1
|
Shi Q, Nie J, Tong TK, Zhang H, Kong Z. Effects of 5-Wk Repeated Sprint Training in Hypoxia on Global Inspiratory and Core Muscle Functions. J Sports Sci Med 2024; 23:767-777. [PMID: 39649562 PMCID: PMC11622060 DOI: 10.52082/jssm.2024.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/01/2024] [Indexed: 12/11/2024]
Abstract
Repeated-sprint training in hypoxia (RSH) has been shown to boost team-sport players' repeated-sprint ability (RSA). Whether players' global inspiratory muscle (IM) and core muscle (CM) functions would be altered concomitantly with RSH was not reported. This study was designed to compare the concomitant alternations in players' RSA and their IM and CM functions during a team-sport-specific intermittent exercise protocol (IEP) before and after the intervention. Twenty players were assigned into either RSH or control (CON) groups (n = 10 for each). RSH players participated in 5-wk RSH (15 sessions, 3 sets 5x5-s all-out treadmill sprints interspersed with 25-s passive recovery under the hypoxia of 13.5%) while CON players had no corresponding training. The changes in RSA between pre- and post-intervention, and the alterations in IM and CM functions that were revealed by maximum inspiratory mouth pressure (PImax) and sport-specific endurance plank test (SEPT) performance, respectively, between pre- and post-IEP and across pre- and post-intervention in the RSH group were compared with that of CON. Following the 5-wk RSH, players' RSA improved significantly (>6%, p < 0.05) while PImax and SEPT performance did not alter (P > 0.05). Nevertheless, PImax which declined markedly in pre-intervention IEP (pre-IEP 155.4 ± 22.7 vs post-IEP 140.6 ± 22.8 cmH2O, p < 0.05) was alleviated significantly in post-intervention IEP (152.2 ± 27.4 vs 152.6 ± 31.8, p > 0.05), while the concomitant declined SEPT performance in the pre-intervention IEP (155 ± 24.6 vs 98.1 ± 21.7 s, p < 0.05) was retained post intervention (170.7 ± 38.1 vs 100.5 ± 33.4, p < 0.05). For the CON, all variables were unchanged (p > 0.05). Such findings suggest that 5-wk RSH could enhance players' RSA but not global IM and CM functions. Nonetheless, the decline in PImax in pre-intervention IEP alleviated significantly post intervention led to a postulation that players' IM endurance, rather than strength, might improve with the 5-wk RSH regimen, while the possible improved IM endurance did not advance the fatigue resistance of CM.
Collapse
Affiliation(s)
- Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R, China
| | - Tomas K Tong
- Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong S.A.R, China
| | - Haifeng Zhang
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao S.A.R, China
| |
Collapse
|
2
|
Rodrigues GD, McConnell AK. The misuse of respiratory resistive loading during aerobic exercises: revisiting mechanisms of "standalone" inspiratory muscle training. Am J Physiol Lung Cell Mol Physiol 2024; 327:L815-L817. [PMID: 39316675 DOI: 10.1152/ajplung.00396.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024] Open
Abstract
Systematic reviews and meta-analyses support the benefits of inspiratory muscle training (IMT) for sports and clinical populations. A typical application of "standalone" IMT intervention consists of breathing against an inspiratory load (IRL), twice daily, for 5-7 days/wk, for 4-12 wk. However, the application of IRL during aerobic exercise is often seen in a training routine of sports and rehabilitation centers with no evidence-based guide. In this Perspective, we will revisit putative mechanisms underlying the established benefits of "standalone" IMT to support our contention that IMT need not and should not be used during aerobic exercise.
Collapse
Affiliation(s)
- Gabriel Dias Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Li Y, He W, Jiang J, Zhang J, Ding M, Li G, Luo X, Ma Z, Li J, Ma Y, Shen Y, Han X. Non-Pharmacological Interventions in Patients With Heart Failure With Reduced Ejection Fraction: A Systematic Review and Network Meta-analysis. Arch Phys Med Rehabil 2024; 105:963-974. [PMID: 37499852 DOI: 10.1016/j.apmr.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE To determine the effectiveness of non-pharmacologic interventions and the additional benefits of their combination in patients with heart failure with reduced ejection fraction (HFrEF). DATA SOURCES We searched PubMed, Embase, and the Cochrane Clinical Trials Register from the date of database inception to April 22, 2023. STUDY SELECTION Randomized controlled trials involving non-pharmacologic interventions conducted in patients with HFrEF were included. DATA EXTRACTION Data were extracted by 2 independent reviewers based on a pre-tested data extraction form. The quality of evidence was assessed using the Cochrane Risk of Bias tool and the Grading of Recommendations Assessment, Development, and Evaluation method. DATA SYNTHESIS A total of 82 eligible studies (4574 participants) were included. We performed a random-effects model within a Bayesian framework to calculate weighted mean differences (WMDs) and 95% credibility intervals. High or moderate certainty evidence indicated that high-intensity aerobic interval training (HIAIT) was best on improving 6-minute walk distance (6MWD; 68.55 m [36.41, 100.47]) and left ventricular ejection fraction (6.28% [3.88, 8.77]), while high-intensity aerobic continuous training (HIACT) is best on improving peak oxygen consumption (Peak VO2; 3.48 mL/kg•min [2.84, 4.12]), quality of life (QOL; -17.26 [-29.99, -7.80]), resting heart rate (-8.20 bpm [-13.32, -3.05]), and N-terminal pro-B-type natriuretic peptide (-600.96 pg/mL [-902.93, -404.52]). Moderate certainty evidence supported the effectiveness of inspiratory muscle training to improve peak oxygen consumption and functional electrical stimulation to improve QOL. Moderate-intensity aerobic continuous training (MIACT) plus moderate-intensity resistance training (MIRT) had additional benefits in Peak VO2, 6MWD, and QOL. This review did not provide a comprehensive evaluation of adverse events. CONCLUSIONS Both HIAIT and HIACT are the most effective single non-pharmacologic interventions for HFrEF. MIACT plus MIRT had additional benefits in improving peak oxygen consumption, 6MWD, and QOL.
