3 acetylation vs. TiO2 NPs. Melatonin showed partial protective effect against the toxicity caused by TiO2 NPs.
Collapse
Affiliation(s)
- Aylin Balci-Ozyurt
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Bahçeşehir University School of Pharmacy, İstanbul, Turkey
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Çukurova University Faculty of Pharmacy, Adana, Turkey
| | - Deniz Arca Cakır
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| | - N Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Didem Oral
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Düzce University Faculty of Pharmacy, Düzce, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| |
Collapse
|
5
|
Komedchikova EN, Kolesnikova OA, Syuy AV, Volkov VS, Deyev SM, Nikitin MP, Shipunova VO. Targosomes: Anti-HER2 PLGA nanocarriers for bioimaging, chemotherapy and local photothermal treatment of tumors and remote metastases. J Control Release 2024; 365:317-330. [PMID: 37996056 DOI: 10.1016/j.jconrel.2023.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Developing combined cancer therapy strategies is of utmost importance as it can enhance treatment efficacy, overcome drug resistance, and ultimately improve patient outcomes by targeting multiple pathways and mechanisms involved in cancer growth and progression. Specifically, the potential of developing a combination chemo&photothermal therapy using targeted polymer nanoparticles as nanocarriers offers a promising approach for synergistic cancer treatment by combining the benefits of both therapies, such as targeted drug delivery and localized hyperthermia. Here, we report the first targeted anti-HER2 PLGA nanocarriers, called targosomes, that simultaneously possess photothermal, chemotherapeutic and diagnostic properties using only molecular payloads. Biocompatible poly(lactic-co-glycolic acid), PLGA, nanoparticles were loaded with photosensitizer phthalocyanine, diagnostic dye Nile Blue, and chemotherapeutic drug irinotecan, which was chosen as a result of screening a panel of theragnostic nanoparticles. The targeted delivery to cell surface oncomarker HER2 was ensured by nanoparticle modification with the anti-HER2 monoclonal antibody, trastuzumab, using the one-pot synthesis method without chemical conjugation. The irradiation tests revealed prominent photothermal properties of nanoparticles, namely heating by 35 °C in 10 min. Nanoparticles exhibited a 7-fold increase in binding and nearly an 18-fold increase in cytotoxicity for HER2-overexpressing cells compared to cells lacking HER2 expression. This enhancement of cytotoxicity was further amplified by >20-fold under NIR light irradiation. In vivo studies proved the efficacy of nanoparticles for bioimaging of primary tumor and metastasis sites and demonstrated 93% tumor growth inhibition, making these nanoparticles excellent candidates for translation into theragnostic applications.
Collapse
Affiliation(s)
- E N Komedchikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - O A Kolesnikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - A V Syuy
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - V S Volkov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - M P Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - V O Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia.
| |
Collapse
|
6
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
7
|
Herrera-Rodríguez MA, Del Pilar Ramos-Godinez M, Cano-Martínez A, Segura FC, Ruiz-Ramírez A, Pavón N, Lira-Silva E, Bautista-Pérez R, Thomas RS, Delgado-Buenrostro NL, Chirino YI, López-Marure R. Food-grade titanium dioxide and zinc oxide nanoparticles induce toxicity and cardiac damage after oral exposure in rats. Part Fibre Toxicol 2023; 20:43. [PMID: 37978398 PMCID: PMC10655394 DOI: 10.1186/s12989-023-00553-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Metallic nanoparticles (NPs) are widely used as food additives for human consumption. NPs reach the bloodstream given their small size, getting in contact with all body organs and cells. NPs have adverse effects on the respiratory and intestinal tract; however, few studies have focused on the toxic consequences of orally ingested metallic NPs on the cardiovascular system. Here, the effects of two food-grade additives on the cardiovascular system were analyzed. METHODS Titanium dioxide labeled as E171 and zinc oxide (ZnO) NPs were orally administered to Wistar rats using an esophageal cannula at 10 mg/kg bw every other day for 90 days. We evaluated cardiac cell morphology and death, expression of apoptotic and autophagic proteins in cardiac mitochondria, mitochondrial dysfunction, and concentration of metals on cardiac tissue. RESULTS Heart histology showed important morphological changes such as presence of cellular infiltrates, collagen deposition and mitochondrial alterations in hearts from rats exposed to E171 and ZnO NPs. Intracellular Cyt-C levels dropped, while TUNEL positive cells increased. No significant changes in the expression of inflammatory cytokines were detected. Both NPs altered mitochondrial function indicating cardiac dysfunction, which was associated with an elevated concentration of calcium. ZnO NPs induced expression of caspases 3 and 9 and two autophagic proteins, LC3B and beclin-1, and had the strongest effect compared to E171. CONCLUSIONS E171 and ZnO NPs induce adverse cardiovascular effects in rats after 90 days of exposure, thus food intake containing these additives, should be taken into consideration, since they translocate into the bloodstream and cause cardiovascular damage.
Collapse
Affiliation(s)
- Manuel Alejandro Herrera-Rodríguez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección 16, Tlalpan, C.P. 14080, Ciudad de Mexico, México
| | | | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección 16, Tlalpan, C.P. 14080, Ciudad de Mexico, México
| | - Francisco Correa Segura
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Angélica Ruiz-Ramírez
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Natalia Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Elizabeth Lira-Silva
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Rocío Bautista-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Rosina Sánchez Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | - Yolanda Irasema Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Ciudad de México, México
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Colonia Sección 16, Tlalpan, C.P. 14080, Ciudad de Mexico, México.
| |
Collapse
|
8
|
Neetika, Sharma M, Thakur P, Gaur P, Rani GM, Rustagi S, Talreja RK, Chaudhary V. Cancer treatment and toxicity outlook of nanoparticles. ENVIRONMENTAL RESEARCH 2023; 237:116870. [PMID: 37567383 DOI: 10.1016/j.envres.2023.116870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Diversified nanosystems with tunable physicochemical attributes have emerged as potential solution to globally devastating cancer by offering novel possibilities for improving the techniques of cancer detection, imaging, therapies, diagnosis, drug delivery and treatment. Drug delivery systems based on nanoparticles (NPs) with ability of crossing different biological barriers are becoming increasingly popular. Besides, NPs are utilized in pharmaceutical sciences to mitigate the toxicity of conventional cancer therapeutics. However, significant NPs-associated toxicity, off-targeted activities, and low biocompatibility limit their utilization for cancer theranostics and can be hazardous to cancer patients up to life-threatening conditions. NPs interact with the biomolecules and disturb their regular function by aggregating inside cells and forming a protein corona, and the formulation turns ineffective in controlling cancer cell growth. The adverse interactions between NPs and biological entities can lead to life-threatening toxicities. This review focuses on the widespread use of various NPs including zinc oxide, titanium oxide, silver, and gold, which serve as efficient nano-vehicles and demonstrate notable pharmacokinetic and pharmacodynamic advantages in cancer therapy. Subsequently, the mechanism of nanotoxicity attached with these NPs, alternate solutions and their prospect to revolutionize cancer theranostics are highlighted. This review will serve as guide for future developments associated with high-performance NPs with controlled toxicity for establishing them as modern-age nanotools to manage cancer in tailored manner.
Collapse
Affiliation(s)
- Neetika
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173212, India
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173212, India.
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paras Gaur
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa, 52242, United States
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC.
