1
|
Felis E, Sochacki A, Bajkacz S, Łuczkiewicz A, Jóźwiakowski K, García J, Vymazal J. Removal of selected sulfonamides and sulfonamide resistance genes from wastewater in full-scale constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169195. [PMID: 38081427 DOI: 10.1016/j.scitotenv.2023.169195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Sulfonamides are high-consumption antibiotics that reach the aquatic environment. The threat related to their presence in wastewater and the environment is not only associated with their antibacterial properties, but also with risk of the spread of drug resistance in bacteria. Therefore, the aim of this work was to evaluate the occurrence of eight commonly used sulfonamides, sulfonamide resistance genes (sul1-3) and integrase genes intI1-3 in five full-scale constructed wetlands (CWs) differing in design (including hybrid systems) and in the source of wastewater (agricultural drainage, domestic sewage/surface runoff, and animal runs runoff in a zoo). The CWs were located in low-urbanized areas in Poland and in Czechia. No sulfonamides were detected in the CW treating agricultural tile drainage water. In the other four systems, four sulfonamide compounds were detected. Sulfamethoxazole exhibited the highest concentration in those four CWs and its highest was 12,603.23 ± 1000.66 ng/L in a CW treating a mixture of domestic sewage and surface runoff. Despite the high removal efficiencies of sulfamethoxazole in the tested CWs (86 %-99 %), it was still detected in the treated wastewater. The sul1 genes occurred in all samples of raw and treated wastewater and their abundance did not change significantly after the treatment process and it was, predominantly, at the level 105 gene copies numbers/mL. Noteworthy, sul2 genes were only found in the influents, and sul3 were not detected. The sulfonamides can be removed in CWs, but their elimination is not complete. However, hybrid CWs treating sewage were superior in decreasing the relative abundance of genes and the concentration of SMX. CWs may play a role in the dissemination of sulfonamide resistance genes of the sul1 type and other determinants of drug resistance, such as the intI1 gene, in the environment, however, the magnitude of this phenomenon is a matter of further research.
Collapse
Affiliation(s)
- Ewa Felis
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
| | - Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00 Prague 6, Czech Republic.
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100 Gliwice, Poland
| | - Aneta Łuczkiewicz
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krzysztof Jóźwiakowski
- University of Life Sciences in Lublin, Faculty of Production Engineering, Department of Environmental Engineering and Geodesy, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 00 Prague 6, Czech Republic
| |
Collapse
|
2
|
Phukan D, Kumar V. Tracking drugged waters from various sources to drinking water-its persistence, environmental risk assessment, and removal techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86676-86698. [PMID: 37436619 DOI: 10.1007/s11356-023-28421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Pharmaceuticals have become a major concern due to their nature of persistence and accumulation in the environment. Very few studies have been performed relating to its toxicity and ill effects on the aquatic/terrestrial flora and fauna. The typical wastewater and water treatment processes are not efficient enough to get these persistent pollutants treated, and there are hardly any guidelines followed. Most of them do not get fully metabolized and end up in rivers through human excreta and household discharge. Various methods have been adopted with the advancement in technology, sustainable methods are more in demand as they are usually cost-effective, and hardly any toxic by-products are produced. This paper aims to illustrate the concerns related to pharmaceutical contaminants in water, commonly found drugs in the various rivers and their existing guidelines, ill effects of highly detected pharmaceuticals on aquatic flora and fauna, and its removal and remediation techniques putting more emphasis on sustainable processes.
Collapse
Affiliation(s)
- Dixita Phukan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
3
|
Chand N, Suthar S, Kumar K, Singh V. Removal of pharmaceuticals by vertical flow constructed wetland with different configurations: Effect of inlet load and biochar addition in the substrate. CHEMOSPHERE 2022; 307:135975. [PMID: 35944676 DOI: 10.1016/j.chemosphere.2022.135975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals (PCs) residues are considered an emerging threat to the environment due to their persistency, ecotoxicity and bioaccumulative nature. To study the PC (amoxicillin, AMX; caffeine, CF; ibuprofen, IBU) removal efficiency of vertical flow constructed wetland (VFCW), three setups of VFCWs were configured: SB (substrate matrix + biochar (BC)); SBP (substrate matrix + BC + plant); SP (substrate matrix + plant) and changes in effluent PC load was estimated at 24, 48, 72, 96, 120, 144 and 168 h intervals. SBP with an influent load of 1,000 μg L-1 showed the maximum removals of 75.51% (AMX), 87.53% (CF), and 79.93% (IBU) significantly higher than that of SB and SP (p < 0.00). Results showed an inverse relationship between removal efficacy and influent PCs loading. The average removal (%) by VFCWS (of all studied setups) was in the order: 66.20 > 47.88 > 39.0 (IBU), 56.56 > 42.12 > 34.36 (AMX), and 74.13 > 64.0 > 52.07 (CF) with 1,000, 5,000 > 10,000 μg L-1 influent load, respectively. The maximum removal of COD, NH4+-N, and NO3-N was recorded at 88.8%, 83.1%, and 64.9%, respectively in SBP, and their removal was hardly affected by influent PC concentration. In summary, planted VFCW spiked with BC could be a viable approach for the removal of PCs in wastewater. The impact of PC load on plant toxicity in VFCWs can be taken as a research problem for future work in this series.