Collapse
Affiliation(s)
- Yilun Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Wenbo He
- Institute of Hospital Management, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jingwen Jiang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jiawen Zhang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Mingfeng Ding
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Gaiyun Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolei Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyuan Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingyi Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yichen Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yanfei Shen
- Office of Legal Affairs, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xuemei Han
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Notter DA, Verges S, Renggli AS, Beltrami FG, Spengler CM. Similar effects on exercise performance following different respiratory muscle training programs in healthy young men. Sci Rep 2023; 13:16135. [PMID: 37752180 PMCID: PMC10522679 DOI: 10.1038/s41598-023-41580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Both respiratory muscle endurance training (RMET) and inspiratory resistive training (IMT) seem to increase whole-body exercise performance, but direct comparisons between the two are scarce. We hypothesized that the similarity of RMET to exercise-induced ventilation would induce larger improvements compared to IMT. Twenty-six moderately-trained men performed either 4 weeks of RMET, IMT or SHAM training. Before and after the interventions, respiratory muscle endurance, 3-km running time-trial performance and leg muscle fatigue after intense constant-load cycling (assessed with femoral nerve magnetic stimulation) were measured. Both RMET (+ 59%) and IMT (+ 38%) increased respiratory muscle endurance (both p < 0.01 vs. SHAM) but only IMT increased inspiratory strength (+ 32%, p < 0.001 vs. SHAM). 3-km time improved showing a main effect of training (p = 0.026), however with no differences between groups. Leg fatigue after cycling was not attenuated with training (p = 0.088 for group-training interaction). All groups showed a significant (~ 0.3 l) increase in average tidal volume during cycling exercise combined with a concomitant reduction in respiratory exertion. While RMET and IMT improved specific aspects of respiratory muscles performance, no benefits beyond SHAM were seen during whole-body exercise. Changes in respiratory sensations might be a result of altered breathing pattern.
Collapse
Affiliation(s)
- Dominic A Notter
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Samuel Verges
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Andrea S Renggli
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
- Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Liu Q, Zhu C, Huang Q. EFFECTS OF SLING EXERCISE ON THE CORE ENDURANCE AND PERFORMANCE OF BASKETBALL PLAYERS. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012021_0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction Strong core stability and strength enable the trunk to transfer the maximum amount of torque to the terminal segments, which is conducive to improving athletic performance. Because sling training is a new core exercise method, its effect on trunk endurance relative to basketball performance has rarely been studied. Objective To investigate whether a core exercise program in a specific sports group can improve core and sports-specific performance. Methods A total of 40 college students majoring in basketball were randomly assigned to training and control groups. A standardized set of core endurance and basketball-specific performance tests were used to determine and assess the effects of sling training on trunk strength, endurance, and control. Results Flexor, extensor, and right and left lateral trunk flexor muscles endurance were significantly greater in the training group than in the control group, and the time to complete the layup obstacle course was shorter than in the control group at the end of the training program, p<0.01. No differences between the two groups were found in the penalty shot, the fixed position shot, or the vertical jump and reach at the end of the training program. Conclusions Sling exercises can improve the core endurance and strength of basketball players and increase the speed of lay-ups over obstructions. Level of evidence I; Randomized clinical trial.
Collapse
Affiliation(s)
| | | | - Qiangmin Huang
- Shanghai University of Sport, China; Shanghai Ciyuan Rehabilitation Hospital, China
| |
Collapse
|
6
|
Manchado-Gobatto FB, Torres RS, Marostegan AB, Rasteiro FM, Hartz CS, Moreno MA, Pinto AS, Gobatto CA. Complex Network Model Reveals the Impact of Inspiratory Muscle Pre-Activation on Interactions among Physiological Responses and Muscle Oxygenation during Running and Passive Recovery. BIOLOGY 2022; 11:biology11070963. [PMID: 36101345 PMCID: PMC9311794 DOI: 10.3390/biology11070963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Different warm-ups can be used to improve physical and sports performance. Among these strategies, we can include the pre-activation of the inspiratory muscles. Our study aimed to investigate this pre-activation model in high-intensity running performance and recovery using an integrative computational analysis called a complex network. The participants in this study underwent four sessions. The first and second sessions were performed to explain the procedures, characterize them and determine the individualized pre-activation intensity (40% of the maximum inspiratory pressure). Subsequently, on different days, the subjects were submitted to high-intensity tethered runs on a non-motorized treadmill with monitoring of the physiological responses during and after this effort. To understand the impacts of the pre-activation of inspiratory muscles on the organism, we studied the centrality metrics obtained by complex networks, which help in the interpretation of data in a more integrated way. Our results revealed that the graphs generated by this analysis were altered when inspiratory muscle pre-activation was applied, emphasizing muscle oxygenation responses in the leg and arm. Blood lactate also played an important role, especially after our inspiratory muscle strategy. Our findings confirm that the pre-activation of inspiratory muscles promotes modulations in the organism, better integrating physiological responses, which could increase performance and improve recovery. Abstract Although several studies have focused on the adaptations provided by inspiratory muscle (IM) training on physical demands, the warm-up or pre-activation (PA) of these muscles alone appears to generate positive effects on physiological responses and performance. This study aimed to understand the effects of inspiratory muscle pre-activation (IMPA) on high-intensity running and passive recovery, as applied to active subjects. In an original and innovative investigation of the impacts of IMPA on high-intensity running, we proposed the identification of the interactions among physical characteristics, physiological responses and muscle oxygenation in more and less active muscle to a running exercise using a complex network model. For this, fifteen male subjects were submitted to all-out 30 s tethered running efforts preceded or not preceded by IMPA, composed of 2 × 15 repetitions (1 min interval between them) at 40% of the maximum individual inspiratory pressure using a respiratory exercise device. During running and recovery, we monitored the physiological responses (heart rate, blood lactate, oxygen saturation) and muscle oxygenation (in vastus lateralis and biceps brachii) by wearable near-infrared spectroscopy (NIRS). Thus, we investigated four scenarios: two in the tethered running exercise (with or without IMPA) and two built into the recovery process (after the all-out 30 s), under the same conditions. Undirected weighted graphs were constructed, and four centrality metrics were analyzed (Degree, Betweenness, Eigenvector, and Pagerank). The IMPA (40% of the maximum inspiratory pressure) was effective in increasing the peak and mean relative running power, and the analysis of the complex networks advanced the interpretation of the effects of physiological adjustments related to the IMPA on exercise and recovery. Centrality metrics highlighted the nodes related to muscle oxygenation responses (in more and less active muscles) as significant to all scenarios, and systemic physiological responses mediated this impact, especially after IMPA application. Our results suggest that this respiratory strategy enhances exercise, recovery and the multidimensional approach to understanding the effects of physiological adjustments on these conditions.
Collapse
Affiliation(s)
- Fúlvia Barros Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (A.B.M.); (F.M.R.); (C.A.G.)
