1
|
Wilmet B, Michiels C, Zhang J, Callebert J, Sahel JA, Picaud S, Audo I, Zeitz C. Loss of ON-Pathway Function in Mice Lacking Lrit3 Decreases Recovery From Lens-Induced Myopia. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 39250117 PMCID: PMC11385651 DOI: 10.1167/iovs.65.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Purpose To determine whether the Lrit3-/- mouse model of complete congenital stationary night blindness with an ON-pathway defect harbors myopic features and whether the genetic defect influences the recovery from lens-induced myopia. Methods Retinal levels of dopamine (DA) and 3,4 dihydroxyphenylacetic acid (DOPAC) from adult isolated Lrit3-/- retinas were quantified using ultra performance liquid chromatography after light adaptation. Natural refractive development of Lrit3-/- mice was measured from three weeks to nine weeks of age using an infrared photorefractometer. Susceptibility to myopia induction was assessed using a lens-induced myopia protocol with -25 D lenses placed in front of the right eye of the animals for three weeks; the mean interocular shift was measured with an infrared photorefractometer after two and three weeks of goggling and after one and two weeks after removal of goggles. Results Compared to wild-type littermates (Lrit3+/+), both DA and DOPAC were drastically reduced in Lrit3-/- retinas. Natural refractive development was normal but Lrit3-/- mice showed a higher myopic shift and a lower ability to recover from induced myopia. Conclusions Our data consolidate the link between ON pathway defect altered dopaminergic signaling and myopia. We document for the first time the role of ON pathway on the recovery from myopia induction.
Collapse
Affiliation(s)
- Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Jingyi Zhang
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA, United States
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
2
|
Brown TC, Crouse EC, Attaway CA, Oakes DK, Minton SW, Borghuis BG, McGee AW. Microglia are dispensable for experience-dependent refinement of mouse visual circuitry. Nat Neurosci 2024; 27:1462-1467. [PMID: 38977886 DOI: 10.1038/s41593-024-01706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
To test the hypothesized crucial role of microglia in the developmental refinement of neural circuitry, we depleted microglia from mice of both sexes with PLX5622 and examined the experience-dependent maturation of visual circuitry and function. We assessed retinal function, receptive field tuning of visual cortex neurons, acuity and experience-dependent plasticity. None of these measurements detectibly differed in the absence of microglia, challenging the role of microglia in sculpting neural circuits.
Collapse
Affiliation(s)
- Thomas C Brown
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Emily C Crouse
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Cecilia A Attaway
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Dana K Oakes
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Sarah W Minton
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Aaron W McGee
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Translational Neuroscience, The University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
3
|
Janyasupab P, Singhanat K, Warnnissorn M, Thuwajit P, Suratanee A, Plaimas K, Thuwajit C. Identification of Tumor Budding-Associated Genes in Breast Cancer through Transcriptomic Profiling and Network Diffusion Analysis. Biomolecules 2024; 14:896. [PMID: 39199284 PMCID: PMC11352152 DOI: 10.3390/biom14080896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Breast cancer has the highest diagnosis rate among all cancers. Tumor budding (TB) is recognized as a recent prognostic marker. Identifying genes specific to high-TB samples is crucial for hindering tumor progression and metastasis. In this study, we utilized an RNA sequencing technique, called TempO-Seq, to profile transcriptomic data from breast cancer samples, aiming to identify biomarkers for high-TB cases. Through differential expression analysis and mutual information, we identified seven genes (NOL4, STAR, C8G, NEIL1, SLC46A3, FRMD6, and SCARF2) that are potential biomarkers in breast cancer. To gain more relevant proteins, further investigation based on a protein-protein interaction network and the network diffusion technique revealed enrichment in the Hippo signaling and Wnt signaling pathways, promoting tumor initiation, invasion, and metastasis in several cancer types. In conclusion, these novel genes, recognized as overexpressed in high-TB samples, along with their associated pathways, offer promising therapeutic targets, thus advancing treatment and diagnosis for breast cancer.
Collapse
Affiliation(s)
- Panisa Janyasupab
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Kodchanan Singhanat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.S.); (P.T.)
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.S.); (P.T.)