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttranchal University, Dehradun, Uttrakhand, India
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
9
|
Yamini V, Shanmugam V, Rameshpathy M, Venkatraman G, Ramanathan G, Al Garalleh H, Hashmi A, Brindhadevi K, Devi Rajeswari V. Environmental effects and interaction of nanoparticles on beneficial soil and aquatic microorganisms. ENVIRONMENTAL RESEARCH 2023; 236:116776. [PMID: 37517486 DOI: 10.1016/j.envres.2023.116776] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A steadily increasing production volume of nanoparticles reflects their numerous industrial and domestic applications. These economic successes come with the potential adverse effects on natural systems that are associated with their presence in the environment. Biological activities and effects of nanoparticles are affected by their entry method together with their specificities like their size, shape, charge, area, and chemical composition. Particles can be classified as safe or dangerous depending on their specific properties. As both aquatic and terrestrial systems suffer from organic and inorganic contamination, nanoparticles remain a sink for these contaminants. Researching the sources, synthesis, fate, and toxicity of nanoparticles has advanced significantly during the last ten years. We summarise nanoparticle pathways throughout the ecosystem and their interactions with beneficial microorganisms in this research. The prevalence of nanoparticles in the ecosystem causes beneficial microorganisms to become hazardous to their cells, which prevents the synthesis of bioactive molecules from undergoing molecular modifications and diminishes the microbe population. Recently, observed concentrations in the field could support predictions of ambient concentrations based on modeling methodologies. The aim is to illustrate the beneficial and negative effects that nanoparticles have on aqueous and terrestrial ecosystems, as well as the methods utilized to reduce their toxicity.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Venkatkumar Shanmugam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Rameshpathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Dahban, Jeddah, 21361, Saudi Arabia
| | - Ahmed Hashmi
- Architectural Engineering Department, College of Engineering, University of Business and Technology - Dahban, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India.
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
10
|
Ning X, Li X, Ma K, Pang H, Tian T, Hao H, Hou Q, Li M, Liu T, Hou S, Du H, Song X, Sun Z, Zhao C, Jin M. VDAC1 Protein Regulation of Oxidative Damage and Mitochondrial Dysfunction-Mediated Cytotoxicity by Silica Nanoparticles in SH-SY5Y Cells. Mol Neurobiol 2023; 60:6542-6555. [PMID: 37458989 DOI: 10.1007/s12035-023-03491-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 09/28/2023]
Abstract
Silica nanoparticles (SiNPs) have been widely used in industry, electronics, and pharmaceutical industries. In addition, it is also widely used in medicine, tumor treatment and diagnosis, as well as other biomedical and biotechnology fields. The opportunities for people to contact SiNPs through iatrogenic, occupational, and environmental exposures are gradually increasing. The damage and biological effects of SiNPs on the nervous system have attracted widespread attention in the field of toxicology. Central nerve cells are rich in mitochondria. It is suggested that the effects of SiNPs on mitochondrial damage of nerve cells may involve the maintenance of neuronal membrane potential, the synthesis and operation of neurotransmitters, and the transmission of nerve pulses, and so on. We established an experimental model of SH-SY5Y cells to detect the cell survival rate, apoptosis, changes of reactive oxygen species and mitochondrial membrane potential, and the expression of mitochondrial function-related enzymes and proteins, so as to reveal the possible mechanism of SiNPs on neuronal mitochondrial damage. It was found that SiNPs could cause oxidative damage to cells and mitochondria, destroy some normal functions of mitochondria, and induce apoptosis in SH-SY5Y cells. The voltage-dependent anion channel 1(VDAC1) protein inhibitor DIDS could effectively reduce intracellular oxidative stress, such as the reduction of ROS content, and could also usefully restore some functional proteins of mitochondria to normal levels. The inhibition of VDAC1 protein may play an important role in the oxidative damage and dysfunction of neuronal mitochondria induced by SiNPs.
Collapse
Affiliation(s)
- Xiaofan Ning
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xinyue Li
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Kai Ma
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Huan Pang
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tiantian Tian
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Huifang Hao
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Qiaohong Hou
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Meng Li
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tianxiang Liu
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shanshan Hou
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Haiying Du
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xiuling Song
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Chao Zhao
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
11
|
Ciftci N, Sargin I, Arslan G, Karakurt S, Arslan U. Investigation of in vitro antimicrobial and cytotoxic effects of gold nanoparticles capped with meropenem and imipenem. Nanomedicine (Lond) 2023; 18:1719-1731. [PMID: 37965902 DOI: 10.2217/nnm-2023-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Aim: This study aimed to investigate the in vitro antimicrobial effect of gold nanoparticles capped with meropenem and imipenem against various strains and to evaluate the cytotoxic effect of gold nanoparticles on healthy human colon epithelial cells. Materials & methods: Gold nanoparticles were synthesized via the Turkevich method and tested for antimicrobial effects using broth microdilution. Cell culture studies were performed using a cytotoxicity assay with alamarBlue™. Results & conclusion: Nanoparticles (10-20 nm) with antibiotic coating were more effective against Escherichia coli, Proteus spp. and Serratia marcescens than pure antibiotics. They had a cytotoxic effect on cells at high concentrations but were safe at low concentrations.
Collapse
Affiliation(s)
- Nurullah Ciftci
- Kafkas University Faculty of Medicine, Medical Microbiology Department, 36100, Turkey
| | - Idris Sargin
- Selcuk University Faculty of Science, Biochemistry Department, 42130, Turkey
| | - Gulsin Arslan
- Selcuk University Faculty of Science, Biochemistry Department, 42130, Turkey
| | - Serdar Karakurt
- Selcuk University Faculty of Science, Biochemistry Department, 42130, Turkey
| | - Ugur Arslan
- Selcuk University Faculty of Medicine, Medical Microbiology Department, 42130, Turkey
| |
Collapse
|
12
|
Valeriano A, Bondaug F, Ebardo I, Almonte P, Sabugaa MA, Bagnol JR, Latayada MJ, Macalalag JM, Paradero BD, Mayes M, Balanay M, Alguno A, Capangpangan R. Predicting cytotoxicity of engineered nanoparticles using regularized regression models: an in silico approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:591-604. [PMID: 37551411 DOI: 10.1080/1062936x.2023.2242785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
The widespread application of engineered nanoparticles (NPs) in various industries has demonstrated their effectiveness over the years. However, modifications to NPs' physicochemical properties can lead to toxicological effects. Therefore, understanding the toxicity behaviour of NPs is crucial. In this paper, regularized regression models, such as ridge, LASSO, and elastic net, were constructed to predict the cytotoxicity of various engineered NPs. The dataset utilized in this study was compiled from several journals published between 2010 and 2022. Data exploration revealed missing values, which were addressed through listwise deletion and kNN imputation, resulting in two complete datasets. The ridge, LASSO, and elastic net models achieved F1 scores ranging from 91.81% to 92.65% during internal validation and 92.89% to 93.63% during external validation on Dataset 1. On Dataset 2, the models attained F1 scores between 92.16% and 92.43% during internal validation and 92% and 92.6% during external validation. These results indicate that the developed models effectively generalize to unseen data and demonstrate high accuracy in classifying cytotoxicity levels. Furthermore, the cell type, material, cell source, cell tissue, synthesis method, and coat or functional group were identified as the most important descriptors by the three models across both datasets.
