1
|
Olmos AA, Sterczala AJ, Parra ME, Dimmick HL, Miller JD, Deckert JA, Sontag SA, Gallagher PM, Fry AC, Herda TJ, Trevino MA. Sex-related differences in motor unit behavior are influenced by myosin heavy chain during high- but not moderate-intensity contractions. Acta Physiol (Oxf) 2023; 239:e14024. [PMID: 37551144 DOI: 10.1111/apha.14024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
AIMS Motor unit recruitment and firing rate patterns of the vastus lateralis (VL) have not been compared between sexes during moderate- and high-intensity contraction intensities. Additionally, the influence of fiber composition on potential sex-related differences remains unquantified. METHODS Eleven males and 11 females performed 40% and 70% maximal voluntary contractions (MVCs). Surface electromyographic (EMG) signals recorded from the VL were decomposed. Recruitment thresholds (RTs), MU action potential amplitudes (MUAPAMP ), initial firing rates (IFRs), mean firing rates (MFRs), and normalized EMG amplitude (N-EMGRMS ) at steady torque were analyzed. Y-intercepts and slopes were calculated for MUAPAMP , IFR, and MFR versus RT relationships. Type I myosin heavy chain isoform (MHC) was determined with muscle biopsies. RESULTS There were no sex-related differences in MU characteristics at 40% MVC. At 70% MVC, males exhibited greater slopes (p = 0.002) for the MUAPAMP , whereas females displayed greater slopes (p = 0.001-0.007) for the IFR and MFR versus RT relationships. N-EMGRMS at 70% MVC was greater for females (p < 0.001). Type I %MHC was greater for females (p = 0.006), and was correlated (p = 0.018-0.031) with the slopes for the MUAPAMP , IFR, and MFR versus RT relationships at 70% MVC (r = -0.599-0.585). CONCLUSION Both sexes exhibited an inverse relationship between MU firing rates and recruitment thresholds. However, the sex-related differences in MU recruitment and firing rate patterns and N-EMGRMS at 70% MVC were likely due to greater type I% MHC and smaller twitch forces of the higher threshold MUs for the females. Evidence is provided that muscle fiber composition may explain divergent MU behavior between sexes.
Collapse
Affiliation(s)
- Alex A Olmos
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mandy E Parra
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, USA
| | - Hannah L Dimmick
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Miller
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jake A Deckert
- Department of Human Physiology, Gonzaga University, Spokane, Washington, USA
| | - Stephanie A Sontag
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Philip M Gallagher
- Applied Physiology Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Andrew C Fry
- Jayhawk Athletic Performance Laboratory - Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Michael A Trevino
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Trevino M, Perez S, Sontag S, Olmos A, Jeon S, Richardson L. Influence of Pennation Angle and Muscle Thickness on Mechanomyographic Amplitude-Torque Relationships and Sex-Related Differences in the Vastus Lateralis. J Funct Morphol Kinesiol 2023; 8:jfmk8020053. [PMID: 37218849 DOI: 10.3390/jfmk8020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
This study examined potential sex-related differences and correlations among the pennation angle (PA), muscle thickness (MT), and mechanomyographic amplitude (MMGRMS)-torque relationships of the vastus lateralis (VL) in 11 healthy males and 12 healthy females. The PA and MT of the VL were quantified with ultrasound. Participants performed an isometric muscle action of the knee extensors that linearly increased to 70% of maximal strength followed by a 12 s plateau. MMG was recorded from the VL. Linear regression models were fit to the log-transformed MMGRMS-torque relationships to calculate b terms (slopes) for the linearly increasing segment. MMGRMS was averaged during the plateau. Males exhibited greater PA (p < 0.001), MT (p = 0.027), b terms (p = 0.005), and MMGRMS (p = 0.016). The b terms were strongly (p < 0.001, r = 0.772) and moderately correlated (p = 0.004, r = 0.571) with PA and MT, respectively, while MMGRMS was moderately correlated with PA (p = 0.018, r = 0.500) and MT (p = 0.014, r = 0.515). The greater mechanical behavior of individuals possessing a larger PA and MT of the VL may reflect increased cross-bridge activity within the muscle fibers. Additionally, PA may help explain sex-related differences in MMGRMS between sexes.
Collapse
Affiliation(s)
- Michael Trevino
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sergio Perez
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK 74078, USA
| | - Stephanie Sontag
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alex Olmos
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sunggun Jeon
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lyric Richardson
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
A noninvasive test for estimating myosin heavy chain of the vastus lateralis in females with mechanomyography. Med Eng Phys 2023; 111:103946. [PMID: 36792240 DOI: 10.1016/j.medengphy.2022.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
This study examined relationships between percent myosin heavy chain (%MHC) expression and mechanomyographic amplitude (MMGRMS). Fifteen females (age ± SD=21.3 ± 5.3 yrs) completed isometric trapezoidal contractions at 30% and 70% maximal voluntary contraction (MVC). MMG was recorded from the vastus lateralis (VL). Participants gave a muscle biopsy of the VL post-testing. MMGRMS-torque relationships during the linearly varying segments were log-transformed and linear regressions were applied to calculate b terms (slopes). For the steady torque segment, MMGRMS was averaged. Correlations were performed for type I%MHC with the MMG variables. Multiple regression was utilized to examine prediction equations for type I%MHC. Type I%MHC was significantly correlated with the b terms during the increasing segment of the 70% MVC (p = 0.003; r = -0.718), and MMGRMS during steady torque at 30% (p = 0.008; r = -0.652) and 70% MVC (p = 0.040; r = -0.535). Type I%MHC reduced the linearity of the MMGRMS-torque relationship during the high-intensity linearly increasing segment, and MMGRMS at a low- and high-intensity steady torque. A combination of MMG variables estimated type I%MHC expression with 81.2% accuracy. MMG recorded during a low- and high-intensity isometric trapezoidal contraction may offer a simple, noninvasive test for estimating type I%MHC expression of the VL in sedentary females.