- Correspondence:
| | - Ricardo Silva Torres
- Department of ICT and Natural Sciences, Norwegian University of Science and Technology, 6009 Ålesund, Norway;
| | - Anita Brum Marostegan
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (A.B.M.); (F.M.R.); (C.A.G.)
| | - Felipe Marroni Rasteiro
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (A.B.M.); (F.M.R.); (C.A.G.)
| | - Charlini Simoni Hartz
- Postgraduate Program in Human Movement Sciences, Methodist University of Piracicaba, Piracicaba 13400-000, Brazil; (C.S.H.); (M.A.M.)
| | - Marlene Aparecida Moreno
- Postgraduate Program in Human Movement Sciences, Methodist University of Piracicaba, Piracicaba 13400-000, Brazil; (C.S.H.); (M.A.M.)
| | - Allan Silva Pinto
- Department of Sport Sciences, Faculty of Physical Education, University of Campinas, Campinas 13083-851, Brazil;
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-970, Brazil
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (A.B.M.); (F.M.R.); (C.A.G.)
| |
Collapse
|
7
|
Zemková E. Strength and Power-Related Measures in Assessing Core Muscle Performance in Sport and Rehabilitation. Front Physiol 2022; 13:861582. [PMID: 35586718 PMCID: PMC9108269 DOI: 10.3389/fphys.2022.861582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
While force-velocity-power characteristics of resistance exercises, such as bench presses and squats, have been well documented, little attention has been paid to load, force, and power-velocity relationships in exercises engaging core muscles. Given that power produced during lifting tasks or trunk rotations plays an important role in most sport-specific and daily life activities, its measurement should represent an important part of the test battery in both athletes and the general population. The aim of this scoping review was 1) to map the literature related to testing methods assessing core muscle strength and stability in sport and rehabilitation, chiefly studies with particular focus on force-velocity-power characteristics of exercises involving the use of core muscles, 2) and to identify gaps in existing studies and suggest further research in this field. The literature search was conducted on Cochrane Library databases, Scopus, Web of Science, PubMed and MEDLINE, which was completed by SpringerLink, Google Scholar and Elsevier. The inclusion criteria were met in 37 articles. Results revealed that among a variety of studies investigating the core stability and core strength in sport and rehabilitation, only few of them analyzed force-velocity-power characteristics of exercises involving the use of core muscles. Most of them evaluated maximal isometric strength of the core and its endurance. However, there are some studies that assessed muscle power during lifting tasks at different loads performed either with free weights or using the Smith machine. Similarly, power and velocity were assessed during trunk rotations performed with different weights when standing or sitting. Nevertheless, there is still scant research investigating the power-velocity and force-velocity relationship during exercises engaging core muscles in able-bodied and para athletes with different demands on stability and strength of the core. Therefore, more research is needed to address this gap in the literature and aim research at assessing strength and power-related measures within cross-sectional and intervention studies. A better understanding of the power-force-velocity profiles during exercises with high demands on the core musculature has implications for designing sport training and rehabilitation programs for enhancement of athletes' performance and/or decrease their risk of back pain.
Collapse
Affiliation(s)
- Erika Zemková
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
- Sports Technology Institute, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Bratislava, Slovakia
| |
Collapse
|
8
|
Mullane M, Turner AN, Bishop C. The Pallof Press. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Lemos JR, da Cunha FA, Lopes AJ, Guimarães FS, do Amaral Vasconcellos FV, Dos Santos Vigário P. Respiratory muscle training in non-athletes and athletes with spinal cord injury: A systematic review of the effects on pulmonary function, respiratory muscle strength and endurance, and cardiorespiratory fitness based on the FITT principle of exercise prescription. J Back Musculoskelet Rehabil 2020; 33:655-667. [PMID: 31594206 DOI: 10.3233/bmr-181452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Respiratory muscle training (RMT) has been recommended to mitigate impacts of spinal cord injuries (SCI), but the optimal dosage in terms of the frequency, intensity, time, and type (FITT principle) to promote health in SCI individuals remains unclear. OBJECTIVE To discuss research related to the effects of RMT on pulmonary function, respiratory muscle strength and cardiorespiratory fitness in athletes and non-athletes with SCI, presenting the FITT principle. METHODS We performed a systematic review. PubMed, Lilacs, Scopus, Web of Science, PEDro, SciELO and Cochrane databases were searched between 1989 and August 2018. Participants were athletes and non-athletes with SCI. RESULTS 4,354 studies were found, of which only 17 met the eligibility criteria. Results indicated that RMT is associated with beneficial changes in pulmonary function and respiratory muscle strength and endurance among athletes and non-athletes, whereas no effect was reported for maximal oxygen uptake. It was not possible to establish an optimal RMT dose from the FITT principle, but combined inspiratory/expiratory muscle training seems to promote greater respiratory changes than isolated IMT or EMT. CONCLUSION The use of RMT elicits benefits in ventilatory variables of athletes and non-athletes with SCI. However, it remains unclear which RMT type and protocol should be used to maximize benefits.
Collapse
Affiliation(s)
- Júlia Ribeiro Lemos
- Postgraduate Program in Rehabilitation Sciences, Augusto Motta University Center, Rio de Janeiro, Brazil
| | - Felipe Amorim da Cunha
- Postgraduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil.,Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Agnaldo José Lopes
- Postgraduate Program in Rehabilitation Sciences, Augusto Motta University Center, Rio de Janeiro, Brazil
| | | | - Fabrício Vieira do Amaral Vasconcellos
- Postgraduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil.,Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | | |
Collapse
|
10
|
Hinde KL, Low C, Lloyd R, Cooke CB. Inspiratory muscle training at sea level improves the strength of inspiratory muscles during load carriage in cold-hypoxia. ERGONOMICS 2020; 63:1584-1598. [PMID: 32812837 DOI: 10.1080/00140139.2020.1807613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Inspiratory muscle training (IMT) and functional IMT (IMTF: exercise-specific IMT activities) has been unsuccessful in reducing respiratory muscle fatigue following load carriage. IMTF did not include load carriage specific exercises. Fifteen participants split into two groups (training and control) walked 6 km loaded (18.2 kg) at speeds representing ∼50%V̇O2max in cold-hypoxia. The walk was completed at baseline; post 4 weeks IMT and 4 weeks IMTF (five exercises engaging core muscles, three involved load). The training group completed IMT and IMTF at a higher maximal inspiratory pressure (Pimax) than controls. Improvements in Pimax were greater in the training group post-IMT (20.4%, p = .025) and post-IMTF (29.1%, p = .050) compared to controls. Respiratory muscle fatigue was unchanged (p = .643). No other physiological or subjective measures were improved by IMT or IMTF. Both IMT and IMTF increased the strength of respiratory muscles pre-and-post a 6 km loaded walk in cold-hypoxia. Practitioner Summary: To explore the interaction between inspiratory muscle training (IMT), load carriage and environment, this study investigated 4 weeks IMT and 4 weeks functional IMT on respiratory muscle strength and fatigue. Functional IMT improved inspiratory muscle strength pre-and-post a loaded walk in cold-hypoxia but had no more effect than IMT alone. Abbreviations: ANOVA: analysis of variance; BF: breathing frequency; CON: control group; EELV: end-expiratory lung volume; EXP: experimental group; FEV1: forced expiratory volume in one second; FiO2: fraction of inspired oxygen; FVC: forced vital capacity; HR: heart rate; IMT: inspiratory muscle training; IMTF: functional inspiratory muscle training; Pemax: maximal expiratory pressure; Pimax: maximal inspiratory pressure; RMF: respiratory muscle fatigue; RPE: rate of perceived exertion; RWU: respiratory muscle warm-up; SaO2: arterial oxygen saturation; SpO2: peripheral oxygen saturation; V̇E: minute ventilation; V̇O2: rate of oxygen uptake.
