1
|
Quist AJL, Hovav A, Silverman AD, Shamasunder B, Johnston JE. Residents' experiences during a hydrogen sulfide crisis in Carson, California. Environ Health 2024; 23:31. [PMID: 38519920 PMCID: PMC10960400 DOI: 10.1186/s12940-024-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND In early October 2021, thousands of residents in Carson, California began complaining of malodors and headaches. Hydrogen sulfide (H2S), a noxious odorous gas, was measured at concentrations up to 7000 parts per billion (ppb) and remained above California's acute air quality standard of 30 ppb for a month. Intermittent elevations of H2S continued for 3 months. After 2 months of malodor in this environmental justice community, a government agency attributed the H2S to environmental pollution from a warehouse fire. Research has yielded conflicting results on the health effects of H2S exposure at levels that were experienced during this event. This research fills a critical need for understanding how people perceive and experience emergent environmental health events and will help shape future responses. METHODS Through a community-academic partnership, we conducted 6 focus groups with 33 participants who resided in the Carson area during the crisis. We sought to understand how this incident affected residents through facilitated discussion on topics including information acquisition, impressions of the emergency response, health symptoms, and ongoing impacts. RESULTS The majority of participants were women (n = 25), identified as Latina/o (n = 19), and rent their homes (n = 21). Participants described difficulty obtaining coherent information about the emergency, which resulted in feelings of abandonment. Most participants felt that local government and healthcare providers downplayed and/or disregarded their concerns despite ongoing odors and health symptoms. Participants described experiencing stress from the odors' unknown health effects and continued fear of future odor incidents. Residents sought to take control of the crisis through information sharing, community networking, and activism. Participants experienced longer term effects from this event, including increased awareness of pollution and reduced trust in local agencies. DISCUSSION This study demonstrates the necessity of clear, comprehensive, and prompt responses by relevant decisionmakers to chemical emergencies to appropriately address residents' fears, curb the spread of misinformation, and minimize adverse health effects. Participant responses also point to the benefit of supporting horizontal community networks for improved information sharing. By engaging directly with community members, researchers and disaster responders can better understand the various and complex impacts of chemical disasters and can improve response.
Collapse
Affiliation(s)
- Arbor J L Quist
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St., Los Angeles, CA, 90032, USA.
| | - April Hovav
- Department of Urban & Environmental Policy, Occidental College, Los Angeles, CA, USA
| | - Alexander D Silverman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St., Los Angeles, CA, 90032, USA
| | - Bhavna Shamasunder
- Department of Urban & Environmental Policy, Occidental College, Los Angeles, CA, USA
| | - Jill E Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St., Los Angeles, CA, 90032, USA
| |
Collapse
|
2
|
Quist AJL, Hovav A, Silverman A, Shamasunder B, Johnston JE. Residents' experiences during a hydrogen sulfide crisis in Carson, California. RESEARCH SQUARE 2023:rs.3.rs-3745719. [PMID: 38168211 PMCID: PMC10760216 DOI: 10.21203/rs.3.rs-3745719/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background In early October 2021, thousands of residents in Carson, California began complaining of malodors and headaches. The odor was identified as hydrogen sulfide (H2S), a noxious odorous gas. H2S was measured at concentrations up to 7000 parts per billion (ppb) and remained above California's acute air quality standard of 30 ppb for a month, with intermittent elevations continuing for 3 months. After 2 months of malodor in this environmental justice community, the H2S was attributed to a warehouse fire. Research has yielded conflicting results on the health effects of H2S exposure at levels that were experienced during this event. There remains a gap in understanding how people perceive and experience odor emergencies such as this H2S event. Methods Through a community-academic partnership, we conducted 6 focus groups in Carson with 33 participants who resided in the Carson area during the crisis. We sought to understand how this incident affected residents through facilitated discussion on topics including information acquisition, impressions of the emergency response, physical and mental health symptoms, and ongoing impacts. Results The majority of participants were women (n = 25), identified as Latina/o (n = 19), and rent their homes (n = 21). Participants described difficulty obtaining coherent information about the emergency, which resulted in feelings of abandonment. Most participants felt that local government and health care providers downplayed and/or disregarded their concerns despite ongoing odors and health symptoms. Participants described experiencing stress from the odors' unknown health effects and continued fear of future odor incidents. Residents sought to take control of the crisis through information sharing, community networking, and activism. Participants experienced longer term effects from this event, including increased awareness of pollution and reduced trust in local agencies. Discussion This study demonstrates the necessity of clear, comprehensive, and prompt responses by relevant decisionmakers to chemical emergencies to appropriately address residents' fears, curb the spread of misinformation, and minimize adverse health effects. Participant responses also point to the benefit of supporting horizontal community networks for improved information sharing. By engaging directly with community members, researchers and disaster responders can better understand the various and complex impacts of chemical disasters and can improve response.
