1
|
Kang Q, Talesh AR, Lang EJ, Sahin M. Transsynaptic modulation of cerebellar nuclear cells: theta AC-burst stimulation. J Neural Eng 2024; 21:066028. [PMID: 39637565 PMCID: PMC11638969 DOI: 10.1088/1741-2552/ad9ad1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Objectives.Transcranial alternating current stimulation (tACS) and its variants are being tested in clinical trials for treatment of neurological disorders, and cerebellar tACS (ctACS) in particular has garnered much interest because of the involvement of the cerebellum in these disorders. The main objective of this study was to investigate the frequency tuning curves for the entrainment of the Purkinje cells (PCs) and the cerebellar nuclear (CN) cells by their axonal projections. In addition, we aimed to investigate the temporal and steady-state characteristics of the PC-CN transsynaptic modulation under clinically relevant stimulation waveforms.Approach.Experiments were conducted in anesthetized rats with the electrical stimulations applied to the cerebellar cortex while the spiking activity of PC and CN cells were recorded extracellularly. The PC-CN modulation was tested in a wide range of AC frequencies (1-1000 Hz). Furthermore, high-frequency AC stimulation (40-400 Hz) repeated at 4 Hz, that we termedtheta AC-Burst Stimulation, was tested for its transient and steady-state responses.Main results. The CN cell firing patterns suggest that the population of projecting PCs that is entrained by the surface stimulation consists of the cells that are entrained in 180° opposite phases to each other. The CN cell spiking activity in general follows the entrainment pattern of the projecting PCs in the transient response. The CN entrainment during the steady-state turns into suppression at high frequencies of the stimulation. The PC responses could be explained with a simple statistical model that suggested that low-frequency (as well as DC) and high-frequency AC modulation may be operating through different neural mechanisms.Significance.High-frequency AC stimulation with a low-frequency envelope can be leveraged to induce CN modulation at theta frequencies. These results may explain some of the clinical findings and provide insight for future clinical trials of ctACS.
Collapse
Affiliation(s)
- Qi Kang
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Amir Roshani Talesh
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Eric J Lang
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Mesut Sahin
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| |
Collapse
|
2
|
Grigutsch LS, Haverland B, Timmsen LS, Asmussen L, Braaß H, Wolf S, Luu TV, Stagg CJ, Schulz R, Quandt F, Schwab BC. Differential effects of theta-gamma tACS on motor skill acquisition in young individuals and stroke survivors: A double-blind, randomized, sham-controlled study. Brain Stimul 2024; 17:1076-1085. [PMID: 39245294 DOI: 10.1016/j.brs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Theta-gamma transcranial alternating current stimulation (tACS) was recently found to enhance thumb acceleration in young, healthy participants, suggesting a potential role in facilitating motor skill acquisition. Given the relevance of motor skill acquisition in stroke rehabilitation, theta-gamma tACS may hold potential for treating stroke survivors. OBJECTIVE We aimed to examine the effects of theta-gamma tACS on motor skill acquisition in young, healthy participants and stroke survivors. METHODS In a pre-registered, double-blind, randomized, sham-controlled study, 78 young, healthy participants received either theta-gamma peak-coupled (TGP) tACS, theta-gamma trough-coupled (TGT) tACS or sham stimulation. 20 individuals with a chronic stroke received either TGP or sham. TACS was applied over motor cortical areas while participants performed an acceleration-dependent thumb movement task. Stroke survivors were characterized using standardized testing, with a subgroup receiving additional structural brain imaging. RESULTS Neither TGP nor TGT tACS significantly modified general motor skill acquisition in the young, healthy cohort. In contrast, in the stroke cohort, TGP diminished motor skill acquisition compared to sham. Exploratory analyses revealed that, independent of general motor skill acquisition, healthy participants receiving TGP or TGT exhibited greater peak thumb acceleration than those receiving sham. CONCLUSION Although theta-gamma tACS increased thumb acceleration in young, healthy participants, consistent with previous reports, it did not enhance overall motor skill acquisition in a more complex motor task. Furthermore, it even had detrimental effects on motor skill acquisition in stroke survivors.