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.S.); (P.T.)
| |
Collapse
|
4
|
Hasan N, Gregg RG. Cone Synaptic function is modulated by the leucine rich repeat (LRR) adhesion molecule LRFN2. eNeuro 2024; 11:ENEURO.0120-23.2024. [PMID: 38408870 PMCID: PMC10957230 DOI: 10.1523/eneuro.0120-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
Daylight vision is mediated by cone photoreceptors in vertebrates, which synapse with bipolar cells (BCs) and horizontal (HCs) cells. This cone synapse is functionally and anatomically complex, connecting to 8 types of depolarizing BCs (DBCs) and 5 types of hyperpolarizing BCs (HBCs) in mice. The dendrites of DBCs and HCs cells make invaginating ribbon synapses with the cone axon terminal, while HBCs form flat synapses with the cone pedicles. The molecular architecture that underpins this organization is relatively poorly understood. To identify new proteins involved in synapse formation and function we used an unbiased proteomic approach and identified LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2) as a component of the DBC signaling complex. LRFN2 is selectively expressed at cone terminals and co-localizes with PNA, and other DBC signalplex members. In LRFN2 deficient mice, the synaptic markers: LRIT3, ELFN2, mGluR6, TRPM1 and GPR179 are properly localized. Similarly, LRFN2 expression and localization is not dependent on these synaptic proteins. In the absence of LRFN2 the cone-mediated photopic electroretinogram b-wave amplitude is reduced at the brightest flash intensities. These data demonstrate that LRFN2 absence compromises normal synaptic transmission between cones and cone DBCs.Significance Statement Signaling between cone photoreceptors and the downstream bipolar cells is critical to normal vision. Cones synapse with 13 different types of bipolar cells forming an invaginating ribbon synapses with 8 types, and flat synapses with 5 types, to form one of the most complex synapses in the brain. In this report a new protein, LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2), was identified that is expressed at the cone synapse. Using Lrfn2 knockout mice we show LRFN2 is required for the normal cone signaling.
Collapse
Affiliation(s)
- Nazarul Hasan
- Departments of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky 40202
- Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky 40202
| | - Ronald G. Gregg
- Departments of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky 40202
- Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
5
|
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GD. Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. Nat Commun 2023; 14:8256. [PMID: 38086857 PMCID: PMC10716155 DOI: 10.1038/s41467-023-44063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss. This cell loss greatly diminishes vision, with most patients becoming legally blind. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilize a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing variables that complicate answering this question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restore retinal output to near wild-type levels. Late treatment retinas exhibit continued, albeit slowed, loss of sensitivity and signal fidelity among retinal ganglion cells, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Mishek Thapa
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Wakeham CM, Shi Q, Ren G, Haley TL, Duvoisin RM, von Gersdorff H, Morgans CW. Trophoblast glycoprotein is required for efficient synaptic vesicle exocytosis from retinal rod bipolar cells. Front Cell Neurosci 2023; 17:1306006. [PMID: 38099150 PMCID: PMC10720453 DOI: 10.3389/fncel.2023.1306006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Rod bipolar cells (RBCs) faithfully transmit light-driven signals from rod photoreceptors in the outer retina to third order neurons in the inner retina. Recently, significant work has focused on the role of leucine-rich repeat (LRR) proteins in synaptic development and signal transduction at RBC synapses. We previously identified trophoblast glycoprotein (TPBG) as a novel transmembrane LRR protein localized to the dendrites and axon terminals of RBCs. Methods We examined the effects on RBC physiology and retinal processing of TPBG genetic knockout in mice using immunofluorescence and electron microscopy, electroretinogram recording, patch-clamp electrophysiology, and time-resolved membrane capacitance measurements. Results The scotopic electroretinogram showed a modest increase in the b-wave and a marked attenuation in oscillatory potentials in the TPBG knockout. No effect of TPBG knockout was observed on the RBC dendritic morphology, TRPM1 currents, or RBC excitability. Because scotopic oscillatory potentials primarily reflect RBC-driven rhythmic activity of the inner retina, we investigated the contribution of TPBG to downstream transmission from RBCs to third-order neurons. Using electron microscopy, we found shorter synaptic ribbons in TPBG knockout axon terminals in RBCs. Time-resolved capacitance measurements indicated that TPBG knockout reduces synaptic vesicle exocytosis and subsequent GABAergic reciprocal feedback without altering voltage-gated Ca2+ currents. Discussion TPBG is required for normal synaptic ribbon development and efficient neurotransmitter release from RBCs to downstream cells. Our results highlight a novel synaptic role for TPBG at RBC ribbon synapses and support further examination into the mechanisms by which TPBG regulates RBC physiology and circuit function.