Collapse
|
3
|
Goffeng LO, Austigard ÅD, Svendsen KH, Skare Ø, Einarsdottir E, Madsø L, Heldal KK. A cross-sectional study of sensory-motor neuropsychological function among sewage plant and sewage net workers exposed to hydrogen sulphide when handling wastewater. Ann Work Expo Health 2023; 67:1027-1042. [PMID: 37742044 PMCID: PMC10683850 DOI: 10.1093/annweh/wxad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/21/2023] [Indexed: 09/25/2023] Open
Abstract
OBJECTIVES Workers at sewage treatment plants are exposed to a complex mixture of toxins, including hydrogen sulphide (H2S). An issue of concern among sewage workers, is possible negative nervous system effects from low-level H2S exposure. Empirical neuropsychological evidence indicates both that low-dose exposure to H2S exposure affects the nervous system, and the contrary, that such exposure may facilitate nervous system function, since H2S is an endogenously produced central nervous system (CNS) gasotransmitter. The aim of this study is to describe a possible association between the H2S component of the total exposure and long-term effects on neuropsychological motor function among wastewater workers. METHODS Workers (N = 138) treating wastewater in 6 sewage-treatment plants, or in the sewer net system participated in a cross-sectional study. H2S exposure was expressed in a dichotomous exposure variable defining currently H2S-exposed (N = 112) and unexposed referent workers (N = 26), and a variable defining a job-exposure matrix for long-term total typical workplace H2S exposure. The participants went through neuropsychological tests for hand coordination, reaction time (SRT), and balance, and completed questionnaires. Pearson chi-square test or independent samples t-test was used when comparing the currently H2S-exposed workers with the unexposed control group. Multiple linear regression was used to assess associations between the independent variables age, smoking and exposure variables, and the neuropsychological tests. RESULTS The analyses indicate increased SRT in the currently H2S-exposed group compared to controls (mean [SD] = 225.8 [29.9] versus 210.7 [26.3] ms, P = 0.019), and an association between increased SRT and current H2S-exposure in the total study sample (β = 14.7, P = 0.026, R2 = 0.06, P = 0.050). Blindfolded balance testing indicates a nonsignificant trend in the total study sample, of reduced balance in the highest versus lowest H2S total long-term exposure-index group (Sway area [mean {SD}, mm2: 702 [410] versus 581 [278]), and a significant association between total long-term H2S exposure and reduced balance among smokers (Sway area, mm2 [β = 38.7, P = 0.039], mean sway, mm [β = 0.3, P = 0.015]). CONCLUSION The observed trends and associations may be due to exposure peaks in certain work operations and pinpoint the importance of minimizing and avoiding exposure peaks, also when H2S time-weighted average measurements do not exceed an occupational exposure limit of 5 ppm.
Collapse
Affiliation(s)
- Lars Ole Goffeng
- National Institute of Occupational Health, Group for Work Psychology and Physiology, PO Box 5330 Majorstuen, N-0304 Oslo, Norway
| | - Åse Dalseth Austigard
- Department of Industrial Economics and Technology Management, NTNU - Norwegian University of Science and Technology, PO Box 8900, Torgarden, N-7491 Trondheim, Norway
- Working Environment Office, Trondheim Municipality, PO Box 2300, Torgarden, N-7004 Trondheim, Norway
| | - Kristin H Svendsen
- Department of Industrial Economics and Technology Management, NTNU - Norwegian University of Science and Technology, PO Box 8900, Torgarden, N-7491 Trondheim, Norway
| | - Øivind Skare
- National Institute of Occupational Health, Group for Work Psychology and Physiology, PO Box 5330 Majorstuen, N-0304 Oslo, Norway
| | - Elin Einarsdottir
- National Institute of Occupational Health, Group for Work Psychology and Physiology, PO Box 5330 Majorstuen, N-0304 Oslo, Norway
| | - Lene Madsø
- National Institute of Occupational Health, Group for Work Psychology and Physiology, PO Box 5330 Majorstuen, N-0304 Oslo, Norway
| | - Kari Kulvik Heldal
- National Institute of Occupational Health, Group for Work Psychology and Physiology, PO Box 5330 Majorstuen, N-0304 Oslo, Norway
| |
Collapse
|
4
|
Al-Murish M, Autade V, Kumi-Barimah E, Panmand R, Kale B, Jha A. Engineering of Solar Energy Harvesting Tb 3+-Ion-Doped CdS Quantum Dot Glasses for Photodissociation of Hydrogen Sulfide. ACS APPLIED ENERGY MATERIALS 2023; 6:8875-8888. [PMID: 37712089 PMCID: PMC10498422 DOI: 10.1021/acsaem.3c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
The photocatalytic properties of CdS quantum dots (Q-dots) and Tb3+-doped CdS Q-dots dispersed in a borosilicate glass matrix were investigated for the photodissociation of hydrogen sulfide (H2S) into hydrogen (H2) gas and elemental sulfur (S). The Q-dot-containing glass samples were fabricated using the conventional melt-quench method and isothermal annealing between 550 and 600 °C for 6 h for controlling the growth of CdS and Tb3+-ion-doped CdS Q-dots. The structure, electronic band gap, and spectroscopic properties of the Q-dots formed in the glass matrix after annealing were analyzed using Raman and UV-visible spectroscopies, X-ray powder diffraction, and transmission electron microscopy. With increasing annealing temperature, the average size range of the Q-dots increased, corresponding to the decrease of electronic band gap from 3.32 to 2.24 eV. For developing the model for photocatalytic energy exchange, the excited state lifetime and photoluminescence emission were investigated by exciting the CdS and Tb3+-doped CdS quantum states with a 450 nm source. The results from the photoluminescence and lifetime demonstrated that the Tb3+-CdS photodissociation energy exchange is more efficient from the excited Q-dot states compared to the CdS Q-dot glasses. Under natural sunlight, the hydrogen production experiment was conducted, and an increase of 26.2% in hydrogen evolution rate was observed from 0.02 wt % Tb3+-doped CdS (3867 μmol/h/0.5 g) heat-treated at 550 °C when compared to CdS Q-dot glass with a similar heat treatment temperature (3064 μmol/h/0.5 g). Furthermore, the photodegradation stability of 0.02 wt % Tb3+-CdS was analyzed by reusing the catalyst glass powders four times with little evidence of degradation.