Collapse
Affiliation(s)
- A Valeriano
- Research on Environment and Nanotechnology Laboratories, Research Division, Mindanao State University at Naawan, Naawan, Philippines
| | - F Bondaug
- Research on Environment and Nanotechnology Laboratories, Research Division, Mindanao State University at Naawan, Naawan, Philippines
- Department of Science and Technology, Science Education Institute, Taguig City, Philippines
| | - I Ebardo
- Research on Environment and Nanotechnology Laboratories, Research Division, Mindanao State University at Naawan, Naawan, Philippines
- Department of Science and Technology, Science Education Institute, Taguig City, Philippines
| | - P Almonte
- Research on Environment and Nanotechnology Laboratories, Research Division, Mindanao State University at Naawan, Naawan, Philippines
| | - M A Sabugaa
- Research on Environment and Nanotechnology Laboratories, Research Division, Mindanao State University at Naawan, Naawan, Philippines
| | - J R Bagnol
- Department of Mathematics and Statistics, University of Southeastern Philippines, Davao City, Philippines
| | - M J Latayada
- Department of Mathematics, Caraga State University, Butuan City, Philippines
| | - J M Macalalag
- Department of Mathematics, Caraga State University, Butuan City, Philippines
| | - B D Paradero
- Information, Communication and Technology Center, Mindanao State University at Naawan, Naawan, Philippines
| | - M Mayes
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, NH, USA
| | - M Balanay
- Department of Chemistry, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - A Alguno
- Department of Physics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - R Capangpangan
- Research on Environment and Nanotechnology Laboratories, Research Division, Mindanao State University at Naawan, Naawan, Philippines
- College of Marine and Allied Sciences, Mindanao State University at Naawan, Naawan, Philippines
| |
Collapse
|
13
|
Stuparu-Cretu M, Braniste G, Necula GA, Stanciu S, Stoica D, Stoica M. Metal Oxide Nanoparticles in Food Packaging and Their Influence on Human Health. Foods 2023; 12:1882. [PMID: 37174420 PMCID: PMC10178527 DOI: 10.3390/foods12091882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
It is a matter of common knowledge in the literature that engineered metal oxide nanoparticles have properties that are efficient for the design of innovative food/beverage packages. Although nanopackages have many benefits, there are circumstances when these materials are able to release nanoparticles into the food/beverage matrix. Once dispersed into food, engineered metal oxide nanoparticles travel through the gastrointestinal tract and subsequently enter human cells, where they display various behaviors influencing human health or wellbeing. This review article provides an insight into the antimicrobial mechanisms of metal oxide nanoparticles as essential for their benefits in food/beverage packaging and provides a discussion on the oral route of these nanoparticles from nanopackages to the human body. This contribution also highlights the potential toxicity of metal oxide nanoparticles for human health. The fact that only a small number of studies address the issue of food packaging based on engineered metal oxide nanoparticles should be particularly noted.
Collapse
Affiliation(s)
- Mariana Stuparu-Cretu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania
| | - Gheorghe Braniste
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| | - Gina-Aurora Necula
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| | - Silvius Stanciu
- Faculty of Food Science, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania;
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania;
| | - Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| |
Collapse
|
14
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
15
|
Min Y, Suminda GGD, Heo Y, Kim M, Ghosh M, Son YO. Metal-Based Nanoparticles and Their Relevant Consequences on Cytotoxicity Cascade and Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030703. [PMID: 36978951 PMCID: PMC10044810 DOI: 10.3390/antiox12030703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today’s advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | | | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil 626126, India
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| |
Collapse
|
16
|
Transcriptomic Profiling the Effects of Airway Exposure of Zinc Oxide and Silver Nanoparticles in Mouse Lungs. Int J Mol Sci 2023; 24:ijms24065183. [PMID: 36982257 PMCID: PMC10049322 DOI: 10.3390/ijms24065183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Consumers and manufacturers are exposed to nanosized zinc oxide (nZnO) and silver particles (nAg) via airways, but their biological effects are still not fully elucidated. To understand the immune effects, we exposed mice to 2, 10, or 50 μg of nZnO or nAg by oropharyngeal aspiration and analyzed the global gene expression profiles and immunopathological changes in the lungs after 1, 7, or 28 days. Our results show that the kinetics of responses varied in the lungs. Exposure to nZnO resulted in the highest accumulation of F4/80- and CD3-positive cells, and the largest number of differentially expressed genes (DEGs) were identified after day 1, while exposure to nAg caused peak responses at day 7. Additionally, nZnO mainly activated the innate immune responses leading to acute inflammation, whereas the nAg activated both innate and adaptive immune pathways, with long-lasting effects. This kinetic-profiling study provides an important data source to understand the cellular and molecular processes underlying nZnO- and nAg-induced transcriptomic changes, which lead to the characterization of the corresponding biological and toxicological effects of nZnO and nAg in the lungs. These findings could improve science-based hazard and risk assessment and the development of safe applications of engineered nanomaterials (ENMs), e.g., in biomedical applications.
Collapse
|
17
|
Herdiana Y, Wathoni N, Gozali D, Shamsuddin S, Muchtaridi M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030879. [PMID: 36986740 PMCID: PMC10051865 DOI: 10.3390/pharmaceutics15030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Despite recent advances, cancer remains the primary killer on a global scale. Numerous forms of research have been conducted to discover novel and efficient anticancer medications. The complexity of breast cancer is a major challenge which is coupled with patient-to-patient variations and heterogeneity between cells within the tumor. Revolutionary drug delivery is expected to provide a solution to that challenge. Chitosan nanoparticles (CSNPs) have prospects as a revolutionary delivery system capable of enhancing anticancer drug activity and reducing negative impacts on normal cells. The use of smart drug delivery systems (SDDs) as delivering materials to improve the bioactivity of NPs and to understand the intricacies of breast cancer has garnered significant interest. There are many reviews about CSNPs that present various points of view, but they have not yet described a series in cancer therapy from cell uptake to cell death. With this description, we will provide a more complete picture for designing preparations for SDDs. This review describes CSNPs as SDDSs, enhancing cancer therapy targeting and stimulus response using their anticancer mechanism. Multimodal chitosan SDDs as targeting and stimulus response medication delivery will improve therapeutic results.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), USM, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
18
|
Banaye Yazdipour A, Masoorian H, Ahmadi M, Mohammadzadeh N, Ayyoubzadeh SM. Predicting the toxicity of nanoparticles using artificial intelligence tools: a systematic review. Nanotoxicology 2023; 17:62-77. [PMID: 36883698 DOI: 10.1080/17435390.2023.2186279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Nanoparticles have been used extensively in different scientific fields. Due to the possible destructive effects of nanoparticles on the environment or the biological systems, their toxicity evaluation is a crucial phase for studying nanomaterial safety. In the meantime, experimental approaches for toxicity assessment of various nanoparticles are expensive and time-consuming. Thus, an alternative technique, such as artificial intelligence (AI), could be valuable for predicting nanoparticle toxicity. Therefore, in this review, the AI tools were investigated for the toxicity assessment of nanomaterials. To this end, a systematic search was performed on PubMed, Web of Science, and Scopus databases. Articles were included or excluded based on pre-defined inclusion and exclusion criteria, and duplicate studies were excluded. Finally, twenty-six studies were included. The majority of the studies were conducted on metal oxide and metallic nanoparticles. In addition, Random Forest (RF) and Support Vector Machine (SVM) had the most frequency in the included studies. Most of the models demonstrated acceptable performance. Overall, AI could provide a robust, fast, and low-cost tool for the evaluation of nanoparticle toxicity.