Collapse
Affiliation(s)
- Colin M. Wakeham
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Qing Shi
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Gaoying Ren
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Tammie L. Haley
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Robert M. Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Henrique von Gersdorff
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - Catherine W. Morgans
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
7
|
Brown TC, Crouse EC, Attaway CA, Oakes DK, Minton SW, Borghuis BG, McGee AW. Microglia are dispensable for experience-dependent refinement of visual circuitry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562708. [PMID: 37905138 PMCID: PMC10614920 DOI: 10.1101/2023.10.17.562708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Microglia are proposed to be critical for the refinement of developing neural circuitry. However, evidence identifying specific roles for microglia has been limited and often indirect. Here we examined whether microglia are required for the experience-dependent refinement of visual circuitry and visual function during development. We ablated microglia by administering the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622, and then examined the consequences for retinal function, receptive field tuning of neurons in primary visual cortex (V1), visual acuity, and experience-dependent plasticity in visual circuitry. Eradicating microglia by treating mice with PLX5622 beginning at postnatal day (P) 14 did not alter visual response properties of retinal ganglion cells examined three or more weeks later. Mice treated with PLX5622 from P14 lacked more than 95% of microglia in V1 by P18, prior to the opening of the critical period. Despite the absence of microglia, the receptive field tuning properties of neurons in V1 were normal at P32. Similarly, eradicating microglia did not affect the maturation of visual acuity. Mice treated with PLX5622 displayed typical ocular dominance plasticity in response to brief monocular deprivation. Thus, none of these principal measurements of visual circuit development and function detectibly differed in the absence of microglia. We conclude that microglia are dispensable for experience-dependent refinement of visual circuitry. These findings challenge the proposed critical role of microglia in refining neural circuitry.
Collapse
Affiliation(s)
- Thomas C. Brown
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Emily C. Crouse
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Cecilia A. Attaway
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Dana K. Oakes
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Sarah W. Minton
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Bart G. Borghuis
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| |
Collapse
|
8
|
Takahashi K, Kwok JC, Sato Y, Aguirre GD, Miyadera K. Extended functional rescue following AAV gene therapy in a canine model of LRIT3-congenital stationary night blindness. Vision Res 2023; 209:108260. [PMID: 37220680 PMCID: PMC10524691 DOI: 10.1016/j.visres.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Congenital stationary night blindness (CSNB) is a group of inherited retinal diseases in which either rod-to-ON-bipolar cell (ON-BC) signaling, or rod function is affected leading to impaired vision under low light conditions. One type of CSNB is associated with defects in genes (NYX, GRM6, TRPM1, GPR179, and LRIT3) involved in the mGluR6 signaling cascade at the ON-BC dendritic tips. We have previously characterized a canine model of LRIT3-CSNB and demonstrated short-term safety and efficacy of an ON-BC targeting AAV-LRIT3 (AAVK9#4-shGRM6-cLRIT3-WPRE) gene therapy. Herein, we demonstrate long-term functional recovery and molecular restoration following subretinal injection of the ON-BC targeting AAV-LRIT3 vector in all eight treated eyes for up to 32 months. Following subretinal administration of the therapeutic vector, expression of the LRIT3 transgene, as well as restoration of mGluR6 signaling cascade member TRPM1, were confirmed in the outer plexiform layer (OPL) of the treated area. However, further investigation of the transgene LRIT3 transcript expression by RNA in situ hybridization (RNA-ISH) revealed off-target expression in non-BCs including the photoreceptors, inner nuclear, and ganglion cell layers, despite the use of a mutant AAVK9#4 capsid and an improved mGluR6 promoter designed to specifically transduce and promote expression in ON-BCs. While the long-term therapeutic potential of AAVK9#4-shGRM6-cLRIT3-WPRE is promising, we highlight the necessity for further optimization of AAV-LRIT3 therapy in the canine CSNB model prior to its clinical application.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer C Kwok
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Sato
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Kamermans M, Winkelman BHJ, Hölzel MB, Howlett MHC, Kamermans W, Simonsz HJ, de Zeeuw CI. A retinal origin of nystagmus-a perspective. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1186280. [PMID: 38983059 PMCID: PMC11182158 DOI: 10.3389/fopht.2023.1186280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 07/11/2024]
Abstract
Congenital nystagmus is a condition where the eyes of patients oscillate, mostly horizontally, with a frequency of between 2 and 10 Hz. Historically, nystagmus is believed to be caused by a maladaptation of the oculomotor system and is thus considered a disease of the brain stem. However, we have recently shown that congenital nystagmus associated with congenital stationary night blindness is caused by synchronously oscillating retinal ganglion cells. In this perspective article, we discuss how some details of nystagmus can be accounted for by the retinal mechanism we propose.