Collapse
Affiliation(s)
- Mohanad Al-Murish
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Vijay Autade
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Off Pashan Road, Panchawati, Pune 411008, India
| | - Eric Kumi-Barimah
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Rajendra Panmand
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Off Pashan Road, Panchawati, Pune 411008, India
| | - Bharat Kale
- Centre
for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Off Pashan Road, Panchawati, Pune 411008, India
| | - Animesh Jha
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
5
|
Sherief M, Javed MA, Bunker B, Dvorak B, Maraqa MA, Aly Hassan A. In-situ desorption of hydrogen sulfide from activated carbon: effect of temperature, pH and flowrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1007/s13762-023-04974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 09/01/2023]
|
6
|
Alsaeedi A, Welham S, Rose P, Zhu YZ. The Impact of Drugs on Hydrogen Sulfide Homeostasis in Mammals. Antioxidants (Basel) 2023; 12:antiox12040908. [PMID: 37107283 PMCID: PMC10135325 DOI: 10.3390/antiox12040908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Mammalian cells and tissues have the capacity to generate hydrogen sulfide gas (H2S) via catabolic routes involving cysteine metabolism. H2S acts on cell signaling cascades that are necessary in many biochemical and physiological roles important in the heart, brain, liver, kidney, urogenital tract, and cardiovascular and immune systems of mammals. Diminished levels of this molecule are observed in several pathophysiological conditions including heart disease, diabetes, obesity, and immune function. Interestingly, in the last two decades, it has become apparent that some commonly prescribed pharmacological drugs can impact the expression and activities of enzymes responsible for hydrogen sulfide production in cells and tissues. Therefore, the current review provides an overview of the studies that catalogue key drugs and their impact on hydrogen sulfide production in mammals.
Collapse
Affiliation(s)
- Asrar Alsaeedi
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Simon Welham
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
7
|
Batterman S, Grant-Alfieri A, Seo SH. Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Crit Rev Toxicol 2023; 53:244-295. [PMID: 37431804 PMCID: PMC10395451 DOI: 10.1080/10408444.2023.2229925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas that is well-known for its acute health risks in occupational settings, but less is known about effects of chronic and low-level exposures. This critical review investigates toxicological and experimental studies, exposure sources, standards, and epidemiological studies pertaining to chronic exposure to H2S from both natural and anthropogenic sources. H2S releases, while poorly documented, appear to have increased in recent years from oil and gas and possibly other facilities. Chronic exposures below 10 ppm have long been associated with odor aversion, ocular, nasal, respiratory and neurological effects. However, exposure to much lower levels, below 0.03 ppm (30 ppb), has been associated with increased prevalence of neurological effects, and increments below 0.001 ppm (1 ppb) in H2S concentrations have been associated with ocular, nasal, and respiratory effects. Many of the studies in the epidemiological literature are limited by exposure measurement error, co-pollutant exposures and potential confounding, small sample size, and concerns of representativeness, and studies have yet to consider vulnerable populations. Long-term community-based studies are needed to confirm the low concentration findings and to refine exposure guidelines. Revised guidelines that incorporate both short- and long-term limits are needed to protect communities, especially sensitive populations living near H2S sources.
Collapse
Affiliation(s)
- Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Amelia Grant-Alfieri
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Hee Seo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
8
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
9
|
Santana Maldonado C, Weir A, Rumbeiha WK. A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicol Mech Methods 2023; 33:183-196. [PMID: 36076319 DOI: 10.1080/15376516.2022.2121192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hydrogen sulfide (H2S) poisoning remains a significant source of occupational fatalities and is the second most common cause of toxic gas-induced deaths. It is a rapidly metabolized systemic toxicant targeting the mitochondria, among other organelles. Intoxication is mostly acute, but chronic or in-between exposure scenarios also occur. Some genetic defects in H2S metabolism lead to lethal chronic H2S poisoning. In acute exposures, the neural, respiratory, and cardiovascular systems are the primary target organs resulting in respiratory distress, convulsions, hypotension, and cardiac irregularities. Some survivors of acute poisoning develop long-term sequelae, particularly in the central nervous system. Currently, treatment for H2S poisoning is primarily supportive care as there are no FDA-approved drugs. Besides hyperbaric oxygen treatment, drugs in current use for the management of H2S poisoning are controversial. Novel potential drugs are under pre-clinical research development, most of which target binding the H2S. However, there is an acute need to discover new drugs to prevent and treat H2S poisoning, including reducing mortality and morbidity, preventing sequalae from acute exposures, and for treating cumulative pathology from chronic exposures. In this paper, we perform a comprehensive review of H2S poisoning including perspectives on past, present, and future.
Collapse
Affiliation(s)
| | - Abigail Weir
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Wilson K Rumbeiha
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
10
|
Wiesehahn M, Zimmermann EM, Agar DW. Experimental Splitting of Hydrogen Sulfide by Halogens for Application in Reaction Cycles. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maximilian Wiesehahn
- TU Dortmund, Bio- und Chemieingenieurwesen Lehrstuhl für Chemische Verfahrenstechnik Emil-Figge-Straße 66 44227 Dortmund Deutschland
| | - Elodia Morales Zimmermann
- TU Dortmund, Bio- und Chemieingenieurwesen Lehrstuhl für Chemische Verfahrenstechnik Emil-Figge-Straße 66 44227 Dortmund Deutschland
| | - David W. Agar
- TU Dortmund, Bio- und Chemieingenieurwesen Lehrstuhl für Chemische Verfahrenstechnik Emil-Figge-Straße 66 44227 Dortmund Deutschland
| |
Collapse
|
11
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
12
|