Collapse
Affiliation(s)
- L S Grigutsch
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B Haverland
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L S Timmsen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Asmussen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Wolf
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T V Luu
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - R Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - B C Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
3
|
Diedrich L, Kolhoff HI, Bergmann C, Bähr M, Antal A. Boosting working memory in the elderly: driving prefrontal theta-gamma coupling via repeated neuromodulation. GeroScience 2024:10.1007/s11357-024-01272-3. [PMID: 38992335 DOI: 10.1007/s11357-024-01272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
The escalating global burden of age-related neurodegenerative diseases and associated healthcare costs necessitates innovative interventions to stabilize or enhance cognitive functions. Deficits in working memory (WM) are linked to alterations in prefrontal theta-gamma cross-frequency coupling. Low-intensity transcranial alternating current stimulation (tACS) has emerged as a non-invasive, low-cost approach capable of modulating ongoing oscillations in targeted brain areas through entrainment. This study investigates the impact of multi-session peak-coupled theta-gamma cross-frequency tACS administered to the dorsolateral prefrontal cortex (DLPFC) on WM performance in older adults. In a randomized, sham-controlled, triple-blinded design, 77 participants underwent 16 stimulation sessions over six weeks while performing n-back tasks. Signal detection measures revealed increased 2-back sensitivity and robust modulations of response bias, indicating improved WM and decision-making adaptations, respectively. No effects were observed in the 1-back condition, emphasizing dependencies on cognitive load. Repeated tACS reinforces behavioral changes, indicated by increasing effect sizes. This study supports prior research correlating prefrontal theta-gamma coupling with WM processes and provides unique insights into the neurocognitive benefits of repeated tACS intervention. The well-tolerated and highly effective multi-session tACS intervention among the elderly underscores its therapeutic potential in vulnerable populations.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Clara Bergmann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
5
|
Diedrich L, Kolhoff HI, Chakalov I, Vékony T, Németh D, Antal A. Prefrontal theta-gamma transcranial alternating current stimulation improves non-declarative visuomotor learning in older adults. Sci Rep 2024; 14:4955. [PMID: 38418511 PMCID: PMC10901881 DOI: 10.1038/s41598-024-55125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Casula A, Milazzo BM, Martino G, Sergi A, Lucifora C, Tomaiuolo F, Quartarone A, Nitsche MA, Vicario CM. Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior-A Systematic Review of Randomized Sham-Controlled Studies. Life (Basel) 2023; 13:life13051220. [PMID: 37240865 DOI: 10.3390/life13051220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
INTRO Aggressive behavior represents a significant public health issue, with relevant social, political, and security implications. Non-invasive brain stimulation (NIBS) techniques may modulate aggressive behavior through stimulation of the prefrontal cortex. AIMS To review research on the effectiveness of NIBS to alter aggression, discuss the main findings and potential limitations, consider the specifics of the techniques and protocols employed, and discuss clinical implications. METHODS A systematic review of the literature available in the PubMed database was carried out, and 17 randomized sham-controlled studies investigating the effectiveness of NIBS techniques on aggression were included. Exclusion criteria included reviews, meta-analyses, and articles not referring to the subject of interest or not addressing cognitive and emotional modulation aims. CONCLUSIONS The reviewed data provide promising evidence for the beneficial effects of tDCS, conventional rTMS, and cTBS on aggression in healthy adults, forensic, and clinical samples. The specific stimulation target is a key factor for the success of stimulation on aggression modulation. rTMS and cTBS showed opposite effects on aggression compared with tDCS. However, due to the heterogeneity of stimulation protocols, experimental designs, and samples, we cannot exclude other factors that may play a confounding role.