Collapse
Affiliation(s)
- K L Hinde
- Defence Science and Technology Laboratory, Salisbury, UK
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - C Low
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - R Lloyd
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - C B Cooke
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| |
Collapse
|
11
|
Strength Training Habits in Amateur Endurance Runners in Spain: Influence of Athletic Level. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218184. [PMID: 33167485 PMCID: PMC7663942 DOI: 10.3390/ijerph17218184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/03/2022]
Abstract
This study determined the strength training (ST) habits of amateur endurance runners in Spain regarding athletic level. A sixteen-item online questionnaire comprised of (i) demographic information, (ii) performance, and (iii) training contents was completed by 1179 athletes. Five group levels were determined according to the personal best times of the athletes in a 10-km trial (LG1: level group 1, 50–55 min; LG2: level group 2, 45–50 min; LG3: level group 3, 40–45 min; LG4: level group 4, 35–40 min; LG5: level group 5, 30–35 min). Most athletes (n = 735, 62.3%) perceived ST as being a key component in their training program. Resistance training (RT) was reported as a ST type used by 63.4% of the athletes, 66.9% reported using bodyweight exercises, 46.8% reported using plyometric training, 65.6% reported using uphill runs, and 17.8% reported using resisted runs. The prevalence of runners who excluded ST from their training programs decreased as the athletic performance level increased (18.2% in lower-level athletes vs. 3.0% in higher-level), while the inclusion of RT, bodyweight exercises, plyometric training, and uphill and resisted runs was more frequent within higher-level groups. Most athletes included ST using low-to-moderate loads and high a number of repetitions/sets comprised of RT, plyometric training, resisted runs, and core, respiratory, and foot muscles training.
Collapse
|
12
|
Santos MS, Behm DG, Barbado D, DeSantana JM, Da Silva-Grigoletto ME. Core Endurance Relationships With Athletic and Functional Performance in Inactive People. Front Physiol 2020; 10:1490. [PMID: 31920697 PMCID: PMC6930174 DOI: 10.3389/fphys.2019.01490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Research regarding the relationship between core muscle endurance and performance is limited. The purpose of this study was to analyze the association between core/trunk endurance and athletic performance. Seventy-four healthy participants between 18 and 45 years old participated in this study (Age: 26.0 ± 6.5 years; Mass: 74.6 ± 12.8 kg; Height: 1.74 ± 0.08 m; BMI: 19.0 ± 6.8 kg/m2). The core endurance was measured using the McGill protocol, consisting of the following tests: trunk flexion, back extension, and side-bridge. Functional performance was evaluated with push-ups, sit to stand, T-run test, countermovement jump (CMJ), Yo-Yo test, maximum dynamic strength-one repetition maximum (1RM) and muscle power on the bench press, pull row, and leg press. The regression results between the McGill protocol (proxy for core/trunk endurance) and the dependent variables were: 1RM pull row: r2 = 0.109 with p = 0.046; RM bench press: r2 = 0.149 with p = 0.012; RM leg press: r2 = 0.144 with p = 0.013 and power pull row: r2 = 0.151 with p = 0.016; power bench press: r2 = 0.136 with p = 0.026; power leg press: r2 = 0.122 with p = 0.013), push-ups: r2 = 0.157 with p < 0.001, sit to stand: r2 = 0.198 with p < 0,001), functional movement score: r2 = 0.209 with p < 0.001). Nevertheless, core endurance scores were not able to predict jump ability (r2 = 0.014, p = 0.807) or agility (T-test: 0.036 with p = 0.497). In conclusion, core endurance exerted no significant influence the agility and jump performance but influenced the ability to run intermittently, exert maximum power and strength in different actions (push, pull, and lift exercises) related to the better quality of movement (FMS).
Collapse
Affiliation(s)
- Marta Silva Santos
- Physical Education Department, Functional Training Group, Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NF, Canada
| | - David Barbado
- Sport Research Centre, Department of Sport Sciences, Miguel Hernández University of Elche, Elche, Spain
| | - Josimari Melo DeSantana
- Neuroscience Research Laboratory, Department of Physiotherapy, Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Marzo Edir Da Silva-Grigoletto
- Physical Education Department, Functional Training Group, Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
13
|
Faghy MA, Brown PI. Functional training of the inspiratory muscles improves load carriage performance. ERGONOMICS 2019; 62:1439-1449. [PMID: 31389759 DOI: 10.1080/00140139.2019.1652352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Inspiratory Muscle Training (IMT) whilst adopting body positions that mimic exercise (functional IMT; IMTF) improves running performance above traditional IMT methods in unloaded exercise. We investigated the effect of IMTF during load carriage tasks. Seventeen males completed 60 min walking at 6.5 km·h-1 followed by a 2.4 km load carriage time-trial (LCTT) whilst wearing a 25 kg backpack. Trials were completed at baseline; post 4 weeks IMT (consisting of 30 breaths twice daily at 50% of maximum inspiratory pressure) and again following either 4 weeks IMTF (comprising four inspiratory loaded core exercises) or maintenance IMT (IMTCON). Baseline LCTT was 15.93 ± 2.30 min and was reduced to 14.73 ± 2.40 min (mean reduction 1.19 ± 0.83 min, p < 0.01) after IMT. Following phase two, LCTT increased in IMTF only (13.59 ± 2.33 min, p < 0.05) and was unchanged in post-IMTCON. Performance was increased following IMTF, providing an additional ergogenic effect beyond IMT alone. Practitioner Summary: We confirmed the ergogenic benefit of Inspiratory Muscle Training (IMT) upon load carriage performance. Furthermore, we demonstrate that functional IMT methods provide a greater performance benefit during exercise with thoracic loads. Abbreviations: [Lac-]B: blood lactate; FEV1: forced expiratory volume in one second; FEV1/FVC: forced expiratory volume in one second/forced vital capacity ratio; FVC: forced vital capacity; HR: heart rate; IMT: inspiratory muscle training; IMTCON: inspiratory muscle training maintenance; IMTF: functional inspiratory muscle training; LC: load carriage; LCTT: load carriage time trial; Pdi: transdiaphragmatic pressure; PEF: peak expiratory flow; PEmax: maximum expiratory mouth pressure; PImax: maximum inspiratory mouth pressure; RPE: rating of perceived exertion; RPEbreating: rating of perceived exertion for the breathing; RPEleg: rating of perceived exertion for the legs; SEPT: sport-specific endurance plank test; V̇ O2: oxygen consumption; V̇ O2peak: peak oxygen consumption.