Yu Y, Yang Q, Wang Z, Ding Q, Li M, Fang Y, He Q, Zhu YZ. The Anti-Inflammation and Anti-Nociception Effect of Ketoprofen in Rats Could Be Strengthened Through Co-Delivery of a H 2S Donor, S-Propargyl-Cysteine. J Inflamm Res 2021; 14:5863-5875. [PMID: 34785926 PMCID: PMC8590460 DOI: 10.2147/jir.s333326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Ketoprofen (KETO) is a traditional non-steroidal anti-inflammatory drug (NSAIDs) with good analgesic and antipyretic effects. However, as NASIDs, the toxicity of KETO towards gastrointestinal (GI) system might limit its clinical use. S-propargyl-cysteine (SPRC) is an excellent endogenous H2S donor showed wide application in the field of anti-inflammation, anti-oxidative stress, or even the protection of cardiovascular system through the elevation of endogenous H2S concentration. As recently studies reported, co-administration of H2S donor might potentially mitigate the GI toxicity and relevant side effects induced by series of NSAIDs. METHODS In this study, we established a SPRC and KETO co-encapsulated poly (lactic-co-glycolic acid) microsphere (SK@MS), and its particle size, morphology, storage stability and in vitro release profile were firstly investigated. The elevation of endogenous H2S level of SK@MS was then calculated, and the pharmacodynamic study (anti-inflammation and analgesic effects) of SK@MS, SPRC, and KETO towards adjuvant induced arthritis (AIA) in rats were also studied. Finally, to test the potential side effect, the heart, liver, spleen, lung, kidney, stomach, small intestine, and large intestine were resected from rats and examined by H&E staining. RESULTS A monodispersed SK@MS could be observed under the SEM, and particle size was calculated around 25.12 μm. The loading efficiency (LE) for SPRC and KETO were 6.67% and 2.64%, respectively, while the encapsulation efficiency (EE) for SPRC and KETO were 37.20% and 68.28%, respectively. SK@MS showed a sustained release of SPRC and KETO in vitro, which was up-to 15 days. SK@MS could achieve a long-term elevation of the H2S concentration in vivo, while SPRC showed an instant H2S elevation and metabolize within 6 h. Interestingly, the KETO did not show any influence on the H2S concentration in vivo. After establishment of AIA model, neither SPRC nor KETO showed scarcely anti-inflammation and anti-nociception effect, while conversely, SK@MS showed an obvious mitigation towards paw edema and pain in AIA rats, which indicated an improved anti-inflammation and anti-nociception effect when co-delivery of SRC and KETO. Besides, low stimulation towards major organs in rats observed in any experimental group. CONCLUSION A monodispersed was successfully prepared in this study, and SK@MS showed a sustained SPRC and KETO release in vitro and H2S release in vivo. In the pharmacodynamics study, SK@MS not only exhibited an excellent anti-inflammation and analgesic effects in AIA rats but also showed low stimulation towards rats.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qida He
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
- Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Glinyanova I, Fomichev V, Asanova N. Are aerosols on the leaves of apricot trees (Prunus armeniaca) signalizing the activity of a hidden paleo-supervolcano in a steppe? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57424-57439. [PMID: 34467481 DOI: 10.1007/s11356-021-16135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Aerosols on plant leaves make it possible to assess the quality of air in settlements. The purpose of this work was to assess the acidity and specific electrical conductivity of aerosol suspensions (by washing off aerosol particles from the leaves of apricot trees (Prunus armeniaca)), which characterize the air pollution in the residential area of the Svetly Yar settlement (Volgograd region, Russia) during the spring-summer of 2019. The research hypothesis was as follows: Acidic mineralized aerosols with a mixed source are present in Svetly Yar. The differences were checked by the Student's t-test and evaluated at the level of significance of p = 0.05. The results indicated the presence of acidic (pH = 4.56 + 0.02) and highly mineralized aerosols (EC = 130.41 + 0.17 μS/cm) in the ambient air of the Svetly Yar residential area during the spring-summer of 2019 and revealed environmental risks for the population in comparison with aerosol suspensions from a (relatively) clean location (pH = 6.46 + 0.02; EC = 37.61 + 0.19 μS/cm). The authors confirmed their hypothesis in favor of mixed source acidic mineralized aerosols in the residential area of the Svetly Yar village. The anthropogenic sources were the industrial zones of Svetly Yar, the southern part of the city of Volgograd and artificial sedimentation tanks in the southwestern part of Svetly Yar. A natural source of pollution in the vicinity of Svetly Yar may be hidden geologically active structures: faults in the Earth's crust, a salt diapir, an underground ancient semiactive volcanic zone on a steppe, etc.
Collapse
Affiliation(s)
- Irina Glinyanova
- Institute of Architecture and Construction of the Volgograd State Technical University, Faculty of Еngineering Systems and Technosphere Safety, 1, Akademicheskaya St., 400074, Volgograd, Russia.
| | - Valery Fomichev
- Department of General and Inorganic Chemistry of Volgograd State Technical University, 28 Lenin Av, 400005, Volgograd, Russia
| | - Natali Asanova
- Department of Applied Mathematics of Volgograd State Technical University, 28 Lenin Av, 400005, Volgograd, Russia
| |
Collapse
|
14
|
Yu Y, Wang Z, Yang Q, Ding Q, Wang R, Li Z, Fang Y, Liao J, Qi W, Chen K, Li M, Zhu YZ. A novel dendritic mesoporous silica based sustained hydrogen sulfide donor for the alleviation of adjuvant-induced inflammation in rats. Drug Deliv 2021; 28:1031-1042. [PMID: 34060389 PMCID: PMC8172227 DOI: 10.1080/10717544.2021.1921075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose S-propargyl-cysteine (SPRC), an excellent endogenous hydrogen sulfide (H2S) donor, could elevate H2S levels via the cystathionine γ-lyase (CSE)/H2S pathway both in vitro and in vivo. However, the immediate release of H2S in vivo and daily administration of SPRC potentially limited its clinical use. Methods To solve the fore-mentioned problem, in this study, the dendritic mesoporous silica nanoparticles (DMSN) was firstly prepared, and a sustained H2S delivery system consisted of SPRC and DMSN (SPRC@DMSN) was then constructed. Their release profiles, both in vitro and in vivo, were investigated, and their therapeutical effect toward adjuvant-induced arthritis (AIA) rats was also studied. Results The spherical morphology of DMSN could be observed under scanning Electron Microscope (SEM), and the transmission electron microscope (TEM) images showed a central-radiational pore channel structure of DMSN. DMSN showed excellent SPRC loading capacity and attaining a sustained releasing ability than SPRC both in vitro and in vivo, and the prolonged SPRC releasing could further promote the release of H2S in a sustained manner through CSE/H2S pathway both in vitro and in vivo. Importantly, the SPRC@DMSN showed promising anti-inflammation effect against AIA in rats was also observed. Conclusions A sustained H2S releasing donor consisting of SPRC and DMSN was constructed in this study, and this sustained H2S releasing donor might be of good use for the treatment of AIA.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Junyi Liao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China.,Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Hydrogen Sulfide in Skin Diseases: A Novel Mediator and Therapeutic Target. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6652086. [PMID: 33986916 PMCID: PMC8079204 DOI: 10.1155/2021/6652086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023]
Abstract
Together with nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) is now recognized as a vital gaseous transmitter. The ubiquitous distributions of H2S-producing enzymes and potent chemical reactivities of H2S in biological systems make H2S unique in its ability to regulate cellular and organ functions in both health and disease. Acting as an antioxidant, H2S can combat oxidative species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) and protect the skin from oxidative stress. The aberrant metabolism of H2S is involved in the pathogenesis of several skin diseases, such as vascular disorders, psoriasis, ulcers, pigment disorders, and melanoma. Furthermore, H2S donors and some H2S hybrids have been evaluated in many experimental models of human disease and have shown promising therapeutic results. In this review, we discuss recent advances in understanding H2S and its antioxidant effects on skin pathology, the roles of altered H2S metabolism in skin disorders, and the potential value of H2S as a therapeutic intervention in skin diseases.
