1
|
Öhman J, Sjölin E, Cundari M, Johansson F, Gilbert M, Boele HJ, Svensson P, Rasmussen A. The Effect of Nucleo-Olivary Stimulation on Climbing Fiber EPSPs in Purkinje Cells. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1859-1866. [PMID: 38467957 PMCID: PMC11489192 DOI: 10.1007/s12311-024-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Climbing fibers, connecting the inferior olive and Purkinje cells, form the nervous system's strongest neural connection. These fibers activate after critical events like motor errors or anticipation of rewards, leading to bursts of excitatory postsynaptic potentials (EPSPs) in Purkinje cells. The number of EPSPs is a crucial variable when the brain is learning a new motor skill. Yet, we do not know what determines the number of EPSPs. Here, we measured the effect of nucleo-olivary stimulation on periorbital elicited climbing fiber responses through in-vivo intracellular Purkinje cell recordings in decerebrated ferrets. The results show that while nucleo-olivary stimulation decreased the probability of a response occurring at all, it did not reduce the number of EPSPs. The results suggest that nucleo-olivary stimulation does not influence the number of EPSPs in climbing fiber bursts.
Collapse
Affiliation(s)
- Josefine Öhman
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elias Sjölin
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maurizio Cundari
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Fredrik Johansson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mike Gilbert
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Henk-Jan Boele
- Princeton Neuroscience Institute, Washington Road, Princeton, USA
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - Pär Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
van Midden VM, Pirtošek Z, Kojović M. The Effect of taVNS on the Cerebello-Thalamo-Cortical Pathway: a TMS Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1013-1019. [PMID: 37639175 PMCID: PMC11102382 DOI: 10.1007/s12311-023-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
fMRI studies show activation of cerebellum during transcutaneous auricular vagal nerve stimulation (taVNS); however, there is no evidence whether taVNS induced activation of the cerebellum translates to the cerebellar closed loops involved in motor functions. We assessed the propensity of taVNS at 25 Hz (taVNS25) and 100 Hz (taVNS100) to modulate cerebello-thalamo-cortical pathways using transcranial magnetic stimulation. In our double blind within-subjects study thirty-two participants completed one visit during which cerebellar brain inhibition (CBI) was assessed at baseline (no stimulation) and in a randomized order during taVNS100, taVNS25, and sham taVNS (xVNS). Generalized linear mixed models with gamma distribution were built to assess the effect of taVNS on CBI. The estimated marginal means of linear trends during each taVNS condition were computed and compared in a pairwise fashion with Benjamini-Hochberg correction for multiple comparisons. CBI significantly increased during taVNS100 compared to taVNS25 and xVNS (p = 0.0003 and p = 0.0465, respectively). The taVNS current intensity and CBI conditioning stimulus intensity had no significant effect on CBI. taVNS has a frequency dependent propensity to modulate the cerebello-thalamo-cortical pathway. The cerebellum participates in closed-loop circuits involved in motor, cognitive, and affective operations and may serve as an entry for modulating effects of taVNS.
Collapse
Affiliation(s)
- Vesna M van Midden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Silva NT, Ramírez-Buriticá J, Pritchett DL, Carey MR. Climbing fibers provide essential instructive signals for associative learning. Nat Neurosci 2024; 27:940-951. [PMID: 38565684 PMCID: PMC11088996 DOI: 10.1038/s41593-024-01594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
Supervised learning depends on instructive signals that shape the output of neural circuits to support learned changes in behavior. Climbing fiber (CF) inputs to the cerebellar cortex represent one of the strongest candidates in the vertebrate brain for conveying neural instructive signals. However, recent studies have shown that Purkinje cell stimulation can also drive cerebellar learning and the relative importance of these two neuron types in providing instructive signals for cerebellum-dependent behaviors remains unresolved. In the present study we used cell-type-specific perturbations of various cerebellar circuit elements to systematically evaluate their contributions to delay eyeblink conditioning in mice. Our findings reveal that, although optogenetic stimulation of either CFs or Purkinje cells can drive learning under some conditions, even subtle reductions in CF signaling completely block learning to natural stimuli. We conclude that CFs and corresponding Purkinje cell complex spike events provide essential instructive signals for associative cerebellar learning.
Collapse
Affiliation(s)
- N Tatiana Silva
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | | | - Dominique L Pritchett
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
- Biology Department, Howard University, Washington, DC, USA.