Collapse
Affiliation(s)
- Maarten Kamermans
- Department of Retinal Signal Processing, Netherlands Institute for Neuroscience Amsterdam, Amsterdam, Netherlands
- Department of Biomedical Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Beerend H. J. Winkelman
- Department of Cerebellum: Coordination & Cognition, Netherlands Institute for Neuroscience Amsterdam, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - M-B. Hölzel
- Department of Retinal Signal Processing, Netherlands Institute for Neuroscience Amsterdam, Amsterdam, Netherlands
| | - Marcus H. C. Howlett
- Department of Retinal Signal Processing, Netherlands Institute for Neuroscience Amsterdam, Amsterdam, Netherlands
| | - Wouter Kamermans
- Department of Retinal Signal Processing, Netherlands Institute for Neuroscience Amsterdam, Amsterdam, Netherlands
- Department of Cerebellum: Coordination & Cognition, Netherlands Institute for Neuroscience Amsterdam, Amsterdam, Netherlands
| | - H. J. Simonsz
- Department of Cerebellum: Coordination & Cognition, Netherlands Institute for Neuroscience Amsterdam, Amsterdam, Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
| | - C. I. de Zeeuw
- Department of Cerebellum: Coordination & Cognition, Netherlands Institute for Neuroscience Amsterdam, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
10
|
Zhang Z, Xia T, Zhou S, Yang X, Lyu T, Wang L, Fang J, Wang Q, Dou H, Zhang H. High-Quality Chromosome-Level Genome Assembly of the Corsac Fox ( Vulpes corsac) Reveals Adaptation to Semiarid and Harsh Environments. Int J Mol Sci 2023; 24:ijms24119599. [PMID: 37298549 DOI: 10.3390/ijms24119599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The Corsac fox (Vulpes corsac) is a species of fox distributed in the arid prairie regions of Central and Northern Asia, with distinct adaptations to dry environments. Here, we applied Oxford-Nanopore sequencing and a chromosome structure capture technique to assemble the first Corsac fox genome, which was then assembled into chromosome fragments. The genome assembly has a total length of 2.2 Gb with a contig N50 of 41.62 Mb and a scaffold N50 of 132.2 Mb over 18 pseudo-chromosomal scaffolds. The genome contained approximately 32.67% of repeat sequences. A total of 20,511 protein-coding genes were predicted, of which 88.9% were functionally annotated. Phylogenetic analyses indicated a close relation to the Red fox (Vulpes vulpes) with an estimated divergence time of ~3.7 million years ago (MYA). We performed separate enrichment analyses of species-unique genes, the expanded and contracted gene families, and positively selected genes. The results suggest an enrichment of pathways related to protein synthesis and response and an evolutionary mechanism by which cells respond to protein denaturation in response to heat stress. The enrichment of pathways related to lipid and glucose metabolism, potentially preventing stress from dehydration, and positive selection of genes related to vision, as well as stress responses in harsh environments, may reveal adaptive evolutionary mechanisms in the Corsac fox under harsh drought conditions. Additional detection of positive selection for genes associated with gustatory receptors may reveal a unique desert diet strategy for the species. This high-quality genome provides a valuable resource for studying mammalian drought adaptation and evolution in the genus Vulpes.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Tian Xia
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shengyang Zhou
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xiufeng Yang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Tianshu Lyu