Collapse
|
16
|
Qianru C, Xueyuan H, Bing Z, Qing Z, Kaixin Z, Shu L. Regulation of H 2S-induced necroptosis and inflammation in broiler bursa of Fabricius by the miR-15b-5p/TGFBR3 axis and the involvement of oxidative stress in this process. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124682. [PMID: 33307448 DOI: 10.1016/j.jhazmat.2020.124682] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant, having toxic effects on immune system. Necroptosis has been discussed as a new form of cell death and plays an important role in inflammation. To investigate the mechanism of H2S-induced immune injury, and the role of microRNAs (miRNAs) in this process, based on the results of high-throughput sequencing, we selected the most significantly changed miR-15b-5p for subsequent experiments. We further predicted and determined the targeting relationship between miR-15b-5p and TGFBR3 in HD11 through miRDB, Targetscan and dual-luciferase, and found that miR-15b-5p is highly expressed in H2S-induced necroptosis and inflammation. To understand whether miR-15b-5p/TGFBR3 axis could involve in the process of necroptosis and inflammation, we further revealed that the high expression of miR-15b-5p and the knockdown of TGFBR3 can induce necroptosis. Nec-1 treatment enhanced the survival rate of cells. Notably, H2S exposure induces oxidative stress and activates the TGF-β pathway, which are collectively regulated by the miR-15b-5p/TGFBR3 axis. Our present study provides a new perspective for necroptosis regulated by the miR-15b-5p/TGFBR3 axis and reveals a new form of inflammation regulation in immune diseases.
Collapse
Affiliation(s)
- Chi Qianru
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hu Xueyuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhang Qing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhang Kaixin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Elwood M. The Scientific Basis for Occupational Exposure Limits for Hydrogen Sulphide-A Critical Commentary. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062866. [PMID: 33799676 PMCID: PMC8001002 DOI: 10.3390/ijerph18062866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Occupational exposure limits for hydrogen sulphide (H2S) vary considerably; three expert group reports, published from 2006 to 2010, each recommend different limits. Some jurisdictions are considering substantial reductions. METHODS This review assesses the scientific evidence used in these recommendations and presents a new systematic review of human studies from 2006-20, identifying 33 studies. RESULTS The three major reports all give most weight to two sets of studies: of physiological effects in human volunteers, and of effects in the nasal passages of rats and mice. The human studies were done in one laboratory over 20 years ago and give inconsistent results. The breathing style and nasal anatomy of rats and mice would make them more sensitive than humans to inhaled agents. Each expert group applied different uncertainly factors. From these reports and the further literature review, no clear evidence of detrimental health effects from chronic occupational exposures specific to H2S was found. Detailed studies of individuals in communities with natural sources in New Zealand have shown no detrimental effects. Studies in Iceland and Italy show some associations; these and various other small studies need verification. CONCLUSIONS The scientific justification for lowering occupational exposure limits is very limited. There is no clear evidence, based on currently available studies, that lower limits will protect the health of workers further than will the current exposure limits used in most countries. Further review and assessment of relevant evidence is justified before exposure limits are set.
Collapse
Affiliation(s)
- Mark Elwood
- Department of Epidemiology & Biostatistics, School of Population Health, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Zhang C, Wang X, Pi S, Wei Z, Wang C, Yang F, Li G, Nie G, Hu G. Cadmium and molybdenum co-exposure triggers autophagy via CYP450s/ROS pathway in duck renal tubular epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143570. [PMID: 33243500 DOI: 10.1016/j.scitotenv.2020.143570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) and excessive molybdenum (Mo) are detrimental to animals, but the combined nephrotoxic impacts of Cd and Mo on duck are still unclear. To evaluate the combined impacts of Cd and Mo on autophagy via Cytochrome P450s (CYP450s)/reactive oxygen species (ROS) pathway, duck renal tubular epithelial cells were treated with 3CdSO4·8H2O (4.0 μM Cd), (NH4)6Mo7O24·4H2O (500.0 μM Mo), butylated hydroxy anisole (BHA) (100.0 μM) and combination of Cd and Mo or Cd, Mo and BHA for 12 h, and combined cytotoxicity was investigated. The results indicated that Mo or/and Cd induced CYP1A1, CYP1B1, CYP2C9, CYP3A8 and CYP4B1 mRNA levels, decreased superoxide dismutase (SOD), catalase (CAT) activities and glutathione peroxidase (GSH-Px) content, and increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Besides, Mo or/and Cd elevated the number of autophagosome and microtubule-associated protein light chain 3 (LC3) puncta, upregulated mRNA levels of Beclin-1, LC3A, LC3B, Atg5 and adenosine 5'-monophosphate (AMP)-activated protein kinase α1 (AMPKα-1), inhibited Dynein, p62 and mammalian target of rapamycin (mTOR) mRNA levels, increased Beclin-1 and LC3II/LC3I protein levels. Moreover, the changes of these factors in Mo and Cd co-treated groups were more apparent. Additionally, BHA could efficiently alleviate the changes of above these indicators co-induced by Mo and Cd. Overall, these results manifest Cd and Mo co-exposure may synergistically trigger autophagy via CYP450s/ROS pathway in duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xueru Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China.