Collapse
Affiliation(s)
- Alireza Banaye Yazdipour
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hoorie Masoorian
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Mohammadzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2023; 25:43. [PMID: 36875184 PMCID: PMC9970140 DOI: 10.1007/s11051-023-05690-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Rapidly growing interest in using nanoparticles (NPs) for biomedical applications has increased concerns about their safety and toxicity. In comparison with bulk materials, NPs are more chemically active and toxic due to the greater surface area and small size. Understanding the NPs' mechanism of toxicity, together with the factors influencing their behavior in biological environments, can help researchers to design NPs with reduced side effects and improved performance. After overviewing the classification and properties of NPs, this review article discusses their biomedical applications in molecular imaging and cell therapy, gene transfer, tissue engineering, targeted drug delivery, Anti-SARS-CoV-2 vaccines, cancer treatment, wound healing, and anti-bacterial applications. There are different mechanisms of toxicity of NPs, and their toxicity and behaviors depend on various factors, which are elaborated on in this article. More specifically, the mechanism of toxicity and their interactions with living components are discussed by considering the impact of different physiochemical parameters such as size, shape, structure, agglomeration state, surface charge, wettability, dose, and substance type. The toxicity of polymeric, silica-based, carbon-based, and metallic-based NPs (including plasmonic alloy NPs) have been considered separately.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC Canada
| | - Ghazal Shineh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Mohammadmahdi Mobaraki
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI USA
| |
Collapse
|
20
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
21
|
Naji RM, Bashandy MA, Fathy AH. Ameliorative Effects of some Natural Antioxidants against Blood and Cardiovascular Toxicity of Oral Subchronic Exposure to Silicon Dioxide, Aluminum Oxide, or Zinc Oxide Nanoparticles in Wistar Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8373406. [PMID: 36942197 PMCID: PMC10024631 DOI: 10.1155/2023/8373406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/14/2023] [Accepted: 02/08/2023] [Indexed: 03/13/2023]
Abstract
The present study determines the possible protective role of fig fruit extract with olive oil and date palm fruit extract (FOD) in decreasing the oral subchronic blood and cardiovascular toxicity of SiO2NPs, Al2O3NPs, or ZnONPs. The present study used 80 male Wistar rats (8 groups, n = 10) distributed according to the treatment. The FOD treatments were used at their recommended antioxidant doses. All nanoparticles (NPs) were given orally and daily at doses of 100 mg/kg for 75 days. The oral administration of different NPs alone led to dramatic, oxidative stress, inflammatory markers, blood coagulation, endothelial dysfunction markers, myocardial enzymes, hematological parameters, lipid profile, and histopathological features compared with the control group. The FOD-NP-treated groups recorded significantly ameliorated blood and cardiovascular toxicity hazards compared to the groups administered with the NPs alone. In conclusion, the administration of FOD provides considerable chemopreventive and ameliorative effects against NP toxicity.
Collapse
Affiliation(s)
- Riyadh Musaed Naji
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
- 2Department of Zoology, Faculty of Science and Education, Aden University, Yemen
| | - Mohamed A. Bashandy
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | - Abdallah H. Fathy
- 3Department of Animal House Facility, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
22
|
Klekotka U, Rogacz D, Szymanek I, Malejko J, Rychter P, Kalska-Szostko B. Ecotoxicological assessment of magnetite and magnetite/Ag nanoparticles on terrestrial and aquatic biota from different trophic levels. CHEMOSPHERE 2022; 308:136207. [PMID: 36116620 DOI: 10.1016/j.chemosphere.2022.136207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The aim of the study is an ecotoxicological assessment of magnetite iron oxide-based nanoparticles (NPs), which have risen in popularity in the last decade, on selected terrestrial and aquatic organisms from various levels of the food chain. In the presented study various organisms, from both the terrestrial and aquatic environment, were used as targets for the assessment of NPs ecotoxicity. Plants (radish, oat), marine bacteria (A. fischeri) and crustacean (H. incongruens) were used to represent producers, decomposers, and consumers, respectively. It was found that examined NPs were harmful (to a different degree) to biota from three different trophic levels. Physicochemical characterization (size/morphology, crystallinity, composition, and magnetic properties) of the tested nanoparticles was performed by: transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and Mossbauer spectroscopy, respectively. Phytotoxicity was evaluated according to the OECD 208 Guideline, while acute and chronic toxicity of NPs was conducted using bioassays employing bacteria and crustacea, respectively. The phytotoxicity of all investigated iron oxide-based NPs was dependent on concentration and type of NPs formulation and was measured via biomass, seed germination, root length, shoot height, and content of plant pigments. Increasing the concentration of NPs increased phytotoxicity and mortality of aquatic organisms. Ecotoxicity of iron oxide/silver was dependent on the size and content of silver. Iron oxide NPs coated with nanosilver in a percentage ratio of 69/31 were found to be the most toxic on tested terrestrial and aquatic biota.
Collapse
Affiliation(s)
- Urszula Klekotka
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok Poland
| | - Diana Rogacz
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Izabela Szymanek
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Julita Malejko
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland.
| | - Beata Kalska-Szostko
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok Poland.
| |
Collapse
|
23
|
Elarabi NI, Abdel-Rahman AA, Abdel-Haleem H, Abdel-Hakeem M. Silver and zinc oxide nanoparticles disrupt essential parasitism, neuropeptidergic, and expansion-like proteins genes in Meloidogyne incognita. Exp Parasitol 2022; 243:108402. [DOI: 10.1016/j.exppara.2022.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 11/04/2022]
|
24
|
Yedgar S, Barshtein G, Gural A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. MICROMACHINES 2022; 13:mi13122091. [PMID: 36557391 PMCID: PMC9783501 DOI: 10.3390/mi13122091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/01/2023]
Abstract
The potential use of nanomaterials in medicine offers opportunities for novel therapeutic approaches to treating complex disorders. For that reason, a new branch of science, named nanotoxicology, which aims to study the dangerous effects of nanomaterials on human health and on the environment, has recently emerged. However, the toxicity and risk associated with nanomaterials are unclear or not completely understood. The development of an adequate experimental strategy for assessing the toxicity of nanomaterials may include a rapid/express method that will reliably, quickly, and cheaply make an initial assessment. One possibility is the characterization of the hemocompatibility of nanomaterials, which includes their hemolytic activity as a marker. In this review, we consider various factors affecting the hemolytic activity of nanomaterials and draw the reader's attention to the fact that the formation of a protein corona around a nanoparticle can significantly change its interaction with the red cell. This leads us to suggest that the nanomaterial hemolytic activity in the buffer does not reflect the situation in the blood plasma. As a recommendation, we propose studying the hemocompatibility of nanomaterials under more physiologically relevant conditions, in the presence of plasma proteins in the medium and under mechanical stress.
Collapse
Affiliation(s)
- Saul Yedgar
- Department of Biochemistry, The Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Alexander Gural
- Blood Bank, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
25
|
Marzi M, Osanloo M, Vakil MK, Mansoori Y, Ghasemian A, Dehghan A, Zarenezhad E. Applications of Metallic Nanoparticles in the Skin Cancer Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2346941. [PMID: 36420097 PMCID: PMC9678447 DOI: 10.1155/2022/2346941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 04/03/2024]
Abstract
Skin cancer is one of leading cancers globally, divided into two major categories including melanoma and nonmelanoma. Skin cancer is a global concern with an increasing trend, hence novel therapies are essential. The local treatment strategies play a key role in skin cancer therapy. Nanoparticles (NPs) exert potential applications in medicine with huge advantages and have the ability to overcome common chemotherapy problems. Recently, NPs have been used in nanomedicine as promising drug delivery systems. They can enhance the solubility of poorly water-soluble drugs, improve pharmacokinetic properties, modify bioavailability, and reduce drug metabolism. The high-efficient, nontoxic, low-cost, and specific cancer therapy is a promising goal, which can be achieved by the development of nanotechnology. Metallic NPs (MNPs) can act as important platforms. MNPs development seeks to enhance the therapeutic efficiency of medicines through site specificity, prevention of multidrug resistance, and effective delivery of therapeutic factors. MNPs are used as potential arms in the case of cancer recognition, such as Magnetic Resonance Imaging (MRI) and colloidal mediators for magnetic hyperthermia of cancer. The applications of MNPs in the cancer treatment studies are mostly due to their potential to carry a large dose of drug, resulting in a high concentration of anticancer drugs at the target site. Therefore, off-target toxicity and suffering side effects caused by high concentration of the drug in other parts of the body are avoided. MNPs have been applied as drug carriers for the of improvement of skin cancer treatment and drug delivery. The development of MNPs improves the results of many cancer treatments. Different types of NPs, such as inorganic and organic NPs have been investigated in vitro and in vivo for the skin cancer therapy. MNPs advantages mostly include biodegradability, electrostatic charge, good biocompatibility, high drug payload, and low toxicity. However, the use of controlled-release systems stimulated by electromagnetic waves, temperature, pH, and light improves the accumulation in tumor tissues and improves therapeutic outcomes. This study (2019-2022) is aimed at reviewing applications of MNPs in the skin cancer therapy.