Collapse
Affiliation(s)
- Mark A Faghy
- Human Science Research Centre, University of Derby , Derby , UK
| | - Peter I Brown
- English Institute of Sport, High Performance Centre, Loughborough University , Manchester , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
14
|
Effects of Inspiratory Muscle Training With Progressive Loading on Respiratory Muscle Function and Sports Performance in High-Performance Wheelchair Basketball Athletes: A Randomized Clinical Trial. Int J Sports Physiol Perform 2019; 15:238-242. [PMID: 31172823 DOI: 10.1123/ijspp.2018-0979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/07/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the effects of inspiratory muscle training associated with interval training on respiratory muscle strength and fatigue and aerobic physical performance (PP) in high-performance wheelchair basketball athletes. METHODS Blinded, randomized clinical trial with 17 male wheelchair basketball players, randomized into control group (CG; n = 8) and training group (TG; n = 9). Respiratory muscle strength was evaluated by measuring maximal inspiratory and expiratory pressures (MIP and MEP), aerobic PP by the Yo-Yo test for wheelchair, and recovery of inspiratory muscle fatigue was assessed at 1, 5, 10, and 15 minutes after exercise test. TG performed inspiratory muscle training protocol with incremental loading for 12 weeks with 50%, 60%, and 70% of MIP, while CG performed with load 15% of MIP. RESULTS After training period, CG presented a significant increase in MIP and MEP (P ≤ .05), with no change in aerobic PP (P ≥ .05). TG showed a significant increase for all variables (≤.05). MIP showed a large effect size for CG (1.00) and TG (1.35), while MEP showed a moderate effect for CG (0.61) and TG (0.73); distance covered had a moderate effect size for TG (0.70). For recovery of inspiratory muscle strength, CG did not present differences, while TG recovered in 10 minutes (≤.05), representing 87% of the pretest value. Positive and significant correlation between MIP and distance (.54; P ≤ .05) was observed. CONCLUSION Inspiratory muscle training protocol with progressive loading was more effective for increasing aerobic PP and maximal inspiratory strength recovery.
Collapse
|
15
|
Drum SN, Rappelt L, Donath L. Trunk and Upper Body Fatigue Adversely Affect Running Economy: A Three-Armed Randomized Controlled Crossover Pilot Trial. Sports (Basel) 2019; 7:sports7080195. [PMID: 31430880 PMCID: PMC6722636 DOI: 10.3390/sports7080195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022] Open
Abstract
Trunk muscle fatigue and its negative relationship with running economy (RE) is frequently recognized by practitioners but lacks evidence-based support. Thus, this three-armed randomized controlled crossover pilot trial (RCT) examined the effects of trunk and upper body fatigue protocols on RE, trunk muscle isometric rate of force production, and lactate response in runners. Seven well-trained runners (2 males and 5 females) randomly underwent control (CON), trunk fatigue (TRK), and upper body fatigue (UPR) protocols on three different lab visits. Both workload-matched fatigue protocols-consisting of 24 min of a circuit weight routine-elicited comparable rates of perceived exertion, heart rate responses, and lactate accumulations. As expected, core muscle strength assessed with isometric testing immediately before and after both fatigue protocols, decreased notably. RE (VO2/kg bodyweight averaged for 1 min) was determined during a 15 min individual anaerobic threshold (IAT) run at 4, 9 and 14 min. The IAT (13.9 to 15.8 km/h) was determined on lab visit one using an incremental treadmill running protocol to volitional exhaustion. RE differed, although not significantly, between CON and both fatigue protocols by 0.75 (4th min) to 1.5 ml/min/kg (9th and 14th min) bodyweight (Time × Mode Interaction: p = 0.2, np2 = 0.40) with a moderate to large effect size. Despite no signficance, the largest RE differences were observed between TRK and CON (and underscored by the moderate to large effect size). This preliminary pilot RCT revealed that both UPR and TRK conditions might adversely impact running economy at a high intensity, steady state running pace. Future studies should elucidate if these findings are replicable in large scale trials and, in turn, whether periodized core training can beneficially preserve RE.
Collapse
Affiliation(s)
- Scott N Drum
- School of Health & Human Performance, Northern Michigan University, 1401 Presque Isle Ave., Marquette, MI 49855, USA.