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Lidong Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Jiaohui Fang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Qi Wang
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir 021000, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir 021000, China
| | - Honghai Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
11
|
Gregg RG, Hasan N, Borghuis BG. LRIT3 expression in cone photoreceptors restores post-synaptic bipolar cell signalplex assembly and partial function in Lrit3 -/- mice. iScience 2023; 26:106499. [PMID: 37091241 PMCID: PMC10113827 DOI: 10.1016/j.isci.2023.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Complete congenital stationary night blindness (cCSNB) is a heterogeneous disorder characterized by poor dim-light vision, myopia, and nystagmus that is caused by mutations in genes critical for signal transmission between photoreceptors and depolarizing bipolar cells (DBCs). One such gene, LRIT3, is required for assembly of the post-synaptic signaling complex (signalplex) at the dendritic tips of DBCs, although the number of signalplex components impacted is greater in cone DBCs (all components) than in rod bipolar cells (only TRPM1 and Nyctalopin). Here we show that rAAV-mediated expression of LRIT3 in cones results in robust rescue of cone DBC signalplex components and partially restores downstream visual function, as measured by the light-adapted electroretinogram (ERG) b-wave and electrophysiological recordings of bipolar cells (BCs) and RGCs. These data show that LRIT3 successfully restores partial function to cone DBCs most likely in a trans-synaptic manner, potentially paving the way for therapeutic intervention in LRIT3-associated cCSNB.
Collapse
Affiliation(s)
- Ronald G. Gregg
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA
- Corresponding author
| | - Nazarul Hasan
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Bart G. Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
- Corresponding author
| |
Collapse
|
12
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
13
|
Wilmet B, Callebert J, Duvoisin R, Goulet R, Tourain C, Michiels C, Frederiksen H, Schaeffel F, Marre O, Sahel JA, Audo I, Picaud S, Zeitz C. Mice Lacking Gpr179 with Complete Congenital Stationary Night Blindness Are a Good Model for Myopia. Int J Mol Sci 2022; 24:ijms24010219. [PMID: 36613663 PMCID: PMC9820543 DOI: 10.3390/ijms24010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mutations in GPR179 are one of the most common causes of autosomal recessive complete congenital stationary night blindness (cCSNB). This retinal disease is characterized in patients by impaired dim and night vision, associated with other ocular symptoms, including high myopia. cCSNB is caused by a complete loss of signal transmission from photoreceptors to ON-bipolar cells. In this study, we hypothesized that the lack of Gpr179 and the subsequent impaired ON-pathway could lead to myopic features in a mouse model of cCSNB. Using ultra performance liquid chromatography, we show that adult Gpr179-/- mice have a significant decrease in both retinal dopamine and 3,4-dihydroxyphenylacetic acid, compared to Gpr179+/+ mice. This alteration of the dopaminergic system is thought to be correlated with an increased susceptibility to lens-induced myopia but does not affect the natural refractive development. Altogether, our data added a novel myopia model, which could be used to identify therapeutic interventions.
Collapse
Affiliation(s)
- Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Correspondence: (B.W.); (C.Z.); Tel.: +33-1-53-46-25-26 (B.W.); +33-1-53-46-25-40 (C.Z.)