Collapse
Affiliation(s)
- Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- Department of Internal Medicine, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Azizallah Dehghan
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
26
|
Flores-Contreras EA, González-González RB, González-González E, Parra-Saldívar R, Iqbal HM. Nano-vehicles modulated delivery of therapeutic epigenetic regulators to treat Triple-Negative Breast Cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
El Yamani N, Rubio L, García-Rodríguez A, Kažimírová A, Rundén-Pran E, Magdalena B, Marcos R, Dusinska M. Lack of mutagenicity of TiO 2 nanoparticles in vitro despite cellular and nuclear uptake. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 882:503545. [PMID: 36155144 DOI: 10.1016/j.mrgentox.2022.503545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The potential genotoxicity of titanium dioxide (TiO2) nanoparticles (NPs) is a conflictive topic because both positive and negative findings have been reported. To add clarity, we have carried out a study with two cell lines (V79-4 and A549) to evaluate the effects of TiO2 NPs (NM-101), with a diameter ranging from 15 to 60 nm, at concentrations 1-75 μg/cm2. Using two different dispersion procedures, cell uptake was determined by Transmission Electron Microscopy (TEM). Mutagenicity was evaluated using the Hprt gene mutation test, while genotoxicity was determined with the comet assay, detecting both DNA breaks and oxidized DNA bases (with formamidopyrimidine glycosylase - Fpg). Cell internalization, as determined by TEM, shows TiO2 NM-101 in cytoplasmic vesicles, as well as close to and inside the nucleus. Such internalization did not depend on the state of agglomeration, nor the dispersion used. In spite of such internalization, no cytotoxicity was detected in V79-4 cells (relative growth activity and plating efficiency assays) or in A549 cells (AlamarBlue assay) after exposure lasting for 24 h. However, a significant decrease in the relative growth activity was detected at longer exposure times (48 and 72 h) and at the highest concentration 75 µg/cm2. When the modified enzyme-linked alkaline comet assay was performed on A549 cells, although no significant induction of DNA damage was detected, a positive concentration-effects relationship was observed (Spearman's correlation = 0.9, p 0.0001). Furthermore, no significant increase of DNA oxidized purine bases was observed. When the frequency of Hprt gene mutants was determined in V79-4 cells, no increase was observed in the exposed cells, relative to the unexposed cultures. Our general conclusion is that, under our experimental conditions, TiO2 NM-101 exposure does not exert mutagenic effects despite the evidence of NP uptake by V79-4 cells.
Collapse
Affiliation(s)
- Naouale El Yamani
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Laura Rubio
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Alba García-Rodríguez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Alena Kažimírová
- Department of Biology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Barančoková Magdalena
- Department of Biology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| |
Collapse
|
28
|
Gao L, Li J, Song T. Poly lactic-co-glycolic acid-based nanoparticles as delivery systems for enhanced cancer immunotherapy. Front Chem 2022; 10:973666. [PMID: 36046731 PMCID: PMC9420966 DOI: 10.3389/fchem.2022.973666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer has emerged as one of the most severe diseases in modern times, various therapies have advanced remarkably in recent decades. Unlike the direct therapeutic targeting tumor cells, immunotherapy is a promising strategy that stimulate the immune system. In cancer immunotherapy, polymeric-based nanoparticles can serve as deliver systems for antigens and immunostimulatory molecules, and they have attracted increasing attention and revolutionized cancer therapy. Poly (lactic-co-glycolic acid) (PLGA) is the most frequently used clinically approved biodegradable polymer and has a broad scope of modification of its inherent properties. Recent advances in PLGA based drug delivery systems in cancer immunotherapy have been described in this mini review, with special emphasis on cancer vaccines and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Lei Gao
- The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Lei Gao, ; Jing Li,
| | - Jing Li
- The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Lei Gao, ; Jing Li,
| | - Tianhang Song
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
29
|
Cai Y, Chang SY, Gan SW, Ma S, Lu WF, Yen CC. Nanocomposite bioinks for 3D bioprinting. Acta Biomater 2022; 151:45-69. [PMID: 35970479 DOI: 10.1016/j.actbio.2022.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
Collapse
Affiliation(s)
- Yanli Cai
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soon Yee Chang
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soo Wah Gan
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Sha Ma
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Wen Feng Lu
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ching-Chiuan Yen
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Division of Industrial Design, National University of Singapore, Singapore 117356, Singapore.
| |
Collapse
|
30
|
Mohanty A, Parida A, Raut RK, Behera RK. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS BIO & MED CHEM AU 2022; 2:258-281. [PMID: 37101573 PMCID: PMC10114856 DOI: 10.1021/acsbiomedchemau.2c00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The essence of bionanotechnology lies in the application of nanotechnology/nanomaterials to solve the biological problems. Quantum dots and nanoparticles hold potential biomedical applications, but their inherent problems such as low solubility and associated toxicity due to their interactions at nonspecific target sites is a major concern. The self-assembled, thermostable, ferritin protein nanocages possessing natural iron scavenging ability have emerged as a potential solution to all the above-mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron repositories, are hollow, spherical, symmetric multimeric protein nanocages, which sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside their ∼5-8 nm central cavity. The electrostatics and dynamics of the pore residues not only drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims to report the recent developments/understanding on ferritin structure (self-assembly, surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites. Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various applications ranging from electronics to medicine.
Collapse
|
31
|
Biological Synthesis of Low Cytotoxicity Silver Nanoparticles (AgNPs) by the Fungus Chaetomium thermophilum—Sustainable Nanotechnology. J Fungi (Basel) 2022; 8:jof8060605. [PMID: 35736088 PMCID: PMC9224622 DOI: 10.3390/jof8060605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Fungal biotechnology research has rapidly increased as a result of the growing awareness of sustainable development and the pressing need to explore eco-friendly options. In the nanotechnology field, silver nanoparticles (AgNPs) are currently being studied for application in cancer therapy, tumour detection, drug delivery, and elsewhere. Therefore, synthesising nanoparticles (NPs) with low toxicity has become essential in the biomedical area. The fungus Chaetomium thermophilum (C. thermophilum) was here investigated—to the best of our knowledge, for the first time—for application in the production of AgNPs. Transmission electronic microscopy (TEM) images demonstrated a spherical AgNP shape, with an average size of 8.93 nm. Energy-dispersive X-ray spectrometry (EDX) confirmed the presence of elemental silver. A neutral red uptake (NRU) test evaluated the cytotoxicity of the AgNPs at different inhibitory concentrations (ICs). A half-maximal concentration (IC50 = 119.69 µg/mL) was used to predict a half-maximal lethal dose (LD50 = 624.31 mg/kg), indicating a Global Harmonized System of Classification and Labelling of Chemicals (GHS) acute toxicity estimate (ATE) classification category of 4. The fungus extract showed a non-toxic profile at the IC tested. Additionally, the interaction between the AgNPs and the Balb/c 3T3 NIH cells at an ultrastructural level resulted in preserved cells structures at non-toxic concentrations (IC20 = 91.77 µg/mL), demonstrating their potential as sustainable substitutes for physical and chemically made AgNPs. Nonetheless, at the IC50, the cytoplasm of the cells was damaged and mitochondrial morphological alteration was evident. This fact highlights the fact that dose-dependent phenomena are involved, as well as emphasising the importance of investigating NPs’ effects on mitochondria, as disruption to this organelle can impact health.