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
4
|
Salazar Leon LE, Brown AM, Kaku H, Sillitoe RV. Purkinje cell dysfunction causes disrupted sleep in ataxic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547586. [PMID: 37461479 PMCID: PMC10350025 DOI: 10.1101/2023.07.03.547586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Purkinje cell dysfunction causes movement disorders such as ataxia, however, recent evidence suggests that Purkinje cell dysfunction may also alter sleep regulation. Here, we used an ataxia mouse model generated by silencing Purkinje cell neurotransmission ( L7 Cre ;Vgat fx/fx ) to better understand how cerebellar dysfunction impacts sleep physiology. We focused our analysis on sleep architecture and electrocorticography (ECoG) patterns based on their relevance to extracting physiological measurements during sleep. We found that circadian activity is unaltered in the mutant mice, although their sleep parameters and ECoG patterns are modified. The L7 Cre ;Vgat fx/fx mutant mice have decreased wakefulness and rapid eye movement (REM) sleep, while non-rapid eye movement (NREM) sleep is increased. The mutant mice have an extended latency to REM sleep, which is also observed in human ataxia patients. Spectral analysis of ECoG signals revealed alterations in the power distribution across different frequency bands defining sleep. Therefore, Purkinje cell dysfunction may influence wakefulness and equilibrium of distinct sleep stages in ataxia. Our findings posit a connection between cerebellar dysfunction and disrupted sleep and underscore the importance of examining cerebellar circuit function in sleep disorders. Summary Statement Utilizing a precise genetic mouse model of ataxia, we provide insights into the cerebellum's role in sleep regulation, highlighting its potential as a therapeutic target for motor disorders-related sleep disruptions.
Collapse
|
5
|
Etemadi L, Jirenhed DA, Rasmussen A. Effects of working memory load and CS-US intervals on delay eyeblink conditioning. NPJ SCIENCE OF LEARNING 2023; 8:16. [PMID: 37210441 DOI: 10.1038/s41539-023-00167-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Eyeblink conditioning is used in many species to study motor learning and make inferences about cerebellar function. However, the discrepancies in performance between humans and other species combined with evidence that volition and awareness can modulate learning suggest that eyeblink conditioning is not merely a passive form of learning that relies on only the cerebellum. Here we explored two ways to reduce the influence of volition and awareness on eyeblink conditioning: (1) using a short interstimulus interval, and (2) having participants do working memory tasks during the conditioning. Our results show that participants trained with short interstimulus intervals (150 ms and 250 ms) produce very few conditioned responses after 100 trials. Participants trained with a longer interstimulus interval (500 ms) who simultaneously did working memory tasks produced fewer conditioned responses than participants who watched a movie during the training. Our results suggest that having participants perform working memory tasks during eyeblink conditioning can be a viable strategy for studying cerebellar learning that is absent of influences from awareness and volition. This could enhance the comparability of the results obtained in human studies with those in animal models.
Collapse
Affiliation(s)
- Leila Etemadi
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund, Sweden
| | - Dan-Anders Jirenhed
- Associative Learning, Department of Experimental Medical Science, Lund, Sweden
| | - Anders Rasmussen
- Associative Learning, Department of Experimental Medical Science, Lund, Sweden.
- Erasmus Medical Center, Department of Neuroscience, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Tang Y, Zhang X, An L, Yu Z, Liu JK. Diverse role of NMDA receptors for dendritic integration of neural dynamics. PLoS Comput Biol 2023; 19:e1011019. [PMID: 37036844 PMCID: PMC10085026 DOI: 10.1371/journal.pcbi.1011019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Neurons, represented as a tree structure of morphology, have various distinguished branches of dendrites. Different types of synaptic receptors distributed over dendrites are responsible for receiving inputs from other neurons. NMDA receptors (NMDARs) are expressed as excitatory units, and play a key physiological role in synaptic function. Although NMDARs are widely expressed in most types of neurons, they play a different role in the cerebellar Purkinje cells (PCs). Utilizing a computational PC model with detailed dendritic morphology, we explored the role of NMDARs at different parts of dendritic branches and regions. We found somatic responses can switch from silent, to simple spikes and complex spikes, depending on specific dendritic branches. Detailed examination of the dendrites regarding their diameters and distance to soma revealed diverse response patterns, yet explain two firing modes, simple and complex spike. Taken together, these results suggest that NMDARs play an important role in controlling excitability sensitivity while taking into account the factor of dendritic properties. Given the complexity of neural morphology varying in cell types, our work suggests that the functional role of NMDARs is not stereotyped but highly interwoven with local properties of neuronal structure.