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, AP-HP, 75010 Paris, France
| | - Robert Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruben Goulet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, 75270 Paris, France
| | - Christelle Michiels
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4056 Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
- Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France
- Académie des Sciences, Institut de France, 75006 Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Correspondence: (B.W.); (C.Z.); Tel.: +33-1-53-46-25-26 (B.W.); +33-1-53-46-25-40 (C.Z.)
| |
Collapse
|
14
|
Li G, Tang J, Huang J, Jiang Y, Fan Y, Wang X, Ren J. Genome-Wide Estimates of Runs of Homozygosity, Heterozygosity, and Genetic Load in Two Chinese Indigenous Goat Breeds. Front Genet 2022; 13:774196. [PMID: 35559012 PMCID: PMC9086400 DOI: 10.3389/fgene.2022.774196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Runs of homozygosity (ROH) and heterozygosity (ROHet) are windows into population demographic history and adaptive evolution. Numerous studies have shown that deleterious mutations are enriched in the ROH of humans, pigs, cattle, and chickens. However, the relationship of deleterious variants to ROH and the pattern of ROHet in goats have been largely understudied. Here, 240 Guangfeng and Ganxi goats from Jiangxi Province, China, were genotyped using the Illumina GoatSNP50 BeadChip and genome-wide ROH, ROHet, and genetic load analyses were performed in the context of 32 global goat breeds. The classes with the highest percentage of ROH and ROHet were 0.5–2 Mb and 0.5–1 Mb, respectively. The results of inbreeding coefficients (based on SNP and ROH) and ROHet measurements showed that Guangfeng goats had higher genetic variability than most Chinese goats, while Ganxi goats had a high degree of inbreeding, even exceeding that of commercial goat breeds. Next, the predicted damaging homozygotes were more enriched in long ROHs, especially in Guangfeng goats. Therefore, we suggest that information on damaging alleles should also be incorporated into the design of breeding and conservation programs. A list of genes related to fecundity, growth, and environmental adaptation were identified in the ROH hotspots of two Jiangxi goats. A sense-related ROH hotspot (chromosome 12: 50.55–50.81 Mb) was shared across global goat breeds and may have undergone selection prior to goat domestication. Furthermore, an identical ROHet hotspot (chromosome 1: 132.21–132.54 Mb) containing two genes associated with embryonic development (STAG1 and PCCB) was detected in domestic goat breeds worldwide. Tajima’s D and BetaScan2 statistics indicated that this region may be caused by long-term balancing selection. These findings not only provide guidance for the design of conservation strategies for Jiangxi goat breeds but also enrich our understanding of the adaptive evolution of goats.
Collapse
Affiliation(s)
- Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jinyan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, China
| | - Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Varin J, Bouzidi N, Gauvain G, Joffrois C, Desrosiers M, Robert C, De Sousa Dias MM, Neuillé M, Michiels C, Nassisi M, Sahel JA, Picaud S, Audo I, Dalkara D, Zeitz C. Substantial restoration of night vision in adult mice with congenital stationary night blindness. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:15-25. [PMID: 34401402 PMCID: PMC8339357 DOI: 10.1016/j.omtm.2021.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
Complete congenital stationary night blindness (cCSNB) due to mutations in TRPM1, GRM6, GPR179, NYX, or leucine-rich repeat immunoglobulin-like transmembrane domain 3 (LRIT3) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. Since the disease is non-degenerative and stable, treatment could theoretically be administrated at any time in life, making it a promising target for gene therapy. Until now, adeno-associated virus (AAV)-mediated therapies lead to significant functional improvements only in newborn cCSNB mice. Here we aimed to restore protein localization and function in adult Lrit3 -/ - mice. LRIT3 localizes in the outer plexiform layer and is crucial for TRPM1 localization at the dendritic tips of ON-BCs and the electroretinogram (ERG)-b-wave. AAV2-7m8-Lrit3 intravitreal injections were performed targeting either ON-BCs, photoreceptors (PRs), or both. Protein localization of LRIT3 and TRPM1 at the rod-to-rod BC synapse, functional rescue of scotopic responses, and ON-responses detection at the ganglion cell level were achieved in a few mice when ON-BCs alone or both PRs and ON-BCs, were targeted. More importantly, a significant number of treated adult Lrit3 -/- mice revealed an ERG b-wave recovery under scotopic conditions, improved optomotor responses, and on-time ON-responses at the ganglion cell level when PRs were targeted. Functional rescue was maintained for at least 4 months after treatment.