Collapse
|
32
|
Gandomani EA, Mosaffa N, Zendehdel R, Kohneshahri MH, Vahabi M, Sabour S. Release of Interleukin-1β evaluation among mineral oil mist–exposed workers. Toxicol Ind Health 2022; 38:270-276. [DOI: 10.1177/07482337221090708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to aerosols has been found to be linked to respiratory impairment. Although the effects of both indoor and outdoor exposures to particulates have been extensively reported, exposures to mists are less studied. Herein, we reported a survey of mineral oil mist toxicity in an occupational exposure scenario. For the purpose of this study, 65 lathe workers of the metal processing industry, as mineral oil mist–exposed population, were studied. Thereafter, the participants’ age, smoking habits and work experience were matched with those of the control workers ( n = 65) who were not occupationally exposed to mist. Thereafter, air samples were evaluated from the breathing zone of the workers using NIOSH method 5026. Plasma Interleukin-1β as a pro-inflammatory indicator was assessed in all the studied subjects. Mean ± standard deviation of mineral oil mist time-weighted average exposure in lathe workers was 7.10± 3.49 mg/m3. IL-1β cytokine levels were significantly higher in the lathe groups compared to the control group. The mean level of Interleukin-1β in the control subjects (2922 pg/L) was selected as the cut-off point of the inflammation effect. Based on this pro-inflammatory point, the results of monitoring showed that 60% of the exposed were affected. A Spearman correlation was also found between mineral oil mist exposure and inflammation in the affected subjects. Our findings highlighted the immunological potential of mineral oil mist in occupational exposure. Overall, the results of this study suggested that Interleukin-1β evaluation in mineral oil mist exposure could be considered as both an acute and chronic inflammation marker.
Collapse
Affiliation(s)
- Elham A Gandomani
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad H Kohneshahri
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoomeh Vahabi
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Caloudova H, Blahova J, Mares J, Richtera L, Franc A, Garajova M, Tichy F, Lenz J, Caloudova J, Enevova V, Kopel P, Havelkova B, Lakdawala P, Svobodova Z. The effects of dietary exposure to Magnéli phase titanium suboxide and titanium dioxide on rainbow trout (Oncorhynchus mykiss). CHEMOSPHERE 2022; 293:133689. [PMID: 35063564 DOI: 10.1016/j.chemosphere.2022.133689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Magnéli phase titanium suboxides (Magnéli TiOx) are promising, novel materials with superior properties compared to TiO2, they are substoichiometric titanium oxides with the chemical formula TinO2n-1 (where n ≥ 1). In this study, for the first time, subchronic effects of dietary intake of Magnéli TiOx were evaluated and compared with TiO2 particles of similar size, in concentrations 0.1% and 0.01% of feed. The experiment consisted of 38 d of an exposition period and 14 d of a depuration period. Minor effects on plasma biochemical profile and morphological parameters were recorded. A reduced count of leukocytes was found in the blood of both Magnéli TiOx and TiO2 exposed fish, suggesting immunotoxic effects. Erythrocytosis was specific for Magnéli TiOx. Indices of oxidative stress, namely increased lipid peroxidation in liver, increased activity of superoxide dismutase in liver, kidney and gills and glutathione S-transferase (GST) in gills, as well as decreased activity of ceruloplasmin and GST in liver were found predominantly in fish exposed to TiO2. Histopathological examination revealed increased lipid-like vacuolation in the liver, the presence of hyaline droplets in renal tubules and multiplication of mucous glands in the epidermis in both tested substances and intestine damage in TiO2 groups. Overall, in Magnéli TiOx exposed groups, fewer adverse effects compared to TiO2 expositions were recorded. Their wider practical implementation in place of TiO2 is therefore beneficial.
Collapse
Affiliation(s)
- Hana Caloudova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Michaela Garajova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jiri Lenz
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jana Caloudova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic; Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Vladimira Enevova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46, Olomouc, Czech Republic
| | - Barbora Havelkova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic.
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
34
|
Temiz Ö, Kargın F. Toxicological Impacts on Antioxidant Responses, Stress Protein, and Genotoxicity Parameters of Aluminum Oxide Nanoparticles in the Liver of Oreochromis niloticus. Biol Trace Elem Res 2022; 200:1339-1346. [PMID: 34021468 DOI: 10.1007/s12011-021-02723-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to determine the toxic effects of aluminum oxide nanoparticles (Al2O3 NPs) on oxidative stress, stress protein, and genotoxicity parameters in Oreochromis niloticus. Ninety-six-hour LC50 value of Al2O3 NPs was found as 52.4 ppm for O. niloticus. The fish were exposed to 2.6 ppm (5% of the 96-h LC50) and 5.2 ppm (10% of the 96-h LC50) for 3 days and 7 days. Various biochemical parameters, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities, glutathione (GSH), thiobarbituric acid reactive substance (TBARS), heat shock protein 70 (HSP70; stress protein), and genotoxicity biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, were determined. Results showed that antioxidant enzymes were significantly decreased in SOD, CAT, and GPx enzyme activity, but GST enzyme activity was significantly increased in 7 days. The oxidative stress parameters, GSH levels, were significantly decreased while 8-OHdG and TBARS levels were increased in 3 and 7 days. HSP70 levels were decreased in the concentrations of Al2O3 NPs and exposure times. Our results showed that as a result of changes in oxidative stress parameters, stress protein, and genotoxicity parameters, O. niloticus liver tissue is highly sensitive and toxic to aluminum oxide nanoparticle exposure.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey.