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training German Sport University Cologne, 50933 Köln, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training German Sport University Cologne, 50933 Köln, Germany
| |
Collapse
|
16
|
Cipriano GF, Cipriano G, Santos FV, Güntzel Chiappa AM, Pires L, Cahalin LP, Chiappa GR. Current insights of inspiratory muscle training on the cardiovascular system: a systematic review with meta-analysis. Integr Blood Press Control 2019; 12:1-11. [PMID: 31190975 PMCID: PMC6535083 DOI: 10.2147/ibpc.s159386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Cardiorespiratory limitation is a common hallmark of cardiovascular disease which is a key component of pharmacological and exercise treatments. More recently, inspiratory muscle training (IMT) is becoming an effective complementary treatment with positive effects on muscle strength and exercise capacity. We assessed the effectiveness of IMT on the cardiovascular system through autonomic function modulation via heart rate variability and arterial blood pressure. Methods: Randomized controlled trials (RCTs) were identified from searches of The Cochrane Library, MEDLINE and EMBASE to November 2018. Citations, conference proceedings and previous reviews were included without population restriction, comparing IMT intervention to no treatment, placebo or active control. Results: We identified 10 RCTs involving 267 subjects (mean age range 51–71 years). IMT programs targeted maximum inspiratory pressure (MIP) and cardiovascular outcomes, using low (n=6) and moderate to high intensity (n=4) protocols, but the protocols varied considerably (duration: 1–12 weeks, frequency: 3–14 times/week, time: 10–30 mins). An overall increase of the MIP (cmH2O) was observed (−27.57 95% CI −18.48, −37.45, I2=64%), according to weighted mean difference (95%CI), and was accompanied by a reduction of the low to high frequency ratio (−0.72 95% CI−1.40, −0.05, I2=50%). In a subgroup analysis, low- and moderate-intensity IMT treatment was associated with a reduction of the heart rate (HR) (−7.59 95% CI −13.96, −1.22 bpm, I2=0%) and diastolic blood pressure (DBP) (−8.29 [−11.64, −4.94 mmHg], I2=0%), respectively. Conclusion: IMT is an effective treatment for inspiratory muscle weakness in several populations and could be considered as a complementary treatment to improve the cardiovascular system, mainly HR and DBP. Further research is required to better understand the above findings.
Collapse
Affiliation(s)
- Graziella Fb Cipriano
- Physical Therapy Department, University of Brasilia, Brasilia, Brazil.,Department of Physical Therapy, University of Miami Miller School Of Medicine, Coral Gables, FL, USA
| | - Gerson Cipriano
- Physical Therapy Department, University of Brasilia, Brasilia, Brazil.,Department of Physical Therapy, University of Miami Miller School Of Medicine, Coral Gables, FL, USA
| | - Francisco V Santos
- Physical Therapy Department, University of Brasilia, Brasilia, Brazil.,Department of Education and Training in Oncology, Cancer Institute of São Paulo, São Paulo, Brazil
| | | | - Luigi Pires
- Centro Universitário do Planalto Central Professor Apparecido dos Santos, Brasilia, Brazil
| | - Lawrence Patrick Cahalin
- Department of Physical Therapy, University of Miami Miller School Of Medicine, Coral Gables, FL, USA
| | - Gaspar R Chiappa
- Centro Universitário do Planalto Central Professor Apparecido dos Santos, Brasilia, Brazil.,University Center, UniEvangelica, Anapolis, Goias, Brazil
| |
Collapse
|
17
|
Ferraro FV, Gavin JP, Wainwright T, McConnell A. The effects of 8 weeks of inspiratory muscle training on the balance of healthy older adults: a randomized, double-blind, placebo-controlled study. Physiol Rep 2019; 7:e14076. [PMID: 31074198 PMCID: PMC6509064 DOI: 10.14814/phy2.14076] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
To examine the effects of 8-week unsupervised, home-based inspiratory muscle training (IMT) on the balance and physical performance of healthy older adults. Fifty-nine participants (74 ± 6 years) were assigned randomly in a double-blinded fashion to either IMT or sham-IMT, using a pressure threshold loading device. The IMT group performed 30-breath twice daily at ~50% of maximal inspiratory pressure (MIP). The sham-IMT group performed 60-breaths once daily at ~15% MIP; training was home-based and unsupervised, with adherence self-reported through training diaries. Respiratory outcomes were assessed pre- and postintervention, including forced vital capacity, forced expiratory volume, peak inspiratory flow rate (PIFR), MIP, and inspiratory peak power. Balance and physical performance outcomes were measured using the shortened version of the Balance Evaluation System test (mini-BEST), Biodex® postural stability test, timed up and go, five sit-to-stand, isometric "sit-up" and Biering-Sørensen tests. Between-group effects were examined using two-way repeated measures ANOVA, with Bonferroni correction. After 8-week, the IMT group demonstrated greater improvements (P ≤ 0.05) in: PIFR (IMT = 0.9 ± 0.3 L sec-1 ; sham-IMT = 0.3 L sec-1 ); mini-BEST (IMT = 3.7 ± 1.3; sham-IMT = 0.5 ± 0.9) and Biering-Sørensen (IMT = 62.9 ± 6.4 sec; sham-IMT = 24.3 ± 1.4 sec) tests. The authors concluded that twice daily unsupervised, home-based IMT is feasible and enhances inspiratory muscle function and balance for community-dwelling older adults.
Collapse
Affiliation(s)
- Francesco V. Ferraro
- Department of Human Sciences and Public HealthBournemouth UniversityBournemouthUnited Kingdom
| | - James P. Gavin
- School of Health SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Tom Wainwright
- Department of Human Sciences and Public HealthBournemouth UniversityBournemouthUnited Kingdom
- Orthopaedic Research InstituteBournemouth UniversityBournemouthUnited Kingdom
| | - Alison McConnell
- Department of Human Sciences and Public HealthBournemouth UniversityBournemouthUnited Kingdom
| |
Collapse
|
18
|
Hung KC, Chung HW, Yu CCW, Lai HC, Sun FH. Effects of 8-week core training on core endurance and running economy. PLoS One 2019; 14:e0213158. [PMID: 30849105 PMCID: PMC6407754 DOI: 10.1371/journal.pone.0213158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 02/16/2019] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to examine the effects of 8-week core training on core endurance and running economy in college athletes. Twenty-one male college athletes were randomly divided into 2 groups: a control group (CON) (n = 10) and a core training group (CT) (n = 11). Both groups maintained their regular training, whereas CT attended 3 extra core training sessions per week for 8 weeks. The participants were assessed before and after the training program using sensory organization test (SOT), sport-specific endurance plank test (SEPT) and 4-stage treadmill incremental running test (TIRT). Compared with the pre-test, significant improvements were observed in post-test SOT (78.8 ± 4.8 vs. 85.3 ± 4.8, p = 0.012) and SEPT (193.5 ± 71.9 s vs. 241.5 ± 98.9 s, p = 0.001) performances only in CT. In the TIRT, the post-test heart rate values were lower than the pre-test values in CT in the first 3 stages. In stage 4, the post-test oxygen consumption (VO2) was lower than that in pre-test in CT (VO2: 52.4 ± 3.5 vs. 50.0 ± 2.9 ml/kg/min, p = 0.019). These results reveal that 8-week core training may improve static balance, core endurance, and running economy in college athletes.