Collapse
Affiliation(s)
- Antony Casula
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Bianca M Milazzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Gabriella Martino
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Sergi
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Chiara Lucifora
- Dipartimento di Filosofia e Comunicazione, Università di Bologna, 40131 Bologna, Italy
| | - Francesco Tomaiuolo
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | | | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| |
Collapse
|
8
|
Weiss E, Kann M, Wang Q. Neuromodulation of Neural Oscillations in Health and Disease. BIOLOGY 2023; 12:371. [PMID: 36979063 PMCID: PMC10045166 DOI: 10.3390/biology12030371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Using EEG and local field potentials (LFPs) as an index of large-scale neural activities, research has been able to associate neural oscillations in different frequency bands with markers of cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us a glimpse into how neurons communicate throughout the brain, the causality of these synchronized network activities remains poorly understood. Moreover, the effect of the major neuromodulatory systems (e.g., noradrenergic, cholinergic, and dopaminergic) on brain oscillations has drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is heavily responsible for mediating network-wide communication across subcortical and cortical brain structures, implicating the importance of neurotransmitters in shaping coordinated actions. By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety of cognitive functions and neurological disorders, and how neuromodulation techniques can be optimized as a means of controlling neural network dynamics. The aim of this review is to showcase the important role that neuromodulatory systems play in large-scale neural network dynamics, informing future studies to pay close attention to their involvement in specific features of neural oscillations and associated behaviors.
Collapse
Affiliation(s)
| | | | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|
9
|
Early adolescent psychological distress and cognition, correlates of resting-state EEG, interregional phase-amplitude coupling. Int J Psychophysiol 2023; 183:130-137. [PMID: 36436723 DOI: 10.1016/j.ijpsycho.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Delineating neurobiological markers of youth mental health is crucial for early identification and treatment. One promising marker is phase-amplitude coupling (PAC), cross-frequency coupling between the phase of slower oscillatory activity and the amplitude of faster oscillatory activity in the brain. Prior research has demonstrated that PAC is associated with both cognition and mental health and can be modulated using neurostimulation. However, to date research investigating PAC has focused primarily on adults, and only within-region theta-gamma coupling in the context of mental health. We investigated associations between interregional resting-state PAC (posterior-anterior cortex), and cognition and psychological distress in N = 77 (Mage = 12.58 years, SD = 0.31; 51 % female) 12-year-olds. Firstly, while left theta-beta PAC showed a moderate positive correlation (r = 0.529, p < .01), right theta-gamma PAC showed a weak positive correlation, with psychological distress (r = 0.283, p < .05). In terms of cognition, moderate correlations were observed between: (i) increased left theta-beta PAC and increased psychomotor speed (r = -0.367, p < .05); (ii) increased left alpha-beta PAC and decreased attention (r = 0.355, p ≤0.01); and (iii) increased left alpha-beta PAC and decreased verbal learning and memory (r = -0.352, p < .01). Whereas weak associations were observed for: (i) increased left alpha-beta PAC and decreased executive functioning scores (r = 0.284, p < .05); and (ii) increased left alpha-gamma PAC and increased attention (r = -0.272, p < .05). The overall findings of this exploratory study are encouraging, although all the correlations were in the weak-to-moderate range and require replication. Further research may confirm interregional resting-state PAC as a biomarker that can help us better understand the link between mental health and cognition in adolescents and improve treatment of cognitive related deficits in mental illness.