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
19
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Shah SWA, Chen J, Han Q, Xu Y, Ishfaq M, Teng X. Ammonia inhalation impaired immune function and mitochondrial integrity in the broilers bursa of fabricius: Implication of oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110078. [PMID: 31841897 DOI: 10.1016/j.ecoenv.2019.110078] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Ammonia (NH3) is considered as environmental pollutant and toxic agent for animals and humans including poultry. Previous reports demonstrated that NH3 suppressed broilers immunity. However, the harmful effects of NH3 on broilers bursa of fabricius (BF) is still unknown. Functionally, apoptosis is very important for many physiological processes including homeostasis of lymphocyte population. Therefore, the present study was aimed to investigate the underlying mechanisms of NH3 toxicity in the broilers BF. Histological observation showed lymphocyte accumulation, cavities and increased interstitial cells in BF. Ultrastructural observation indicated mitochondrial vacuoles, deformation and disappearance of mitochondrial membranes. Oxidative stress markers (CAT, MDA, H2O2, GGT, GSH-Px and GSH) showed that NH3-induced oxidative stress in BF. Meanwhile, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay revealed increased apoptotic cells. In addition, the mRNA and protein expression of dynamin-related protein 1 (Drp1), mitochondrial fission factor (Mff), mitofusin 1 and 2 (Mfn1 and Mfn2), optic atrophy 1 (Opa1) indicated imbalance between mitochondrial inner and outer membrane and results in mitochondrial dysfunction in broilers BF. The mRNA and protein expression of apoptosis-related genes including Caspase-3, Caspase-9, Caspase-8, Cytochrome-C (Cyt-C), p53, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax) were significantly altered in broilers BF. Conclusively, these results displayed that excessive NH3 causes BF damage and mitochondrial dysfunction through oxidative stress and apoptosis in BF and could affect immune function of BF. These findings provide possible therapeutic targets to prevent NH3 induced toxicity in the BF of broilers.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Chang jiang Road, Xiang fang District, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
21
|
Zaorska E, Tomasova L, Koszelewski D, Ostaszewski R, Ufnal M. Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors. Biomolecules 2020; 10:biom10020323. [PMID: 32085474 PMCID: PMC7072623 DOI: 10.3390/biom10020323] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the important biological mediators involved in physiological and pathological processes in mammals. Recently developed H2S donors show promising effects against several pathological processes in preclinical and early clinical studies. For example, H2S donors have been found to be effective in the prevention of gastrointestinal ulcers during anti-inflammatory treatment. Notably, there are well-established medicines used for the treatment of a variety of diseases, whose chemical structure contains sulfur moieties and may release H2S. Hence, the therapeutic effect of these drugs may be partly the result of the release of H2S occurring during drug metabolism and/or the effect of these drugs on the production of endogenous hydrogen sulfide. In this work, we review data regarding sulfur drugs commonly used in clinical practice that can support the hypothesis about H2S-dependent pharmacotherapeutic effects of these drugs.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6195
| |
Collapse
|
22
|
Altaany Z, Alkaraki A, Abu-Siniyeh A, Al Momani W, Taani O. Evaluation of antioxidant status and oxidative stress markers in thermal sulfurous springs residents. Heliyon 2019; 5:e02885. [PMID: 31844754 PMCID: PMC6895573 DOI: 10.1016/j.heliyon.2019.e02885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Sulfurous springs have been traditionally used in medical treatment for different purposes. These beneficial effects of sulfurous water have been attributed to the presence of sulfurous compounds mainly in the form of hydrogen sulfide (H2S). The purpose of the present study is to explore the effects of long-term exposure to sulfurous springs on oxidative stress and antioxidant biomarkers responses in individuals who lived nearby the sulfurous springs. The studied area was Al- Hammah sulfurous springs, which is located in the northern part of the Jordan Rift Valley and host many sulfurous springs. Residents in sulfurous springs area are continuously exposed to water and gases emission more than the overall population. We have found that the sulphate levels were 7 times higher in sulfurous springs water samples than control water samples. The majority of the volunteers involved in the present study were more than ten years long residence and lived in range distance between one to five kilometers (less than 3 miles) away from main sulfurous spring, and visited the sulfurous spring at least once a month. We did not find any noticeable symptoms in sulfur spring residents such as headaches, nausea, breathing problems. The total oxidative stress (TOS) and oxidative stress index (OSI) in sulfurous spring residents were lower than control individuals. The total antioxidant capacity (TAC) and total nitric oxide (NOX) levels were higher in sulfurous spring residents compared to control group. Furthermore, we have highlighted that living nearby the sulfurous springs does not affect oxygen saturation levels (SPO2) or heart pulse rate . These findings suggest that long-term exposure to sulfurous springs boost the antioxidant capacity and reduce oxidative stress levels in the human body. Hence, visiting sulfurous springs can act as natural remedies to diminish oxidative stress as they show promising potential in several-oxidative stress-related diseases treatment.