Collapse
Affiliation(s)
- Naveen Chand
- Laboratory of Environmental Sustainability & Energy Research, National Institute of Technology Delhi, Delhi 110036, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India.
| | - Kapil Kumar
- Laboratory of Environmental Sustainability & Energy Research, National Institute of Technology Delhi, Delhi 110036, India
| | - Vineet Singh
- School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India
| |
Collapse
|
4
|
Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Moustakas K, Witek-Krowiak A. Biodegradation of pharmaceuticals in photobioreactors - a systematic literature review. Bioengineered 2022; 13:4537-4556. [PMID: 35132911 PMCID: PMC8973657 DOI: 10.1080/21655979.2022.2036906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work is a systematic review that reports state-of-the-art in removal of pharmaceuticals from water and wastewater by photosynthetic organisms in photobioreactors. The PRISMA protocol-based review of the most recent literature data from the last 10 years (2011–2021) was reported. Articles were searched by the combination of the following keywords: photobioreactor, pharmaceuticals, drugs, hormones, antibiotics, biodegradation, removal, wastewater treatment. The review focuses on original research papers (not reviews), collected in 3 scientific databases: Scopus, Web of Knowledge, PubMed. The review considered the following factors: type of microorganisms, type of micropollutants removed, degradation efficiency and associated products, types of photosynthetic organisms and photobioreactor types. The conclusion from the systematic review is that the main factors that limit widespread pharmaceuticals removal in photobioreactors are high costs and the problem of low efficiency related with low concentrations of pharmaceuticals. The review indicated a need for further research in this area due to increasing amounts of metabolites in the food chain, such as p-aminophenol and estrone, which can cause harm to people and ichthyofauna. Pharmaceuticals removal can be improved by adapting the type of microorganism used to the type of contamination and implementing photoperiods, which increase the removal efficiency of e.g. sulfamethazine by up to 28%. In the future, it is necessary to search for new solutions in terms of the construction of photobioreactors, as well as for more effective species in terms of pharmaceuticals biodegradation that can survive the competition with other strains during water and wastewater treatment.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
5
|
Xenobiotics-Division and Methods of Detection: A Review. J Xenobiot 2021; 11:130-141. [PMID: 34842778 PMCID: PMC8628977 DOI: 10.3390/jox11040009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Xenobiotics are compounds of synthetic origin, usually used for domestic, agricultural, and industrial purposes; in the environment, they are present in micropollutant concentrations and high concentrations (using ng/L to µg/L units). Xenobiotics can be categorized according to different criteria, including their nature, uses, physical state, and pathophysiological effects. Their impacts on humans and the environment are non-negligible. Prolonged exposure to even low concentrations may have toxic, mutagenic, or teratogenic effects. Wastewater treatment plants that are ineffective at minimizing the release of xenobiotic compounds are one of the main sources of xenobiotics in the environment (e.g., xenobiotic compounds reach the environment, affecting both humans and animals). In order to minimize the negative impacts, various laws and regulations have been adopted in the EU and across the globe, with an emphasis on xenobiotics removal from the environment, in a way that is economically, environmentally, and socially acceptable, and will not result in their accumulation, or creation of compounds that are more harmful. Detection methods allow detecting even small concentrations of xenobiotics in samples, but the problem is the diversity and mix of compounds present in the environment, in which it is not known what their effects are). In this review, the division of xenobiotics and their detection methods will be presented.