Collapse
|
10
|
10 Minutes Frontal 40 Hz tACS-Effects on Working Memory Tested by Luck-Vogel Task. Behav Sci (Basel) 2022; 13:bs13010039. [PMID: 36661611 PMCID: PMC9855106 DOI: 10.3390/bs13010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Working memory is a cognitive process that involves short-term active maintenance, flexible updating, and processing of goal- or task-relevant information. All frequency bands are involved in working memory. The activities of the theta and gamma frequency bands in the frontoparietal network are highly involved in working memory processes; theta oscillations play a role in the temporal organization of working memory items, and gamma oscillations influence the maintenance of information in working memory. Transcranial alternating current stimulation (tACS) results in frequency-specific modulation of endogenous oscillations and has shown promising results in cognitive neuroscience. The electrophysiological and behavioral changes induced by the modulation of endogenous gamma frequency in the prefrontal cortex using tACS have not been extensively studied in the context of working memory. Therefore, we aimed to investigate the effects of frontal gamma-tACS on working memory outcomes. We hypothesized that a 10-min gamma tACS administered over the frontal cortex would significantly improve working memory outcomes. Young healthy participants performed Luck-Vogel cognitive behavioral tasks with simultaneous pre- and post-intervention EEG recording (Sham versus 40 Hz tACS). Data from forty-one participants: sham (15 participants) and tACS (26 participants), were used for the statistical and behavioral analysis. The relative changes in behavioral outcomes and EEG due to the intervention were analyzed. The results show that tACS caused an increase in the power spectral density in the high beta and low gamma EEG bands and a decrease in left-right coherence. On the other hand, tACS had no significant effect on success rates and response times. Conclusion: 10 min of frontal 40 Hz tACS was not sufficient to produce detectable behavioral effects on working memory, whereas electrophysiological changes were evident. The limitations of the current stimulation protocol and future directions are discussed in detail in the following sections.
Collapse
|
11
|
Hsu C, Liu T, Lee D, Yeh D, Chen Y, Liang W, Juan C. Amplitude modulating frequency overrides carrier frequency in tACS-induced phosphene percept. Hum Brain Mapp 2022; 44:914-926. [PMID: 36250439 PMCID: PMC9875935 DOI: 10.1002/hbm.26111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 01/28/2023] Open
Abstract
The amplitude modulated (AM) neural oscillation is an essential feature of neural dynamics to coordinate distant brain areas. The AM transcranial alternating current stimulation (tACS) has recently been adopted to examine various cognitive functions, but its neural mechanism remains unclear. The current study utilized the phosphene phenomenon to investigate whether, in an AM-tACS, the AM frequency could modulate or even override the carrier frequency in phosphene percept. We measured the phosphene threshold and the perceived flash rate/pattern from 12 human subjects (four females, aged from 20-44 years old) under tACS that paired carrier waves (10, 14, 18, 22 Hz) with different envelope conditions (0, 2, 4 Hz) over the mid-occipital and left facial areas. We also examined the phosphene source by adopting a high-density stimulation montage. Our results revealed that (1) phosphene threshold was higher for AM-tACS than sinusoidal tACS and demonstrated different carrier frequency functions in two stimulation montages. (2) AM-tACS slowed down the phosphene flashing and abolished the relation between the carrier frequency and flash percept in sinusoidal tACS. This effect was independent of the intensity change of the stimulation. (3) Left facial stimulation elicited phosphene in the upper-left visual field, while occipital stimulation elicited equally distributed phosphene. (4) The near-eye electrodermal activity (EDA) measured under the threshold-level occipital tACS was greater than the lowest power sufficient to elicit retinal phosphene. Our results show that AM frequency may override the carrier frequency and determine the perceived flashing frequency of AM-tACS-induced phosphene.