Collapse
Affiliation(s)
- Zaid Altaany
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 21163, Jordan
| | - Almuthanna Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163, Jordan
| | - Ahmed Abu-Siniyeh
- Department of Medical Laboratory Sciences, Faculty of science, Al-Balqa' Applied University, Jordan
| | - Waleed Al Momani
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 21163, Jordan
| | - Omar Taani
- King Abdulla University Hospital, Irbid, 22110, Jordan
| |
Collapse
|
23
|
Chi Q, Wang D, Hu X, Li S, Li S. Hydrogen Sulfide Gas Exposure Induces Necroptosis and Promotes Inflammation through the MAPK/NF- κB Pathway in Broiler Spleen. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8061823. [PMID: 31467636 PMCID: PMC6701317 DOI: 10.1155/2019/8061823] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/28/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H2S) is one of the main pollutants in the atmosphere, which is a serious threat to human health. The decomposition of sulfur-containing organics in chicken houses could produce a large amount of H2S, thereby damaging poultry health. In this study, one-day-old broilers were selected and exposed to 4 or 20 ppm of H2S gas (0-3 weeks: 4 ± 0.5 ppm, 4-6 weeks: 20 ± 0.5 ppm). The spleen samples were collected immediately after the chickens were euthanized at 2, 4, and 6 weeks. The histopathological and ultrastructural observations showed obvious necrosis characteristics of H2S-exposed spleens. H2S exposure suppressed GSH, CAT, T-AOC, and SOD activities; increased NO, H2O2, and MDA content and iNOS activity; and induced oxidative stress. ATPase activities and the expressions of energy metabolism-related genes were significantly decreased. Also, the expressions of related necroptosis (RIPK1, RIPK3, MLKL, TAK1, TAB2, and TAB3) were significantly increased, and the MAPK pathway was activated. Besides, H2S exposure activated the NF-κB classical pathway and induced TNF-α and IL-1β release. Taken together, we conclude that H2S exposure induces oxidative stress and energy metabolism dysfunction; evokes necroptosis; activates the MAPK pathway, eventually triggering the NF-κB pathway; and promotes inflammatory response in chicken spleens.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dongxu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiping Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
24
|
Hu X, Chi Q, Wang D, Chi X, Teng X, Li S. Hydrogen sulfide inhalation-induced immune damage is involved in oxidative stress, inflammation, apoptosis and the Th1/Th2 imbalance in broiler bursa of Fabricius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:201-209. [PMID: 30118953 DOI: 10.1016/j.ecoenv.2018.08.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen sulfide (H2S) is widely accepted to be a signaling molecule that exhibits some potentially beneficial therapeutic effects at physiological concentrations. At elevated levels, H2S is highly toxic and has a negative effect on human health and animal welfare. Studies have shown that H2S exposure induces an immune function in mice, but there are few studies of the effect of continuous H2S exposure on immune organs in poultry. In this study, one-day-old broilers were selected and exposed to 4 or 20 ppm of H2S gas for 14, 28 and 42 days of age. After exposure, the bursa of Fabricius (BF) was harvested. The results showed that continuous H2S exposure reduced the body weight, abdominal fat percentage, and antibody titer in broilers. H2S exposure also decreased mRNA expression of IgA, IgM and IgG in the broiler BF. A histological study revealed obvious nuclear debris, and a few vacuoles in the BF, and an ultrastructural study revealed mitochondrial and nuclear damage to BF cells after H2S exposure for 42 d. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay suggested H2S exposure remarkably increased the number of TUNEL positive nuclei and significantly increased apoptotic index. The expression of apoptotic genes also confirmed that H2S inhalation damaged the broiler BF. Increased cytokines and reduced antioxidant responses were detected in the BF after exposure to H2S. Cytokines promoted inflammation and caused a Th1/Th2 imbalance. We suggest that continuous H2S intoxication triggers oxidative stress, inflammation, apoptosis and a Th1/Th2 imbalance in the BF, leading to immune injury in broilers.
Collapse
Affiliation(s)
- Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dongxu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Chi Q, Chi X, Hu X, Wang S, Zhang H, Li S. The effects of atmospheric hydrogen sulfide on peripheral blood lymphocytes of chickens: Perspectives on inflammation, oxidative stress and energy metabolism. ENVIRONMENTAL RESEARCH 2018; 167:1-6. [PMID: 30005195 DOI: 10.1016/j.envres.2018.06.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Excessive hydrogen sulfide (H2S) affects poultry health. Exposure to air pollution induces inflammation, oxidative stress, energy metabolism dysfunction and adverse health effects. However, few detailed studies have been conducted on the molecular mechanisms of H2S-induced injury in poultry. To understand how H2S drives its adverse effects on chickens, twenty-four 14-day-old chickens were randomly divided into two groups. The chickens in the control group were raised in a separate chamber without H2S, and the chickens in the treatment group were exposed to 30 ppm H2S. After 14 days of exposure, peripheral blood samples were taken and the lymphocytes were extracted to detect inflammation, oxidative stress and energy metabolism in broilers. Overall, an increase in the inflammatory response was detected in the peripheral blood lymphocytes following H2S exposure compared to the control group, and the expression levels of the heat shock proteins (HSPs) and the transcription factors nuclear factor κB (NF-κB), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were up-regulated in the H2S group, which further suggested that H2S induced an inflammatory response via the NF-κB pathway. Because of the activation of NF-κB, which is a major regulator of oxidative stress, we also observed that reactive oxygen species (ROS) production was elevated under H2S exposure. In addition, we presumed that energy metabolism might be damaged due to the increased ROS production, and we found that H2S down-regulated the expression levels of energy metabolism-related genes, which indicated the occurrence of energy metabolism dysfunction. Altogether, this study suggests that exposure to excessive atmospheric H2S induces an inflammatory response, oxidative stress and energy metabolism dysfunction, providing a reference for comparative medicine.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Zha L, Duan W, Wen D, Guo Y, Yan J, Chang Y, Cai J, Ding Y. Rapid Determination of H2S Poisoning in a Forensic Study Using a Novel Fluorescence Assay Based on Zn/Cu@BSA Nanoclusters. Aust J Chem 2018. [DOI: 10.1071/ch17470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The quantitative determination of H2S in the blood can provide valid evidence for H2S poisoning through occupational exposure. However, known traditional methods for the detection of H2S in blood are time consuming, require complicated pretreatments, and have low sensitivity. In this paper, a new fluorescence sensing assay is proposed for the rapid detection of H2S poisoning in forensic cases based on bovine serum albumin (BSA)-stabilised zinc/copper (Zn/Cu) bi-metal nanoclusters (Zn/Cu@BSA NCs). The as-prepared Zn/Cu@BSA NCs probes have been characterised by UV-vis absorption and fluorescence spectroscopy. The fluorescence of Zn/Cu@BSA NCs can be quenched through specific interactions between HS−/S2− and the Zn2+/Cu2+ bi-metal ions. Under optimised conditions, the fluorescence sensing method was linear in the concentration range of 2.5 nM to 30 mM with 0.69 nM as the limit of detection. Moreover, the practical feasibility of this fluorescence sensing method has also been demonstrated by the analysis of mice blood samples containing different levels of sulfide and human blood samples from forensic cases of H2S poisoning. Compared with gas chromatography/mass spectrometry (GC/MS), this fluorescence sensing method is quite simple, straightforward, and can be accurate for the quantitative determination of H2S poisoning in a few minutes for forensic analysis. Overall, this is the first report of a bi-metal fluorescence sensing assay for detecting H2S poisoning directly in blood. This research may provide a new approach for forensic toxicologists to monitor poisoning by H2S using a fluorescence-sensing method.