Collapse
|
6
|
Cardoso-Vera JD, Elizalde-Velázquez GA, Islas-Flores H, Mejía-García A, Ortega-Olvera JM, Gómez-Oliván LM. A review of antiepileptic drugs: Part 1 occurrence, fate in aquatic environments and removal during different treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145487. [PMID: 33736324 DOI: 10.1016/j.scitotenv.2021.145487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Antiepileptic drugs (AEDs) are the main treatment for people with epilepsy. However, in recent years, more and more people are using them for other indications such as: migraine, chronic neuropathic pain, and mood disorders. Consequently, the prescriptions and consumption of these drugs are increasing worldwide. In WWTPs, AEDs can resist degradation processes, such as photodegradation, chemical degradation and/or biodegradation. Until now, only constructed wetlands and photocatalysis have shown good removal rates of AEDs from wastewater. However, their effectiveness depends on the specific conditions used during the treatment. Since the consumption of AEDs has increased in the last decade and their degradation in WWTPs is poor, these drugs have been largely introduced into the environment through the discharge of municipal and/or hospital effluents. Once in the environment, AEDs are distributed in the water phase, as suspended particles or in the sediments, suggesting that these drugs have a high potential for groundwater contamination. In this first part of the AEDs review is designed to fill out the current knowledge gap about the occurrence, fate and removal of these drugs in the aquatic environment. This is a review that emphasizes the characteristics of AEDs as emerging contaminants.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Alejandro Mejía-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - José Mario Ortega-Olvera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
7
|
Delgado N, Bermeo L, Hoyos DA, Peñuela GA, Capparelli A, Marino D, Navarro A, Casas-Zapata JC. Occurrence and removal of pharmaceutical and personal care products using subsurface horizontal flow constructed wetlands. WATER RESEARCH 2020; 187:116448. [PMID: 33007670 DOI: 10.1016/j.watres.2020.116448] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
A significant number of emerging pollutants resulting from point source and diffuse pollution are present in the aquatic environment. These are chemicals that are not commonly monitored, but have the potential to cause adverse effects on human and ecological health. One form of emerging pollutants, pharmaceutical and personal care products (PPCPs), are becoming a serious problem in the discharge of domestic wastewater. Therefore, the aim of this study was to determine their occurrence in wastewater and surface waters, and to evaluate the efficiency of subsurface horizontal flow constructed wetlands (planted in polyculture and unplanted), in removing two pharmaceuticals: carbamazepine (Cbz) and sildenafil (Sil); and a personal care product: methylparaben (Mp), present in domestic wastewater. The mixed PPCPs were added to wetlands, at nominal concentrations of 200 μg / L for each compound. The working flow of the reactors was 15 mL / min and the hydraulic retention time was three days. The physicochemical parameters evaluated were: organic load, dissolved oxygen, temperature, conductivity, redox potential, dissolved solids, pH and PPCPs concentration. The presence of the three compounds became evident in all sampled sites, with concentrations of up to 10.66 μg / L, 7.24 μg / L and 2.64 μg / L for Cbz, Mp and Sil, respectively. In planted wetlands, removal efficiencies of up to 97% were achieved for Sil, while in the unplanted these were 30% lower. Removal efficiencies greater than 97% were achieved for Mp, however, for Cbz they were less than 10%, evaluated in both treatments. The average removal efficiency for organic load was 95%. It was determined that constructed wetlands can efficiently remove simple molecular structure compounds such as Mp, and complex structures such as Sil. However, Cbz remained as a recalcitrant contaminant.