| | - Ferit Kargın
- Department of Biology, Faculty of Science and Letters, Çukurova University, 01330, Adana, Turkey
| |
Collapse
|
35
|
Brassolatti P, de Almeida Rodolpho JM, Franco de Godoy K, de Castro CA, Flores Luna GL, Dias de Lima Fragelli B, Pedrino M, Assis M, Nani Leite M, Cancino-Bernardi J, Speglich C, Frade MA, de Freitas Anibal F. Functionalized Titanium Nanoparticles Induce Oxidative Stress and Cell Death in Human Skin Cells. Int J Nanomedicine 2022; 17:1495-1509. [PMID: 35388270 PMCID: PMC8978907 DOI: 10.2147/ijn.s325767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Patricia Brassolatti
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Correspondence: Patricia Brassolatti, Departamento de Morfologia e Patologia UFSCar, Rod. Washington Luís, Km 235 Caixa Postal 676, São Carlos, CEP. 13565-905, SP, Brazil, Tel +551633518325, Fax +551633518326, Email
| | - Joice Margareth de Almeida Rodolpho
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Krissia Franco de Godoy
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Cynthia Aparecida de Castro
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Genoveva Lourdes Flores Luna
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Bruna Dias de Lima Fragelli
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Matheus Pedrino
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Marcelo Assis
- Center for the Development of Functional Materials, Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Marcel Nani Leite
- Division of Dermatology - Wound Healing & Hansen’s Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Carlos Speglich
- Leopoldo Américo Miguez de Mello CENPES/Petrobras Research Center, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Andrey Frade
- Division of Dermatology - Wound Healing & Hansen’s Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda de Freitas Anibal
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
36
|
Okeke ES, Ezeorba TPC, Mao G, Chen Y, Feng W, Wu X. Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118722. [PMID: 34952184 DOI: 10.1016/j.envpol.2021.118722] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanotechnology is a rapidly developing technology that will have a significant impact on product development in the next few years. The technology is already being employed in cutting-edge cosmetic and healthcare products. Nanotechnology and nanoparticles have a strong potential for product and process innovation in the food industrial sector. This is already being demonstrated by food product availability made using nanotechnology. Nanotechnologies will have an impact on food security, packaging materials, delivery systems, bioavailability, and new disease detection materials in the food production chain, contributing to the UN Millennium Development Goals targets. Food products using nanoparticles are already gaining traction into the market, with an emphasis on online sales. This means that pre- and post-marketing regulatory frameworks and risk assessments must meet certain standards. There are potential advantages of nanotechnologies for agriculture, consumers and the food industry at large as they are with other new and growing technologies. However, little is understood about the safety implications of applying nanotechnologies to agriculture and incorporating nanoparticles into food. As a result, policymakers and scientists must move quickly, as regulatory systems appear to require change, and scientists should contribute to these adaptations. Their combined efforts should make it easier to reduce health and environmental impacts while also promoting the economic growth of nanotechnologies in the food supply chain. This review highlighted the benefits of a number of nano enabled agrochemicals/materials, the potential health impacts as well as the risk assessment and risk management for nanoparticles in the agriculture and food production chain.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria; Natural Science Unit, SGS, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| |
Collapse
|
37
|
Anastasiadis SH, Chrissopoulou K, Stratakis E, Kavatzikidou P, Kaklamani G, Ranella A. How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:552. [PMID: 35159897 PMCID: PMC8840392 DOI: 10.3390/nano12030552] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
The growth in novel synthesis methods and in the range of possible applications has led to the development of a large variety of manufactured nanomaterials (MNMs), which can, in principle, come into close contact with humans and be dispersed in the environment. The nanomaterials interact with the surrounding environment, this being either the proteins and/or cells in a biological medium or the matrix constituent in a dispersion or composite, and an interface is formed whose properties depend on the physicochemical interactions and on colloidal forces. The development of predictive relationships between the characteristics of individual MNMs and their potential practical use critically depends on how the key parameters of MNMs, such as the size, shape, surface chemistry, surface charge, surface coating, etc., affect the behavior in a test medium. This relationship between the biophysicochemical properties of the MNMs and their practical use is defined as their functionality; understanding this relationship is very important for the safe use of these nanomaterials. In this mini review, we attempt to identify the key parameters of nanomaterials and establish a relationship between these and the main MNM functionalities, which would play an important role in the safe design of MNMs; thus, reducing the possible health and environmental risks early on in the innovation process, when the functionality of a nanomaterial and its toxicity/safety will be taken into account in an integrated way. This review aims to contribute to a decision tree strategy for the optimum design of safe nanomaterials, by going beyond the compromise between functionality and safety.
Collapse
Affiliation(s)
- Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
- Department of Chemistry, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
- Department of Physics, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Paraskevi Kavatzikidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Georgia Kaklamani
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| |
Collapse
|
38
|
Landh E, Wang R, Moir LM, Traini D, Young PM, Ong HX. Prospective nanoparticle treatments for lymphangioleiomyomatosis. Expert Opin Drug Deliv 2022; 19:75-86. [DOI: 10.1080/17425247.2022.2029401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emelie Landh
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Roger Wang
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Lyn M. Moir
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Paul M. Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
39
|
Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022; 20:24. [PMID: 34991595 PMCID: PMC8740484 DOI: 10.1186/s12951-021-01232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic system is identified the second vascular system after the blood circulation in mammalian species, however the research on lymphatic system has long been hampered by the lack of comprehensive imaging modality. Nanomaterials have shown the potential to enhance the quality of lymphatic imaging due to the unparalleled advantages such as the specific passive targeting and efficient co-delivery of cocktail to peripheral lymphatic system, ease molecular engineering for precise active targeting and prolonged retention in the lymphatic system of interest. Multimodal lymphatic imaging based on nanotechnology provides a complementary means to understand the kinetics of lymphoid tissues and quantify its function. In this review, we introduce the established approaches of lymphatic imaging used in clinic and summarize their strengths and weaknesses, and list the critical influence factors on lymphatic imaging. Meanwhile, the recent developments in the field of pre-clinical lymphatic imaging are discussed to shed new lights on the design of new imaging agents, the improvement of delivery methods and imaging-guided surgery strategies.
Collapse
Affiliation(s)
- Shaolong Qi
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.,Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Wang
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China
| | - Kun Chang
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wenbin Shen
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianshi Du
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.
| |
Collapse
|
40
|
Bhandari V, Jose S, Badanayak P, Sankaran A, Anandan V. Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vandana Bhandari
- Department of Textile and Apparel Designing, I.C. College of Home Science, CCS Haryana Agricultural University, Hisar, India 125004
| | - Seiko Jose
- Textile Manufacturing and Textile Chemistry Division, ICAR- Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India 304501
| | - Pratikhya Badanayak
- Department of Textile and Apparel Designing, College of Community Science, University of Agricultural Sciences, Dharwad, India 580005
| | - Anuradha Sankaran
- Department of Chemistry, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu India 624622
| | - Vysakh Anandan
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala India 686560
| |
Collapse
|
41
|
Lagos KJ, Buzzá HH, Bagnato VS, Romero MP. Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction. Int J Mol Sci 2021; 23:22. [PMID: 35008458 PMCID: PMC8744821 DOI: 10.3390/ijms23010022] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022] Open
Abstract
Within phototherapy, a grand challenge in clinical cancer treatments is to develop a simple, cost-effective, and biocompatible approach to treat this disease using ultra-low doses of light. Carbon-based materials (CBM), such as graphene oxide (GO), reduced GO (r-GO), graphene quantum dots (GQDs), and carbon dots (C-DOTs), are rapidly emerging as a new class of therapeutic materials against cancer. This review summarizes the progress made in recent years regarding the applications of CBM in photodynamic (PDT) and photothermal (PTT) therapies for tumor destruction. The current understanding of the performance of modified CBM, hybrids and composites, is also addressed. This approach seeks to achieve an enhanced antitumor action by improving and modulating the properties of CBM to treat various types of cancer. Metal oxides, organic molecules, biopolymers, therapeutic drugs, among others, have been combined with CBM to treat cancer by PDT, PTT, or synergistic therapies.