Collapse
|
27
|
Sulphurous Mineral Waters: New Applications for Health. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8034084. [PMID: 28484507 PMCID: PMC5397653 DOI: 10.1155/2017/8034084] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
Abstract
Sulphurous mineral waters have been traditionally used in medical hydrology as treatment for skin, respiratory, and musculoskeletal disorders. However, driven by recent intense research efforts, topical treatments are starting to show benefits for pulmonary hypertension, arterial hypertension, atherosclerosis, ischemia-reperfusion injury, heart failure, peptic ulcer, and acute and chronic inflammatory diseases. The beneficial effects of sulphurous mineral waters, sulphurous mud, or peloids made from sulphurous mineral water have been attributed to the presence of sulphur mainly in the form of hydrogen sulphide. This form is largely available in conditions of low pH when oxygen concentrations are also low. In the organism, small amounts of hydrogen sulphide are produced by some cells where they have numerous biological signalling functions. While high levels of hydrogen sulphide are extremely toxic, enzymes in the body are capable of detoxifying it by oxidation to harmless sulphate. Hence, low levels of hydrogen sulphide may be tolerated indefinitely. In this paper, we review the chemistry and actions of hydrogen sulphide in sulphurous mineral waters and its natural role in body physiology. This is followed by an update of available data on the impacts of exogenous hydrogen sulphide on the skin and internal cells and organs including new therapeutic possibilities of sulphurous mineral waters and their peloids.
Collapse
|
28
|
An electrochemical in-vitro tool for study of in-vivo relevant biochemical oxidation/reduction of sulfide ion by human whole blood: Evidence for the biological detoxification of hydrogen sulfide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Padovani D, Hessani A, Castillo FT, Liot G, Andriamihaja M, Lan A, Pilati C, Blachier F, Sen S, Galardon E, Artaud I. Sulfheme formation during homocysteine S-oxygenation by catalase in cancers and neurodegenerative diseases. Nat Commun 2016; 7:13386. [PMID: 27848965 PMCID: PMC5116089 DOI: 10.1038/ncomms13386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence suggests that abnormal levels of homocysteine are associated with vascular dysfunctions, cancer cell proliferation and various neurodegenerative diseases. With respect to the latter, a perturbation of transition metal homeostasis and an inhibition of catalase bioactivity have been reported. Herein, we report on some of the molecular bases for the cellular toxicity of homocysteine and demonstrate that it induces the formation of sulfcatalase, an irreversible inactive state of the enzyme, without the intervention of hydrogen sulfide. Initially, homocysteine reacts with native catalase and/or redox-active transition metal ions to generate thiyl radicals that mediate compound II formation, a temporarily inactive state of the enzyme. Then, the ferryl centre of compound II intervenes into the unprecedented S-oxygenation of homocysteine to engender the corresponding sulfenic acid species that further participates into the prosthetic heme modification through the formation of an unusual Fe(II) sulfonium. In addition, our ex cellulo studies performed on cancer cells, models of neurodegenerative diseases and ulcerative colitis suggest the likelihood of this scenario in a subset of cancer cells, as well as in a cellular model of Parkinson's disease. Our findings expand the repertoire of heme modifications promoted by biological compounds and point out another deleterious trait of disturbed homocysteine levels that could participate in the aetiology of these diseases. High levels of homocysteine in cells are linked to pathological states. Here, the authors report that homocysteine inactivates catalase by modifying the heme group, impairing cellular redox homeostasis, and show that this modification occurs in cancer cells and in a cellular model of Parkinson's disease.
Collapse
Affiliation(s)
- Dominique Padovani
- UMR 8601, LCBPT, CNRS-Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Sts Pères, Paris 75006, France
| | - Assia Hessani
- UMR 8601, LCBPT, CNRS-Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Sts Pères, Paris 75006, France
| | - Francine T Castillo
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Géraldine Liot
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Paris-Sud University, Paris-Saclay University, MIRCen, I2BM, DRF, 18 route du Panorama, B.P. 6, Fontenay-aux-Roses 92265, France
| | - Mireille Andriamihaja
- UMR 914 INRA-AgroParisTech, Nutrition Physiology and Ingestive Behavior, 16 Rue Claude Bernard, Paris 75005, France
| | - Annaïg Lan
- UMR 914 INRA-AgroParisTech, Nutrition Physiology and Ingestive Behavior, 16 Rue Claude Bernard, Paris 75005, France
| | - Camilla Pilati
- INSERM UMR-S1147, CNRS SNC 5014, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Sts Pères, Paris 75006, France
| | - François Blachier
- UMR 914 INRA-AgroParisTech, Nutrition Physiology and Ingestive Behavior, 16 Rue Claude Bernard, Paris 75005, France
| | - Suvajit Sen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Erwan Galardon
- UMR 8601, LCBPT, CNRS-Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Sts Pères, Paris 75006, France
| | - Isabelle Artaud
- UMR 8601, LCBPT, CNRS-Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Sts Pères, Paris 75006, France
| |
Collapse
|