Collapse
Affiliation(s)
- Che‐Yi Hsu
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan
| | - Tzu‐Ling Liu
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan
| | - Dong‐Han Lee
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan
| | - Ding‐Ruey Yeh
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan
| | - Yan‐Hsun Chen
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan
| | - Wei‐Kuang Liang
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan
| | - Chi‐Hung Juan
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan,Department of PsychologyKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
12
|
Kim SE, Kim HS, Kwak Y, Ahn MH, Choi KM, Min BK. Neurodynamic correlates for the cross-frequency coupled transcranial alternating current stimulation during working memory performance. Front Neurosci 2022; 16:1013691. [PMID: 36263365 PMCID: PMC9574066 DOI: 10.3389/fnins.2022.1013691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial current stimulation is a neuromodulation technique used to modulate brain oscillations and, in turn, to enhance human cognitive function in a non-invasive manner. This study investigated whether cross-frequency coupled transcranial alternating current stimulation (CFC-tACS) improved working memory performance. Participants in both the tACS-treated and sham groups were instructed to perform a modified Sternberg task, where a combination of letters and digits was presented. Theta-phase/high-gamma-amplitude CFC-tACS was administered over electrode F3 and its four surrounding return electrodes (Fp1, Fz, F7, and C3) for 20 min. To identify neurophysiological correlates for the tACS-mediated enhancement of working memory performance, we analyzed EEG alpha and theta power, cross-frequency coupling, functional connectivity, and nodal efficiency during the retention period of the working memory task. We observed significantly reduced reaction times in the tACS-treated group, with suppressed treatment-mediated differences in frontal alpha power and unidirectional Fz-delta-phase to Oz-high-gamma-amplitude modulation during the second half of the retention period when network analyses revealed tACS-mediated fronto-occipital dissociative neurodynamics between alpha suppression and delta/theta enhancement. These findings indicate that tACS modulated top-down control and functional connectivity across the fronto-occipital regions, resulting in improved working memory performance. Our observations are indicative of the feasibility of enhancing cognitive performance by the CFC-formed tACS.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
| | - Hyun-Seok Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, South Korea
| | - Youngchul Kwak
- Department of Electronics Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Min-Hee Ahn
- Laboratory of Brain and Cognitive Science for Convergence Medicine, College of Medicine, Hallym University, Anyang, South Korea
| | - Kyung Mook Choi
- Institute for Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Byoung-Kyong Min
- Institute for Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Interdisciplinary Program in Brain and Cognitive Sciences, Korea University, Seoul, South Korea
- *Correspondence: Byoung-Kyong Min,
| |
Collapse
|
13
|
80 Hz but not 40 Hz, transcranial alternating current stimulation of 80 Hz over right intraparietal sulcus increases visuospatial working memory capacity. Sci Rep 2022; 12:13762. [PMID: 35962011 PMCID: PMC9374770 DOI: 10.1038/s41598-022-17965-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Working memory (WM) is a complex cognitive function involved in the temporary storage and manipulation of information, which has been one of the target cognitive functions to be restored in neurorehabilitation. WM capacity is known to be proportional to the number of gamma cycles nested in a single theta cycle. Therefore, gamma-band transcranial alternating current stimulation (tACS) should be dependent of the stimulation frequency; however, the results of previous studies that employed 40 Hz tACS have not been consistent. The optimal locations and injection currents of multiple scalp electrodes were determined based on numerical simulations of electric field. Experiments were conducted with 20 healthy participants. The order of three stimulation conditions (40 Hz tACS, 80 Hz tACS, and sham stimulation) were randomized but counterbalanced. Visual hemifield-specific visual WM capacity was assessed using a delayed visual match to the sample task. High gamma tACS significantly increased WM capacity, while low gamma tACS had no significant effect. Notably, 80 Hz tACS increased WM capacity on both the left and right visual hemifields, while previous tACS studies only reported the effects of tACS on contralateral hemifields. This is the first study to investigate the frequency-dependent effect of gamma-band tACS on WM capacity. Our findings also suggest that high gamma tACS might influence not only WM capacity but also communication between interhemispheric cortical regions. It is expected that high gamma tACS could be a promising neurorehabilitation method to enhance higher-order cognitive functions with similar mechanisms.