Collapse
Affiliation(s)
- Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gregory Gauvain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Corentin Joffrois
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Robert
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Marion Neuillé
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Academie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, UK
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
16
|
Small Leucine-Rich Proteoglycans (SLRPs) in the Retina. Int J Mol Sci 2021; 22:ijms22147293. [PMID: 34298915 PMCID: PMC8305803 DOI: 10.3390/ijms22147293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Retinal diseases such as age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and diabetic retinopathy (DR) are the leading causes of visual impairment worldwide. There is a critical need to understand the structural and cellular components that play a vital role in the pathophysiology of retinal diseases. One potential component is the family of structural proteins called small leucine-rich proteoglycans (SLRPs). SLRPs are crucial in many fundamental biological processes involved in the maintenance of retinal homeostasis. They are present within the extracellular matrix (ECM) of connective and vascular tissues and contribute to tissue organization and modulation of cell growth. They play a vital role in cell–matrix interactions in many upstream signaling pathways involved in fibrillogenesis and angiogenesis. In this comprehensive review, we describe the expression patterns and function of SLRPs in the retina, including Biglycan and Decorin from class I; Fibromodulin, Lumican, and a Proline/arginine-rich end leucine-rich repeat protein (PRELP) from class II; Opticin and Osteoglycin/Mimecan from class III; and Chondroadherin (CHAD), Tsukushi and Nyctalopin from class IV.
Collapse
|
17
|
Orhan E, Neuillé M, de Sousa Dias M, Pugliese T, Michiels C, Condroyer C, Antonio A, Sahel JA, Audo I, Zeitz C. A New Mouse Model for Complete Congenital Stationary Night Blindness Due to Gpr179 Deficiency. Int J Mol Sci 2021; 22:ijms22094424. [PMID: 33922602 PMCID: PMC8122890 DOI: 10.3390/ijms22094424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/24/2023] Open
Abstract
Mutations in GPR179 lead to autosomal recessive complete congenital stationary night blindness (cCSNB). This condition represents a signal transmission defect from the photoreceptors to the ON-bipolar cells. To confirm the phenotype, better understand the pathogenic mechanism in vivo, and provide a model for therapeutic approaches, a Gpr179 knock-out mouse model was genetically and functionally characterized. We confirmed that the insertion of a neo/lac Z cassette in intron 1 of Gpr179 disrupts the same gene. Spectral domain optical coherence tomography reveals no obvious retinal structure abnormalities. Gpr179 knock-out mice exhibit a so-called no-b-wave (nob) phenotype with severely reduced b-wave amplitudes in the electroretinogram. Optomotor tests reveal decreased optomotor responses under scotopic conditions. Consistent with the genetic disruption of Gpr179, GPR179 is absent at the dendritic tips of ON-bipolar cells. While proteins of the same signal transmission cascade (GRM6, LRIT3, and TRPM1) are correctly localized, other proteins (RGS7, RGS11, and GNB5) known to regulate GRM6 are absent at the dendritic tips of ON-bipolar cells. These results add a new model of cCSNB, which is important to better understand the role of GPR179, its implication in patients with cCSNB, and its use for the development of therapies.