Collapse
Affiliation(s)
- Karina J. Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador;
| | - Hilde H. Buzzá
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - María Paulina Romero
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador;
| |
Collapse
|
42
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
43
|
Tsymbalyuk OV, Davydovska TL, Naumenko AM, Liashevych AN, Lupaina IS, Voiteshenko IS, Nuryshchenko NY, Skryshevsky VA. Functional state of the myometrium of rats under chronic in vivo effect of nanostructured ZnO and ТіО2 materials. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The specificities of the structure and blood supply of the uterus facilitate a considerable accumulation of nanosized xenobiotics, including nanoparticles of metal oxides, in its tissues. Numerous in vitro and in vivo experiments demonstrated that nanoparticles of metal oxides (ZnO and TiO2) have significant cytotoxic activity, caused by oxidative stress induction. However, there is no information about the impact of these nanomaterials on the functional state of the myometrium under chronic exposure on the organism. Tenzometric methods and mechanokinetic analysis were used in our work to investigate the contractile activity of the myometrium of non-pregnant rats. The contractile activity was either spontaneous or induced by oxytocin (the uterotonic hormone) and acetylcholine (the agonist of muscarinic choline receptors) under chronic peroral intake of the ZnO and TiO2 aqueous nanocolloids into the organism. It was found that after burdening of rats with ZnO and ТіО2 aqueous nanocolloids there were no changes in the pacemaker-dependent mechanisms forming the frequency of spontaneous contractions in the myometrium, but there was a considerably induced increase in the AU index of contractions. It was shown that during the oxytocin-induced excitation of the myometrium under both chronic and short-term burdening of the rats with ZnO and TiO2 aqueous nanocolloids, the mechanisms that regulate the intracellular concentration of Ca2+ ions are the target for the nanomaterials. When the rats were burdened with ZnO aqueous nanocolloids for 6 months, during cholinergic excitation there was hyperstimulation of both M3-receptor-dependent mechanisms of Са2+ ions intake via the potential-governed Са2+-channels of L-type into the smooth muscles of the myometrium, and M2-receptor-dependent mechanisms, controlling the intracellular concentration of these cations. Thus, the regularities and mechanisms of the change in the functioning of uterine smooth muscles under chronic intake of the ZnO and TiO2 aqueous nanocolloids were determined in this study.
Collapse
|
44
|
Abstract
Many important discoveries have been made in the field of nanotechnology in the last 40 years. Since then, nanoparticles became nearly ubiquitous. With their spreading use, safety concerns have warranted extensive research of nanotoxicity. This paper offers information about the occurrence, transport, and behaviour of metallic nanoparticles in the aquatic environment. It further summarizes details about parameters that dictate the toxicity of nanoparticles and discusses the general/common mechanisms of their toxicity. This review also focuses on fish exposure to nanoparticles, including the possibility of trophic transport through the food chain. Information on some of the most frequently used metallic nanoparticles, such as silver, gold, and titanium dioxide, is further elaborated on.
Collapse
|
45
|
Ghiasvand Mohammadkhani L, Khoshkam M, Kompany-Zareh M, Amiri M, Ramazani A. Metabolomics approach to study in vivo toxicity of graphene oxide nanosheets. J Appl Toxicol 2021; 42:506-515. [PMID: 34551125 DOI: 10.1002/jat.4235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
Although graphene oxide (GO) nanosheets are widely used in different fields, the mechanism of their toxicity remains relatively unknown. NMR-based metabolomics was used to study in vivo time and dose-dependent toxicity of GO nanosheets in mice. Sixty serum samples from mice in four different time intervals including 24 and 72 h and 7 and 21 days after injection of 0-, 1-, and 10-mg/kg b.w. were analyzed based on 1 HNMR spectra of each sample and multivariate methods. In comparison with the control group, 12 changed metabolites were identified in GO nanosheet-treated mice groups. These metabolites are involved in steroid hormone biosynthesis and steroid biosynthesis pathways. It was seen that the time factor is more important than the dose factor and the groups were separated in a time direction, completely. We found that GO nanosheets has toxicity and can affect steroidal hormones. However, this study shows that after 21 days, the treated groups regardless of their GO nanosheet dose are very close to the control group. This means that in one step exposure to GO nanosheets, their toxicity diminished after 21 days.
Collapse
Affiliation(s)
| | - Maryam Khoshkam
- Chemistry Group, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohsen Kompany-Zareh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mahdi Amiri
- Department of Clinical Laboratory, Imam Hossein Hospital, Iranian Social Security Organization (ISSO), Zanjan, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
46
|
Maleki P, Nemati F, Gholoobi A, Hashemzadeh A, Sabouri Z, Darroudi M. Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J Toxicol 2021; 2021:9954443. [PMID: 34422042 PMCID: PMC8376461 DOI: 10.1155/2021/9954443] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles are of great importance in development and research because of their application in industries and biomedicine. The development of nanoparticles requires proper knowledge of their fabrication, interaction, release, distribution, target, compatibility, and functions. This review presents a comprehensive update on nanoparticles' toxic effects, the factors underlying their toxicity, and the mechanisms by which toxicity is induced. Recent studies have found that nanoparticles may cause serious health effects when exposed to the body through ingestion, inhalation, and skin contact without caution. The extent to which toxicity is induced depends on some properties, including the nature and size of the nanoparticle, the surface area, shape, aspect ratio, surface coating, crystallinity, dissolution, and agglomeration. In all, the general mechanisms by which it causes toxicity lie on its capability to initiate the formation of reactive species, cytotoxicity, genotoxicity, and neurotoxicity, among others.
Collapse
|
48
|
Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep 2021; 26:100991. [PMID: 33912692 PMCID: PMC8063742 DOI: 10.1016/j.bbrep.2021.100991] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Collapse
Affiliation(s)
- A. Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - C. Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - D. Cui
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
49
|
Medici S, Peana M, Pelucelli A, Zoroddu MA. An updated overview on metal nanoparticles toxicity. Semin Cancer Biol 2021; 76:17-26. [PMID: 34182143 DOI: 10.1016/j.semcancer.2021.06.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Although thousands of different nanoparticles (NPs) have been identified and synthesized to date, well-defined, consistent guidelines to control their exposure and evaluate their potential toxicity have yet to be fully established. As potential applications of nanotechnology in numerous fields multiply, there is an increased awareness of the issue of nanomaterials' toxicity among scientists and producers managing them. An updated inventory of customer products containing NPs estimates that they currently number over 5.000; ten years ago, they were one fifth of this. More often than not, products bear no information regarding the presence of NPs in the indicated list of ingredients or components. Consumers are therefore largely unaware of the extent to which nanomaterials have entered our lives, let alone their potential risks. Moreover, the lack of certainties with regard to the safe use of NPs is curbing their applications in the biomedical field, especially in the diagnosis and treatment of cancer, where they are performing outstandingly but are not yet being exploited as much as they could. The production of radical oxygen species is a predominant mechanism leading to metal NPs-driven carcinogenesis. The release of particularly reactive metal ions capable of crossing cell membranes has also been implicated in NPs toxicity. In this review we discuss the origin, behavior and biological toxicity of different metal NPs with the aim of rationalizing related health hazards and calling attention to toxicological concerns involved in their increasingly widespread use.
Collapse
Affiliation(s)
- Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - Alessio Pelucelli
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | |
Collapse
|
50
|
Santacruz-Márquez R, González-De Los Santos M, Hernández-Ochoa I. Ovarian toxicity of nanoparticles. Reprod Toxicol 2021; 103:79-95. [PMID: 34098047 DOI: 10.1016/j.reprotox.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The ovary is a highly important organ for female reproduction. The main functions include sex steroid hormone synthesis, follicular development, and achievement of oocyte meiotic and development competence for proper fertilization. Nanoparticle (NP) exposure is becoming unavoidable because of its wide use in different products, including cosmetics, food, health, and personal care products. Studies examining different nonreproductive tissues or systems have shown that characteristics such as the size, shape, core material, agglomeration, and dissolution influence the effects of NPs. However, most studies evaluating NP-mediated reproductive toxicity have paid little or no attention to the influence of the physicochemical characteristics of NP on the observed effects. As accumulating evidence indicates that NP may reach the ovary to impair proper functions, this review summarizes the available data on NP accumulation in ovarian tissue, as well as data describing toxicity to ovarian functions, including sex steroid hormone production, follicular development, oocyte quality, and fertility. Due to their toxicological relevance, this review also describes the main physicochemical characteristics involved in NP toxicity and the importance of considering NP physicochemical characteristics as factors influencing the ovarian toxicity of NPs. Finally, this review summarizes the main mechanisms of toxicity described in ovarian cells.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Marijose González-De Los Santos
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|