Collapse
|
14
|
Riddle J, Alexander ML, Schiller CE, Rubinow DR, Frohlich F. Reward-Based Decision-Making Engages Distinct Modes of Cross-Frequency Coupling. Cereb Cortex 2022; 32:2079-2094. [PMID: 34622271 PMCID: PMC9113280 DOI: 10.1093/cercor/bhab336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortex exerts control over sensory and motor systems via cross-frequency coupling. However, it is unknown whether these signals play a role in reward-based decision-making and whether such dynamic network configuration is altered in a major depressive episode. We recruited men and women with and without depression to perform a streamlined version of the Expenditure of Effort for Reward Task during recording of electroencephalography. Goal-directed behavior was quantified as willingness to exert physical effort to obtain reward, and reward-evaluation was the degree to which the decision to exert effort was modulated by incentive level. We found that the amplitude of frontal-midline theta oscillations was greatest in participants with the greatest reward-evaluation. Furthermore, coupling between frontal theta phase and parieto-occipital gamma amplitude was positively correlated with reward-evaluation. In addition, goal-directed behavior was positively correlated with coupling between frontal delta phase to motor beta amplitude. Finally, we performed a factor analysis to derive 2 symptom dimensions and found that mood symptoms positively tracked with reward-evaluation and motivation symptoms negatively tracked with goal-directed behavior. Altogether, these results provide evidence that 2 aspects of reward-based decision-making are instantiated by different modes of prefrontal top-down control and are modulated in different symptom dimensions of depression.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Morgan L Alexander
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Crystal Edler Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|
16
|
Biel AL, Sterner E, Röll L, Sauseng P. Modulating verbal working memory with fronto-parietal transcranial electric stimulation at theta frequency: Does it work? Eur J Neurosci 2021; 55:405-425. [PMID: 34902182 DOI: 10.1111/ejn.15563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Oscillatory theta activity in a fronto-parietal network has been associated with working memory (WM) processes and may be directly related to WM performance. In their seminal study, Polanía et al. (2012) (de-)coupled a fronto-parietal theta-network by applying transcranial alternating current stimulation (tACS), and showed that anti-phase tACS led to slower and in-phase tACS to faster response times in a verbal WM task compared to placebo stimulation. In the literature, this 'synchronization-desynchronization' effect has only been partly replicated, and electric field modelling suggests that it might not be the fronto-parietal network that is primarily stimulated during in-phase tACS with a shared return electrode. This provides one possible reason for inconsistency in the literature. In this study, we aimed to reproduce the findings reported by Polanía et al. (2012). We also aimed to investigate whether in-phase theta tACS with multiple close-by return electrodes for focal stimulation of the frontal and the parietal cortex will have at least as much of a facilitatory effect as the in-phase stimulation as indicated by Polania et al. (2012). In a single-trial distributional analysis, we explored whether mean, variation and right-skewness of the response time distribution are affected. Against our hypothesis, we found no 'synchronization-desynchronization' effect by fronto-parietal theta tACS on response times using the same delayed letter discrimination task and stimulation parameters in two experiments, both between-subjects and within-subjects. However, we could show that in a more demanding 3-back task, fronto-parietal in-phase and in-phase focal theta tACS substantially improved task performance compared to placebo stimulation.
Collapse
Affiliation(s)
- Anna Lena Biel
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| | - Elisabeth Sterner
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Röll
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| |
Collapse
|
17
|
Abubaker M, Al Qasem W, Kvašňák E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Front Psychol 2021; 12:756661. [PMID: 34744934 PMCID: PMC8566716 DOI: 10.3389/fpsyg.2021.756661] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
18
|
Csifcsák G, Bjørkøy J, Kuyateh S, Reithe H, Mittner M. Transcranial Direct Current Stimulation above the Medial Prefrontal Cortex Facilitates Decision-Making following Periods of Low Outcome Controllability. eNeuro 2021; 8:ENEURO.0041-21.2021. [PMID: 34433576 PMCID: PMC8425969 DOI: 10.1523/eneuro.0041-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that choice behavior in reinforcement learning tasks is shaped by the level of outcome controllability. In particular, Pavlovian bias (PB) seems to be enhanced under low levels of control, manifesting in approach tendencies toward rewards and response inhibition when facing potential losses. The medial prefrontal cortex (mPFC) has been implicated both in evaluating outcome controllability and in the recruitment of cognitive control (CC) to suppress maladaptive PB during reinforcement learning. The current study tested whether high-definition transcranial direct current stimulation (HD-tDCS) above the mPFC of healthy humans can influence PB, and counteract the previously documented, deleterious behavioral effects of low outcome controllability on decision-making. In a preregistered, between-group, double-blind study (N = 103 adults, both sexes), we tested the interaction between controllability and HD-tDCS on parameters of choice behavior in a Go/NoGo task. Relative to sham stimulation, HD-tDCS resulted in more robust performance improvement following reduced control, an effect that was more pronounced in appetitive trials. In addition, we found evidence for weaker PB when HD-tDCS was administered during low controllability over outcomes. Computational modeling revealed that parameter estimates of learning rate and choice randomness were modulated by controllability, HD-tDCS and their interaction. Overall, these results highlight the potential of our HD-tDCS protocol for interfering with choice arbitration under low levels of control, resulting in more adaptive behavior.