Collapse
Affiliation(s)
- Elise Orhan
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Marion Neuillé
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Miguel de Sousa Dias
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Thomas Pugliese
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Christelle Michiels
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Christel Condroyer
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Aline Antonio
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - José-Alain Sahel
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC1423, F-75012 Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019 Paris, France
- Academie des Sciences, Institut de France, F-75006 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Isabelle Audo
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC1423, F-75012 Paris, France
- Institute of Ophthalmology, University College of London, London EC1V 9EL, UK
| | - Christina Zeitz
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
- Correspondence: ; Tel.: +33-1-53-46-25-40
| |
Collapse
|
18
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Hayashi T, Murakami Y, Mizobuchi K, Koyanagi Y, Sonoda KH, Nakano T. Complete congenital stationary night blindness associated with a novel NYX variant (p.Asn216Lys) in middle-aged and older adult patients. Ophthalmic Genet 2021; 42:412-419. [PMID: 33769208 DOI: 10.1080/13816810.2021.1904422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Complete congenital stationary night blindness (CSNB) is a retinal disorder thought to be non-progressive. The purpose of this study was to characterize the clinical and genetic findings of middle-aged and older adult patients with X-linked complete CSNB. METHODS Three male CSNB patients (aged 62, 72, and 51 years) and one unaffected female carrier in a Japanese family were included in this study. Whole-exome sequencing (WES) was performed to determine the disease-causing variants. Co-segregation was confirmed in the family members. We performed a comprehensive ophthalmic examination on each patient. RESULTS In the 62-year-old patient, a novel hemizygous variant (c.648 C > A; p.Asn216Lys) of the NYX gene was identified by WES analysis. The other two patients carried the variant hemizygously, and the unaffected carrier harbored the variant heterozygously. The clinical and electroretinography (ERG) findings were very similar among all three patients. Fundus images exhibited high myopic chorioretinal atrophy with long axial length. Ultra-wide field fundus autofluorescence images showed no retinal degenerative changes except for changes resulting from high myopia and previous retinal diseases. The ERG findings showed no response in rod ERG, electronegative configuration with preserved a-waves in standard/bright-flash ERG, and preserved responses in cone and 30-Hz flicker ERG, which were compared with age-matched controls with high myopia. CONCLUSIONS We identified a novel missense NYX variant in a Japanese family with complete CSNB. Our clinical findings indicated that photoreceptor mediated ERG responses are well preserved even in middle-aged and older adult patients.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Agosto MA, Wensel TG. LRRTM4 is a member of the transsynaptic complex between rod photoreceptors and bipolar cells. J Comp Neurol 2020; 529:221-233. [PMID: 32390181 DOI: 10.1002/cne.24944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Leucine rich repeat transmembrane (LRRTM) proteins are synaptic adhesion molecules with roles in synapse formation and signaling. LRRTM4 transcripts were previously shown to be enriched in rod bipolar cells (BCs), secondary neurons of the retina that form synapses with rod photoreceptors. Using two different antibodies, LRRTM4 was found to reside primarily at rod BC dendritic tips, where it colocalized with the transduction channel protein, TRPM1. LRRTM4 was not detected at dendritic tips of ON-cone BCs. Following somatic knockout of LRRTM4 in BCs by subretinal injection and electroporation of CRISPR/Cas9, LRRTM4 was abolished or reduced in the dendritic tips of transfected cells. Knockout cells had a normal complement of TRPM1 at their dendritic tips, while GPR179 accumulation was partially reduced. In experiments with heterologously expressed protein, the extracellular domain of LRRTM4 was found to engage in heparan-sulfate dependent binding with pikachurin. These results implicate LRRTM4 in the GPR179-pikachurin-dystroglycan transsynaptic complex at rod synapses.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Yan W, Peng YR, van Zyl T, Regev A, Shekhar K, Juric D, Sanes JR. Cell Atlas of The Human Fovea and Peripheral Retina. Sci Rep 2020; 10:9802. [PMID: 32555229 PMCID: PMC7299956 DOI: 10.1038/s41598-020-66092-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 01/28/2023] Open
Abstract
Most irreversible blindness results from retinal disease. To advance our understanding of the etiology of blinding diseases, we used single-cell RNA-sequencing (scRNA-seq) to analyze the transcriptomes of ~85,000 cells from the fovea and peripheral retina of seven adult human donors. Utilizing computational methods, we identified 58 cell types within 6 classes: photoreceptor, horizontal, bipolar, amacrine, retinal ganglion and non-neuronal cells. Nearly all types are shared between the two retinal regions, but there are notable differences in gene expression and proportions between foveal and peripheral cohorts of shared types. We then used the human retinal atlas to map expression of 636 genes implicated as causes of or risk factors for blinding diseases. Many are expressed in striking cell class-, type-, or region-specific patterns. Finally, we compared gene expression signatures of cell types between human and the cynomolgus macaque monkey, Macaca fascicularis. We show that over 90% of human types correspond transcriptomically to those previously identified in macaque, and that expression of disease-related genes is largely conserved between the two species. These results validate the use of the macaque for modeling blinding disease, and provide a foundation for investigating molecular mechanisms underlying visual processing.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Yi-Rong Peng
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
- Department of Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Tavé van Zyl
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Aviv Regev
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140; and Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Karthik Shekhar
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140; and Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|