Collapse
Affiliation(s)
- Kwong-Chung Hung
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| | - Ho-Wa Chung
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| | - Clare Chung-Wah Yu
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| | - Hong-Chung Lai
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| | - Feng-Hua Sun
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Karsten M, Ribeiro GS, Esquivel MS, Matte DL. Maximizing the effectiveness of inspiratory muscle training in sports performance: A current challenge. Phys Ther Sport 2019; 36:68-69. [PMID: 30665043 DOI: 10.1016/j.ptsp.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Marlus Karsten
- Departamento de Fisioterapia, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brazil; Programa de Pós-Graduação em Fisioterapia, UDESC, Florianópolis, SC, Brazil; Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Grupo de Pesquisa em Interação Cardiopulmonar (GPIC), UFCSPA, Porto Alegre, RS, Brazil.
| | - Gustavo S Ribeiro
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Grupo de Pesquisa em Interação Cardiopulmonar (GPIC), UFCSPA, Porto Alegre, RS, Brazil
| | | | - Darlan L Matte
- Departamento de Fisioterapia, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brazil; Programa de Pós-Graduação em Fisioterapia, UDESC, Florianópolis, SC, Brazil
| |
Collapse
|
20
|
Effects of Strength Training on the Physiological Determinants of Middle- and Long-Distance Running Performance: A Systematic Review. Sports Med 2018; 48:1117-1149. [PMID: 29249083 PMCID: PMC5889786 DOI: 10.1007/s40279-017-0835-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Middle- and long-distance running performance is constrained by several important aerobic and anaerobic parameters. The efficacy of strength training (ST) for distance runners has received considerable attention in the literature. However, to date, the results of these studies have not been fully synthesized in a review on the topic. Objectives This systematic review aimed to provide a comprehensive critical commentary on the current literature that has examined the effects of ST modalities on the physiological determinants and performance of middle- and long-distance runners, and offer recommendations for best practice. Methods Electronic databases were searched using a variety of key words relating to ST exercise and distance running. This search was supplemented with citation tracking. To be eligible for inclusion, a study was required to meet the following criteria: participants were middle- or long-distance runners with ≥ 6 months experience, a ST intervention (heavy resistance training, explosive resistance training, or plyometric training) lasting ≥ 4 weeks was applied, a running only control group was used, data on one or more physiological variables was reported. Two independent assessors deemed that 24 studies fully met the criteria for inclusion. Methodological rigor was assessed for each study using the PEDro scale. Results PEDro scores revealed internal validity of 4, 5, or 6 for the studies reviewed. Running economy (RE) was measured in 20 of the studies and generally showed improvements (2–8%) compared to a control group, although this was not always the case. Time trial (TT) performance (1.5–10 km) and anaerobic speed qualities also tended to improve following ST. Other parameters [maximal oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{{2{ \hbox{max} }}}$$\end{document}V˙O2max), velocity at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{{2{ \hbox{max} }}}$$\end{document}V˙O2max, blood lactate, body composition] were typically unaffected by ST. Conclusion Whilst there was good evidence that ST improves RE, TT, and sprint performance, this was not a consistent finding across all works that were reviewed. Several important methodological differences and limitations are highlighted, which may explain the discrepancies in findings and should be considered in future investigations in this area. Importantly for the distance runner, measures relating to body composition are not negatively impacted by a ST intervention. The addition of two to three ST sessions per week, which include a variety of ST modalities are likely to provide benefits to the performance of middle- and long-distance runners.
Collapse
|
21
|
Unresolved questions that need to be addressed in order to maximize the efficacy of inspiratory muscle training. Phys Ther Sport 2018; 35:97-98. [PMID: 30502693 DOI: 10.1016/j.ptsp.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022]
|
22
|
Shei RJ. Recent Advancements in Our Understanding of the Ergogenic Effect of Respiratory Muscle Training in Healthy Humans: A Systematic Review. J Strength Cond Res 2018; 32:2665-2676. [PMID: 29985221 PMCID: PMC6105530 DOI: 10.1519/jsc.0000000000002730] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Shei, R-J. Recent advancements in our understanding of the ergogenic effect of respiratory muscle training in healthy humans: a systematic review. J Strength Cond Res 32(9): 2674-2685, 2018-Respiratory muscle training (RMT) has been shown to be an effective ergogenic aid for sport performance. Respiratory muscle training has been documented to improve performance in a wide range of exercise modalities including running, cycling, swimming, and rowing. The physiological effects of RMT that may explain the improvements in performance have been proposed to include diaphragm hypertrophy, muscle fiber-type switching, improved neural control of the respiratory muscles, increased respiratory muscle economy, attenuation of the respiratory muscle metaboreflex, and decreases in perceived breathlessness and exertion. This review summarizes recent studies on the ergogenicity and mechanisms of RMT since 2013 when the topic was last systematically reviewed. Recent evidence confirms the ergogenic effects of RMT and explores different loading protocols, such as concurrent exercise and RMT (i.e., "functional" RMT). These studies suggest that adapting new training protocols may have an additive improvement effect, but evidence of the efficacy of such an approach is conflicting thus far. Other recent investigations have furthered our understanding of the mechanisms underpinning RMT-associated improvements in performance. Importantly, changes in ventilatory efficiency, oxygen delivery, cytokine release, motor recruitment patterns, and respiratory muscle fatigue resistance are highlighted as potential mechanistic factors linking RMT with performance improvements. It is suggested that future investigations focus on development of sport-specific RMT loading protocols, and that further work be undertaken to better understand the mechanistic basis of RMT-induced performance improvements.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Division of Pulmonary, Allergy, and Critical Care Medicine, and Gregory Fleming James Cystic Fibrosis Research Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Structure of a year cycle of athletes training in aerobics (woman) with various psychophysiological and functional features. PEDAGOGICS, PSYCHOLOGY, MEDICAL-BIOLOGICAL PROBLEMS OF PHYSICAL TRAINING AND SPORTS 2018. [DOI: 10.15561/18189172.2018.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Tonella RM, Ratti LDSR, Delazari LEB, Junior CF, Da Silva PL, Herran ARDS, Dos Santos Faez DC, Saad IAB, De Figueiredo LC, Moreno R, Dragosvac D, Falcao ALE. Inspiratory Muscle Training in the Intensive Care Unit: A New Perspective. J Clin Med Res 2017; 9:929-934. [PMID: 29038671 PMCID: PMC5633094 DOI: 10.14740/jocmr3169w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022] Open
Abstract
Background Prolonged use of mechanical ventilation (MV) leads to weakening of the respiratory muscles, especially in patients subjected to sedation, but this effect seems to be preventable or more quickly reversible using respiratory muscle training. The aims of the study were to assess variations in respiratory and hemodinamic parameters with electronic inspiratory muscle training (EIMT) in tracheostomized patients requiring MV and to compare these variations with those in a group of patients subjected to an intermittent nebulization program (INP). Methods This was a pilot, prospective, randomized study of tracheostomized patients requiring MV in one intensive care unit (ICU). Twenty-one patients were randomized: 11 into the INP group and 10 into the EIMT group. Two patients were excluded in experimental group because of hemodynamic instability. Results In the EIMT group, maximal inspiratory pressure (MIP) after training was significantly higher than that before (P = 0.017), there were no hemodynamic changes, and the total weaning time was shorter than in the INP group (P = 0.0192). Conclusion The EIMT device is safe, promotes an increase in MIP, and leads to a shorter ventilator weaning time than that seen in patients treated using INP.