Collapse
Affiliation(s)
- Gábor Csifcsák
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Jorunn Bjørkøy
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Sarjo Kuyateh
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Haakon Reithe
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Matthias Mittner
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| |
Collapse
|
19
|
Riddle J, Frohlich F. Targeting neural oscillations with transcranial alternating current stimulation. Brain Res 2021; 1765:147491. [PMID: 33887251 PMCID: PMC8206031 DOI: 10.1016/j.brainres.2021.147491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Neural oscillations at the network level synchronize activity between regions and temporal scales. Transcranial alternating current stimulation (tACS), the delivery of low-amplitude electric current to the scalp, provides a tool for investigating the causal role of neural oscillations in cognition. The parameter space for tACS is vast and optimization is required in terms of temporal and spatial targeting. We review emerging techniques and suggest novel approaches that capitalize on the non-sinusoidal and transient nature of neural oscillations and leverage the flexibility provided by a customizable electrode montage and electrical waveform. The customizability and safety profile of tACS make it a promising tool for precision intervention in psychiatric illnesses.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
20
|
Orendáčová M, Kvašňák E. Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review. Front Hum Neurosci 2021; 15:628229. [PMID: 34305549 PMCID: PMC8297546 DOI: 10.3389/fnhum.2021.628229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) and neurofeedback (NFB) are two different types of non-invasive neuromodulation techniques, which can modulate brain activity and improve brain functioning. In this review, we compared the current state of knowledge related to the mechanisms of tACS and NFB and their effects on electroencephalogram (EEG) activity (online period/stimulation period) and on aftereffects (offline period/post/stimulation period), including the duration of their persistence and potential behavioral benefits. Since alpha bandwidth has been broadly studied in NFB and in tACS research, the studies of NFB and tACS in modulating alpha bandwidth were selected for comparing the online and offline effects of these two neuromodulation techniques. The factors responsible for variability in the responsiveness of the modulated EEG activity by tACS and NFB were analyzed and compared too. Based on the current literature related to tACS and NFB, it can be concluded that tACS and NFB differ a lot in the mechanisms responsible for their effects on an online EEG activity but they possibly share the common universal mechanisms responsible for the induction of aftereffects in the targeted stimulated EEG band, namely Hebbian and homeostatic plasticity. Many studies of both neuromodulation techniques report the aftereffects connected to the behavioral benefits. The duration of persistence of aftereffects for NFB and tACS is comparable. In relation to the factors influencing responsiveness to tACS and NFB, significantly more types of factors were analyzed in the NFB studies compared to the tACS studies. Several common factors for both tACS and NFB have been already investigated. Based on these outcomes, we propose several new research directions regarding tACS and NFB.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | |
Collapse
|
21
|
Riddle J, McFerren A, Frohlich F. Causal role of cross-frequency coupling in distinct components of cognitive control. Prog Neurobiol 2021; 202:102033. [PMID: 33741402 PMCID: PMC8184612 DOI: 10.1016/j.pneurobio.2021.102033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 01/13/2023]
Abstract
Cognitive control is the capacity to guide motor and perceptual systems towards abstract goals. High-frequency neural oscillations related to motor activity in the beta band (13-30 Hz) and to visual processing in the gamma band (>30 Hz) are known to be modulated by cognitive control signals. One proposed mechanism for cognitive control is via cross-frequency coupling whereby low frequency network oscillations in prefrontal cortex (delta from 2-3 Hz and theta from 4-8 Hz) guide the expression of motor-related activity in action planning and guide perception-related activity in memory access. However, there is no causal evidence for cross-frequency coupling in these dissociable components of cognitive control. To address this important gap in knowledge, we delivered cross-frequency transcranial alternating current stimulation (CF-tACS) during performance of a task that manipulated cognitive control demands along two dimensions: the abstraction of the rules of the task (nested levels of action selection) that increased delta-beta coupling and the number of rules (set-size held in memory) that increased theta-gamma coupling. As hypothesized, we found that CF-tACS increased the targeted phase-amplitude coupling and modulated task performance of the associated cognitive control component. These findings provide causal evidence that prefrontal cortex orchestrates different components of cognitive control via two different cross-frequency coupling modalities.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amber McFerren