Collapse
|
4
|
Jeon S, Sontag SA, Herda TJ, Trevino MA. Chronic training status affects muscle excitation of the vastus lateralis during repeated contractions. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:42-49. [PMID: 36994174 PMCID: PMC10040376 DOI: 10.1016/j.smhs.2022.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/23/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
This study examined electromyographic amplitude (EMGRMS)-force relationships during repeated submaximal knee extensor muscle actions among chronic aerobically-(AT), resistance-trained (RT), and sedentary (SED) individuals. Fifteen adults (5/group) attempted 20 isometric trapezoidal muscle actions at 50% of maximal strength. Surface electromyography (EMG) was recorded from vastus lateralis (VL) during the muscle actions. For the first and last successfully completed contractions, linear regression models were fit to the log-transformed EMGRMS-force relationships during the linearly increasing and decreasing segments, and the b terms (slope) and a terms (antilog of y-intercept) were calculated. EMGRMS was averaged during steady force. Only the AT completed all 20 muscle actions. During the first contraction, the b terms for RT (1.301 ± 0.197) were greater than AT (0.910 ± 0.123; p = 0.008) and SED (0.912 ± 0.162; p = 0.008) during the linearly increasing segment, and in comparison to the linearly decreasing segment (1.018 ± 0.139; p = 0.014), respectively. For the last contraction, the b terms for RT were greater than AT during the linearly increasing (RT = 1.373 ± 0.353; AT = 0.883 ± 0.129; p = 0.018) and decreasing (RT = 1.526 ± 0.328; AT = 0.970 ± 0.223; p = 0.010) segments. In addition, the b terms for SED increased from the linearly increasing (0.968 ± 0.144) to decreasing segment (1.268 ± 0.126; p = 0.015). There were no training, segment, or contraction differences for the a terms. EMGRMS during steady force increased from the first- ([64.08 ± 51.68] μV) to last-contraction ([86.73 ± 49.55] μV; p = 0.001) collapsed across training statuses. The b terms differentiated the rate of change for EMGRMS with increments in force among training groups, indicating greater muscle excitation to the motoneuron pool was necessary for the RT than AT during the linearly increasing and decreasing segments of a repetitive task.
Collapse
|
5
|
Trevino MA, Dimmick HL, Parra ME, Sterczala AJ, Miller JD, Deckert JA, Gallagher PM, Fry AC, Weir JP, Herda TJ. Effects of continuous cycling training on motor unit firing rates, input excitation, and myosin heavy chain of the vastus lateralis in sedentary females. Exp Brain Res 2022; 240:825-839. [DOI: 10.1007/s00221-021-06278-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
|
6
|
Prediction of muscle fiber composition using multiple repetition testing. Biol Sport 2020; 38:277-283. [PMID: 34079173 PMCID: PMC8139349 DOI: 10.5114/biolsport.2021.99705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 11/22/2022] Open
Abstract
Direct determination of muscle fiber composition is invasive and expensive, with indirect methods also requiring specialist resources and expertise. Performing resistance exercises at 80% 1RM is suggested as a means of indirectly estimating muscle fiber composition, though this hypothesis has never been validated against a direct method. The aim of the study was to investigate the relationship between the number of completed repetitions at 80% 1RM of back squat exercise and muscle fiber composition. Thirty recreationally active participants’ (10 females, 20 males) 1RM back squat load was determined, before the number of consecutive repetitions at 80% 1RM was recorded. The relationship between the number of repetitions and the percentage of fast-twitch fibers from vastus lateralis was investigated. The number of completed repetitions ranged from 5 to 15 and was independent of sex, age, 1RM, training frequency, training type, training experience, BMI or muscle fiber cross-sectional area. The percentage of fast-twitch muscle fibers was inversely correlated with the number of repetitions completed (r = –0.38, P = 0.039). Participants achieving 5 to 8 repetitions (n = 10) had significantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%, P = 0.013) than those achieving 11–15 repetitions (n = 11). The remaining participants achieved 9 or 10 repetitions (n = 9) and on average had equal proportion of fast- and slow-twitch muscle fibers. In conclusion, the number of completed repetitions at 80% of 1RM is moderately correlated with muscle fiber composition.
Collapse
|
7
|
Nicoll JX, Fry AC, Galpin AJ, Thomason DB, Moore CA. Resting MAPK expression in chronically trained endurance runners. Eur J Sport Sci 2017; 17:1194-1202. [DOI: 10.1080/17461391.2017.1359341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Justin X. Nicoll
- Osness Human Performance Laboratories, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Andrew C. Fry
- Osness Human Performance Laboratories, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Andrew J. Galpin
- Center for Sport Performance, Department of Kinesiology, California State University-Fullerton, Fullerton, CA, USA
| | - Donald B. Thomason
- Department of Physiology and Biophysics, University of Tennessee-Memphis, Memphis, TN, USA
| | - Christopher A. Moore
- Human Performance Laboratories, Department of Health and Sport Science, University of Memphis, Memphis, TN, USA
| |
Collapse
|