Collapse
Affiliation(s)
- Yuanhong Tang
- Institute for Artificial Intelligence, Department of Computer Science and Technology, Peking University, Beijing, China
| | - Xingyu Zhang
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China
| | - Lingling An
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Zhaofei Yu
- Institute for Artificial Intelligence, Department of Computer Science and Technology, Peking University, Beijing, China
| | - Jian K Liu
- School of Computing, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Rasmussen A. Graded error signals in eyeblink conditioning. Neurobiol Learn Mem 2020; 170:107023. [DOI: 10.1016/j.nlm.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
|
8
|
Anderson CJ, Figueroa KP, Dorval AD, Pulst SM. Deep cerebellar stimulation reduces ataxic motor symptoms in the shaker rat. Ann Neurol 2020; 85:681-690. [PMID: 30854718 DOI: 10.1002/ana.25464] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Degenerative cerebellar ataxias (DCAs) affect up to 1 in 5,000 people worldwide, leading to incoordination, tremor, and falls. Loss of Purkinje cells, nearly universal across DCAs, dysregulates the dentatothalamocortical network. To address the paucity of treatment strategies, we developed an electrical stimulation-based therapy for DCAs targeting the dorsal dentate nucleus. METHODS We tested this therapeutic strategy in the Wistar Furth shaker rat model of Purkinje cell loss resulting in tremor and ataxia. We implanted shaker rats with stimulating electrodes targeted to the dorsal dentate nucleus and tested a spectrum of frequencies ranging from 4 to 180 Hz. RESULTS Stimulation at 30 Hz most effectively reduced motor symptoms. Stimulation frequencies >100 Hz, commonly used for parkinsonism and essential tremor, worsened incoordination, and frequencies within the tremor physiologic range may worsen tremor. INTERPRETATION Low-frequency deep cerebellar stimulation may provide a novel strategy for treating motor symptoms of degenerative cerebellar ataxias. Ann Neurol 2019;85:681-690.
Collapse
Affiliation(s)
| | | | - Alan D Dorval
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| | | |
Collapse
|
9
|
In Vivo Analysis of the Climbing Fiber-Purkinje Cell Circuit in SCA2-58Q Transgenic Mouse Model. THE CEREBELLUM 2019; 17:590-600. [PMID: 29876801 DOI: 10.1007/s12311-018-0951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebellar Purkinje cells (PCs) and cerebellar pathways are primarily affected in many autosomal dominant cerebellar ataxias. PCs generate complex spikes (CS) in vivo when activated by climbing fiber (CF) which rise from the inferior olive. In this study, we investigated the functional state of the CF-PC circuitry in the transgenic mouse model of spinocerebellar ataxia type 2 (SCA2), a polyglutamine neurodegenerative genetic disease. In our experiments, we used an extracellular single-unit recording method to compare the PC activity pattern and the CS shape in age-matched wild-type mice and SCA2-58Q transgenic mice. We discovered no alterations in the CS properties of PCs in aging SCA2 mice. To examine the integrity of the olivocerebellar pathway, we applied harmaline, an alkaloid that acts directly on the inferior olive neurons. The pharmacological stimulation of olivocerebellar circuit by harmaline uncovered disturbances in SCA2-58Q PC activity pattern and in the complex spike shape when compared with age-matched wild-type cells. The abnormalities in the CF-PC circuitry were aggravated with age. We propose that alterations in CF-PC circuitry represent one of potential causes of ataxic symptoms in SCA2 and in other SCAs.
Collapse
|
10
|
Kjell K, Löwgren K, Rasmussen A. A Longer Interstimulus Interval Yields Better Learning in Adults and Young Adolescents. Front Behav Neurosci 2018; 12:299. [PMID: 30559655 PMCID: PMC6286956 DOI: 10.3389/fnbeh.2018.00299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
Eyeblink conditioning is one of the most popular experimental paradigms for studying the neural mechanisms underlying learning and memory. A key parameter in eyeblink conditioning is the interstimulus interval (ISI), the time between the onset of the conditional stimulus (CS) and the onset of the unconditional stimulus (US). Though previous studies have examined how the ISI affects learning there is no clear consensus concerning which ISI is most effective and different researchers use different ISIs. Importantly, the brain undergoes changes throughout life with significant cerebellar growth in adolescents, which could mean that different ISIs might be called for in children, adolescents and adults. Moreover, the fact that animals are often trained with a shorter ISI than humans make direct comparisons problematic. In this study, we compared eyeblink conditioning in young adolescents aged 10-15 and adults using one short ISI (300 ms) and one long ISI (500 ms). The results demonstrate that young adolescents and adults produce a higher percentage of CRs when they are trained with a 500 ms ISI compared to a 300 ms ISI. The results also show that learning is better in the adults, especially for the shorter ISI.