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Sacks DD, Schwenn PE, McLoughlin LT, Lagopoulos J, Hermens DF. Phase-Amplitude Coupling, Mental Health and Cognition: Implications for Adolescence. Front Hum Neurosci 2021; 15:622313. [PMID: 33841115 PMCID: PMC8032979 DOI: 10.3389/fnhum.2021.622313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
Identifying biomarkers of developing mental disorder is crucial to improving early identification and treatment-a key strategy for reducing the burden of mental disorders. Cross-frequency coupling between two different frequencies of neural oscillations is one such promising measure, believed to reflect synchronization between local and global networks in the brain. Specifically, in adults phase-amplitude coupling (PAC) has been shown to be involved in a range of cognitive processes, including working and long-term memory, attention, language, and fluid intelligence. Evidence suggests that increased PAC mediates both temporary and lasting improvements in working memory elicited by transcranial direct-current stimulation and reductions in depressive symptoms after transcranial magnetic stimulation. Moreover, research has shown that abnormal patterns of PAC are associated with depression and schizophrenia in adults. PAC is believed to be closely related to cortico-cortico white matter (WM) microstructure, which is well established in the literature as a structural mechanism underlying mental health. Some cognitive findings have been replicated in adolescents and abnormal patterns of PAC have also been linked to ADHD in young people. However, currently most research has focused on cross-sectional adult samples. Whereas initial hypotheses suggested that PAC was a state-based measure due to an early focus on cognitive, task-based research, current evidence suggests that PAC has both state-based and stable components. Future longitudinal research focusing on PAC throughout adolescent development could further our understanding of the relationship between mental health and cognition and facilitate the development of new methods for the identification and treatment of youth mental health.
Collapse
Affiliation(s)
- Dashiell D Sacks
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul E Schwenn
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Larisa T McLoughlin
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|
23
|
Lipka R, Ahlers E, Reed TL, Karstens MI, Nguyen V, Bajbouj M, Cohen Kadosh R. Resolving heterogeneity in transcranial electrical stimulation efficacy for attention deficit hyperactivity disorder. Exp Neurol 2020; 337:113586. [PMID: 33382986 DOI: 10.1016/j.expneurol.2020.113586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
While the treatment of Attention Deficit Hyperactivity Disorder (ADHD) is dominated by pharmacological agents, transcranial electrical stimulation (tES) is gaining attention as an alternative method for treatment. Most current meta-analyses have suggested that tES can improve cognitive functions that are otherwise impaired in ADHD, such as inhibition and working memory, as well as alleviated clinical symptoms. Here we review some of the promising findings in the field of tES. At the same time, we highlight two factors, which hinder the effective application of tES in treating ADHD: 1) the heterogeneity of tES protocols used in different studies; 2) patient profiles influencing responses to tES. We highlight potential solutions for overcoming such limitations, including the use of active machine learning, and provide simulated data to demonstrate how these solutions could also improve the understanding, diagnosis, and treatment of ADHD.
Collapse
Affiliation(s)
- Renée Lipka
- Department of Psychiatry, Charité Universitätsmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Eike Ahlers
- Department of Psychiatry, Charité Universitätsmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Thomas L Reed
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford OX2 6GG, United Kingdom
| | - Malin I Karstens
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford OX2 6GG, United Kingdom
| | - Vu Nguyen
- Department of Materials, University of Oxford, Oxford OX2 6HT, United Kingdom
| | - Malek Bajbouj
- Department of Psychiatry, Charité Universitätsmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford OX2 6GG, United Kingdom.
| |
Collapse
|