Collapse
Affiliation(s)
- Nasly Delgado
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 47 y 115, La Plata 1900, Argentina.; Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2 # 15N, Popayán 190002, Colombia.; Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Lizeth Bermeo
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2 # 15N, Popayán 190002, Colombia
| | - Daniel A Hoyos
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2 # 15N, Popayán 190002, Colombia
| | - Gustavo A Peñuela
- Grupo de Diagnóstico y Control de la Contaminación, Universidad de Antioquia, Calle 70 # 52-21, Medellín 050012, Colombia
| | - Alberto Capparelli
- Cátedra de Fisicoquímica, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Damián Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 47 y 115, La Plata 1900, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Agustín Navarro
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad Nacional de La Plata, 48 y 115, La Plata 1900, Argentina
| | - Juan C Casas-Zapata
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2 # 15N, Popayán 190002, Colombia
| |
Collapse
|
8
|
Marcelino GR, Carvalho KQD, Lima MXD, Passig FH, Belini AD, Bernardelli JKB, Nagalli A. Construction waste as substrate in vertical subsuperficial constructed wetlands treating organic matter, ibuprofenhene, acetaminophen and ethinylestradiol from low-strength synthetic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138771. [PMID: 32570322 DOI: 10.1016/j.scitotenv.2020.138771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the removal of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total ammonia nitrogen (TAN), total phosphorus (TP), ibuprofen, acetaminophen and ethinylestradiol of synthetic effluent simulating low-strength sewage by sequencing-batch mode constructed wetlands (CWs). To verify the feasibility of using a floating macrophyte in CWs and compare different substrates, three CWs containing light expanded clay aggregates (CWL), expanded clay with porcelain tiles (CWLP) and bricks (CWB) were planted with Pistia stratiotes. The results showed that CWB achieved the highest removals of TKN (78%), TAN (70%) and TP (46%), and CWLP achieved the highest COD removal (75%). LECA favored the removal of ibuprofen (92%, p < 0.05) when compared to bricks (77%), probably by the combination of biodegradation and sorption in the systems. The highest acetaminophen removal (71% to 96%) was observed in CWL, probably via biodegradation, but no significant differences were found between the CWs (p > 0.05). Ethinylestradiol was removed 76% in CWLP and 73% in CWB, both differing statistically from CWL (p < 0.05), demonstrating that brick and the combination of clay with porcelain were better than just clay in this hormone removal. After 188 days of operation, P. stratiotes was able to uptake nitrogen and phosphorus of approximately 0.28 g and 0.25 g in CWL, 0.33 g and 0.21 g CWLP, and 0.22 g and 0.09 g in CWB of, respectively. Adsorption of nitrogen and phosphorus onto the substrates was 0.48 g and 6.84 g in CWL, 0.53 g and 5.69 g in CWLP, and 0.36 g and 10.18 g in CWB, respectively. The findings on this study suggest that adsorption was possible the main process for TP removal onto the evaluated substrates whereas microbial activity was the most probable mechanism for TN removal in the evaluated CW systems.
Collapse
Affiliation(s)
- Gabriela Ribeiro Marcelino
- The Federal University of Technology - Paraná (UTFPR), Environmental Sciences and Technology Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- The Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Mateus Xavier de Lima
- The Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- The Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Aldria Diana Belini
- The Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- The Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - André Nagalli
- The Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| |
Collapse
|
9
|
Montemurro N, García-Vara M, Peña-Herrera JM, Lladó J, Barceló D, Pérez S. Conventional and Advanced Processes for the Removal of Pharmaceuticals and Their Human Metabolites from Wastewater. ACTA ACUST UNITED AC 2018. [DOI: 10.1021/bk-2018-1302.ch002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Nicola Montemurro
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Manuel García-Vara
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Juan Manuel Peña-Herrera
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Jordi Lladó
- Department of Mining, Industrial and TIC Engineering (EMIT), Universitat Politécnica de Catalunya (UPC), Manresa, Barcelona 08242, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Sandra Pérez
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| |
Collapse
|
10
|
Galdeano MC, Tonon RV, Menezes NDS, Carvalho CWPD, Minguita APDS, Mattos MDC. Influence of milling and extrusion on the sorption properties of sorghum. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.11817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The processing to which a material is subjected can affect its physical or chemical structures, resulting in products with different hygroscopic behaviours. The present work studied the water adsorption properties of sorghum subjected to different types of processing: raw flour (produced by milling whole grain), extrudates (obtained using a double screw extruder) and extruded flour (obtained by milling the extrudates). The isotherms were obtained using an automated instrumental method. The tests were run in duplicate at 25 °C with relative humidity values ranging between 11 and 84%. The water adsorption data fitted the GAB model well, showing high coefficients of determination. The estimated water contents of the adsorption monolayer ranged from 5.3 to 6.9 g of water per 100 g of dry material. The sorption isotherms were affected by the type of processing, extrusion cooking resulting in products with less water in the monolayer (less hygroscopic). The milling process yielded high water contents in the monolayer, probably due to the breakdown of some polymer-polymer interactions, which exposed the binding sites. To ensure microbiological stability, the water contents in the materials should not exceed 6.9 g of water per 100 g of dry material for raw sorghum flour, 5.3 g of water per 100 g for sorghum extrudates and 6.7 g of water per 100 g for extruded sorghum flour.
Collapse
|