Collapse
Affiliation(s)
- Rodrigo Marques Tonella
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Ligia Dos Santos Roceto Ratti
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | | | - Carlos Fontes Junior
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Paula Lima Da Silva
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Aline Ribeiro Da Silva Herran
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Daniela Cristina Dos Santos Faez
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Ivete Alonso Bredda Saad
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Luciana Castilho De Figueiredo
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Rui Moreno
- Neurological Intensive Care Unit, Sao Jose Hospital, Lisboa, Portugal
| | - Desanka Dragosvac
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, Department of Surgery, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Antonio Luis Eiras Falcao
- School of Medical Sciences, Intensive Care Unit of Clinical Hospital, Department of Surgery, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
25
|
Giovanelli N, Taboga P, Rejc E, Lazzer S. Effects of strength, explosive and plyometric training on energy cost of running in ultra-endurance athletes. Eur J Sport Sci 2017; 17:805-813. [PMID: 28394719 DOI: 10.1080/17461391.2017.1305454] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to evaluate the effects of a 12-week home-based strength, explosive and plyometric (SEP) training on the cost of running (Cr) in well-trained ultra-marathoners and to assess the main mechanical parameters affecting changes in Cr. Twenty-five male runners (38.2 ± 7.1 years; body mass index: 23.0 ± 1.1 kg·m-2; V˙O2max: 55.4 ± 4.0 mlO2·kg-1·min-1) were divided into an exercise (EG = 13) and control group (CG = 12). Before and after a 12-week SEP training, Cr, spring-mass model parameters at four speeds (8, 10, 12, 14 km·h-1) were calculated and maximal muscle power (MMP) of the lower limbs was measured. In EG, Cr decreased significantly (p < .05) at all tested running speeds (-6.4 ± 6.5% at 8 km·h-1; -3.5 ± 5.3% at 10 km·h-1; -4.0 ± 5.5% at 12 km·h-1; -3.2 ± 4.5% at 14 km·h-1), contact time (tc) increased at 8, 10 and 12 km·h-1 by mean +4.4 ± 0.1% and ta decreased by -25.6 ± 0.1% at 8 km·h-1 (p < .05). Further, inverse relationships between changes in Cr and MMP at 10 (p = .013; r = -0.67) and 12 km·h-1 (p < .001; r = -0.86) were shown. Conversely, no differences were detected in the CG in any of the studied parameters. Thus, 12-week SEP training programme lower the Cr in well-trained ultra-marathoners at submaximal speeds. Increased tc and an inverse relationship between changes in Cr and changes in MMP could be in part explain the decreased Cr. Thus, adding at least three sessions per week of SEP exercises in the normal endurance-training programme may decrease the Cr.
Collapse
Affiliation(s)
- Nicola Giovanelli
- a Department of Medical and Biological Sciences , University of Udine , Udine , Italy.,b School of Sport Sciences , University of Udine , Udine , Italy
| | - Paolo Taboga
- a Department of Medical and Biological Sciences , University of Udine , Udine , Italy.,b School of Sport Sciences , University of Udine , Udine , Italy.,c Integrative Physiology Department , University of Colorado Boulder , Boulder , CO , USA
| | - Enrico Rejc
- a Department of Medical and Biological Sciences , University of Udine , Udine , Italy.,b School of Sport Sciences , University of Udine , Udine , Italy.,d Kentucky Spinal Cord Injury Research Center , University of Louisville , Louisville , KY , USA
| | - Stefano Lazzer
- a Department of Medical and Biological Sciences , University of Udine , Udine , Italy.,b School of Sport Sciences , University of Udine , Udine , Italy
| |
Collapse
|
26
|
Prieske O, Muehlbauer T, Granacher U. The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis. Sports Med 2016; 46:401-19. [PMID: 26589515 DOI: 10.1007/s40279-015-0426-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The importance of trunk muscle strength (TMS) for physical fitness and athletic performance has been demonstrated by studies reporting significant correlations between those capacities. However, evidence-based knowledge regarding the magnitude of correlations between TMS and proxies of physical fitness and athletic performance as well as potential effects of core strength training (CST) on TMS, physical fitness and athletic performance variables is currently lacking for trained individuals. OBJECTIVE The aims of this systematic review and meta-analysis were to quantify associations between variables of TMS, physical fitness and athletic performance and effects of CST on these measures in healthy trained individuals. DATA SOURCES PubMed, Web of Science, and SPORTDiscus were systematically screened from January 1984 to March 2015. STUDY ELIGIBILITY CRITERIA Studies were included that investigated healthy trained individuals aged 16-44 years and tested at least one measure of TMS, muscle strength, muscle power, balance, and/or athletic performance. STUDY APPRAISAL AND SYNTHESIS METHODS Z-transformed Pearson's correlation coefficients between measures of TMS and physical performance were aggregated and back-transformed to r values. Further, to quantify the effects of CST, weighted standardized mean differences (SMDs) of TMS and physical performance were calculated using random effects models. The methodological quality of CST studies was assessed by the Physiotherapy Evidence Database (PEDro) scale. RESULTS Small-sized relationships of TMS with physical performance measures (-0.05 ≤ r ≤ 0.18) were found in 15 correlation studies. Sixteen intervention studies revealed large effects of CST on measures of TMS (SMD = 1.07) but small-to-medium-sized effects on proxies of physical performance (0 ≤ SMD ≤ 0.71) compared with no training or regular training only. The methodological quality of CST studies was low (median PEDro score = 4). CONCLUSIONS Our findings indicate that TMS plays only a minor role for physical fitness and athletic performance in trained individuals. In fact, CST appears to be an effective means to increase TMS and was associated with only limited gains in physical fitness and athletic performance measures when compared with no or only regular training.
Collapse
Affiliation(s)
- Olaf Prieske
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany.
| | - Thomas Muehlbauer
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany
| |
Collapse
|