Collapse
Affiliation(s)
| | - Karolina Löwgren
- Logopedics, Phoniatrics and Audiology, Department of Clinical Sciences, Lund University, Lund, Sweden
- The Linnaeus Centre Thinking in Time: Cognition, Communication and Learning, Lund University, Lund, Sweden
| | - Anders Rasmussen
- The Linnaeus Centre Thinking in Time: Cognition, Communication and Learning, Lund University, Lund, Sweden
- Associative Learning, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Erasmus Medical Center, Department of Neuroscience, Rotterdam, Netherlands
| |
Collapse
|
11
|
Abstract
The climbing fiber-Purkinje cell circuit is one of the most powerful and highly conserved in the central nervous system. Climbing fibers exert a powerful excitatory action that results in a complex spike in Purkinje cells and normal functioning of the cerebellum depends on the integrity of climbing fiber-Purkinje cell synapse. Over the last 50 years, multiple hypotheses have been put forward on the role of the climbing fibers and complex spikes in cerebellar information processing and motor control. Central to these theories is the nature of the interaction between the low-frequency complex spike discharge and the high-frequency simple spike firing of Purkinje cells. This review examines the major hypotheses surrounding the action of the climbing fiber-Purkinje cell projection, discussing both supporting and conflicting findings. The review describes newer findings establishing that climbing fibers and complex spikes provide predictive signals about movement parameters and that climbing fiber input controls the encoding of behavioral information in the simple spike firing of Purkinje cells. Finally, we propose the dynamic encoding hypothesis for complex spike function that strives to integrate established and newer findings.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Bouvier G, Aljadeff J, Clopath C, Bimbard C, Ranft J, Blot A, Nadal JP, Brunel N, Hakim V, Barbour B. Cerebellar learning using perturbations. eLife 2018; 7:e31599. [PMID: 30418871 PMCID: PMC6231762 DOI: 10.7554/elife.31599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/06/2018] [Indexed: 12/24/2022] Open
Abstract
The cerebellum aids the learning of fast, coordinated movements. According to current consensus, erroneously active parallel fibre synapses are depressed by complex spikes signalling movement errors. However, this theory cannot solve the credit assignment problem of processing a global movement evaluation into multiple cell-specific error signals. We identify a possible implementation of an algorithm solving this problem, whereby spontaneous complex spikes perturb ongoing movements, create eligibility traces and signal error changes guiding plasticity. Error changes are extracted by adaptively cancelling the average error. This framework, stochastic gradient descent with estimated global errors (SGDEGE), predicts synaptic plasticity rules that apparently contradict the current consensus but were supported by plasticity experiments in slices from mice under conditions designed to be physiological, highlighting the sensitivity of plasticity studies to experimental conditions. We analyse the algorithm's convergence and capacity. Finally, we suggest SGDEGE may also operate in the basal ganglia.
Collapse
Affiliation(s)
- Guy Bouvier
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| | - Johnatan Aljadeff
- Departments of Statistics and NeurobiologyUniversity of ChicagoChicagoUnited States
| | - Claudia Clopath
- Department of BioengineeringImperial College LondonLondonUnited Kingdom
| | - Célian Bimbard
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| | - Jonas Ranft
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| | - Antonin Blot
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| | - Jean-Pierre Nadal
- Laboratoire de Physique StatistiqueÉcole normale supérieure, CNRS, PSL University, Sorbonne UniversitéParisFrance
- Centre d’Analyse et de Mathématique SocialesEHESS, CNRS, PSL UniversityParisFrance
| | - Nicolas Brunel
- Departments of Statistics and NeurobiologyUniversity of ChicagoChicagoUnited States
| | - Vincent Hakim
- Laboratoire de Physique StatistiqueÉcole normale supérieure, CNRS, PSL University, Sorbonne UniversitéParisFrance
| | - Boris Barbour
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| |
Collapse
|
13
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Electrophysiological Correlates of Blast-Wave Induced Cerebellar Injury. Sci Rep 2018; 8:13633. [PMID: 30206255 PMCID: PMC6134123 DOI: 10.1038/s41598-018-31728-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms underlying traumatic neural injury and the sequelae of events in the acute phase is important for deciding on the best window of therapeutic intervention. We hypothesized that evoked potentials (EP) recorded from the cerebellar cortex can detect mild levels of neural trauma and provide a qualitative assessment tool for progression of cerebellar injury in time. The cerebellar local field potentials evoked by a mechanical tap on the hand and collected with chronically implanted micro-ECoG arrays on the rat cerebellar cortex demonstrated substantial changes both in amplitude and timing as a result of blast-wave induced injury. The results revealed that the largest EP changes occurred within the first day of injury, and partial recoveries were observed from day-1 to day-3, followed by a period of gradual improvements (day-7 to day-14). The mossy fiber (MF) and climbing fiber (CF) mediated components of the EPs were affected differentially. The behavioral tests (ladder rung walking) and immunohistological analysis (calbindin and caspase-3) did not reveal any detectable changes at these blast pressures that are typically considered as mild (100-130 kPa). The results demonstrate the sensitivity of the electrophysiological method and its use as a tool to monitor the progression of cerebellar injuries in longitudinal animal studies.
Collapse
|