1
|
Wei X, Zhao K, Jiao Y, Carlisle NB, Xie H, Fonzo GA, Zhang Y. Multi-modal cross-domain self-supervised pre-training for fMRI and EEG fusion. Neural Netw 2025; 184:107066. [PMID: 39733703 PMCID: PMC11802293 DOI: 10.1016/j.neunet.2024.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Neuroimaging techniques including functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) have shown promise in detecting functional abnormalities in various brain disorders. However, existing studies often focus on a single domain or modality, neglecting the valuable complementary information offered by multiple domains from both fMRI and EEG, which is crucial for a comprehensive representation of disorder pathology. This limitation poses a challenge in effectively leveraging the synergistic information derived from these modalities. To address this, we propose a Multi-modal Cross-domain Self-supervised Pre-training Model (MCSP), a novel approach that leverages self-supervised learning to synergize multi-modal information across spatial, temporal, and spectral domains. Our model employs cross-domain self-supervised loss that bridges domain differences by implementing domain-specific data augmentation and contrastive loss, enhancing feature discrimination. Furthermore, MCSP introduces cross-modal self-supervised loss to capitalize on the complementary information of fMRI and EEG, facilitating knowledge distillation within domains and maximizing cross-modal feature convergence. We constructed a large-scale pre-training dataset and pretrained MCSP model by leveraging proposed self-supervised paradigms to fully harness multimodal neuroimaging data. Through comprehensive experiments, we have demonstrated the superior performance and generalizability of our model on multiple classification tasks. Our study contributes a significant advancement in the fusion of fMRI and EEG, marking a novel integration of cross-domain features, which enriches the existing landscape of neuroimaging research, particularly within the context of mental disorder studies.
Collapse
Affiliation(s)
- Xinxu Wei
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | - Kanhao Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA.
| | - Yong Jiao
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA.
| | - Nancy B Carlisle
- Department of Psychology, Lehigh University, Bethlehem, PA 18015, USA.
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, Washington, DC 20010, USA.
| | - Gregory A Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yu Zhang
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA; Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
2
|
Fan S, Qian R, Duan N, Wang H, Yu Y, Ji Y, Xie X, Wu Y, Tian Y. Abnormal Brain State in Major Depressive Disorder: A Resting-State Magnetic Resonance Study. Brain Connect 2025. [PMID: 39899030 DOI: 10.1089/brain.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background: Respective changes in resting-state linear and nonlinear measures in major depressive disorder (MDD) have been reported. However, few studies have used integrated measures of linear and nonlinear brain dynamics to explore the pathological mechanisms underlying MDD. Method: Forty-two patients with MDD and 42 sex- and age-matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging to calculate multiscale entropy (MSE) and regional homogeneity (ReHo). The MSE-ReHo coupling of the whole gray matter and the MSE/ReHo ratio (the complexity of intensity homogeneity per unit time series) of each voxel were compared between the two groups. To evaluate the discriminative capacity of ratio features between patients with MDD and HC, we employed the support vector machine (SVM) learning method. Results: We observed that patients with MDD displayed increased MSE/ReHo ratio mainly in the orbitofrontal cortex, sensorimotor areas, and visual cortex. Moreover, significant correlations were observed between MSE/ReHo ratio and clinical indicators, including depression severity and cognitive function tests. The SVM model demonstrated high accuracy in differentiating patients with MDD from HC, highlighting the potential of the MSE/ReHo ratio as a diagnostic and prognostic tool. Conclusions: The aberrant MSE/ReHo ratio implicated the underlying mechanisms of depressive symptoms and cognitive impairment in patients with MDD. It may represent a critical state of the brain region, reflecting the degree of chaos and order in the brain region. Integrating linear and nonlinear combinations of brain signals holds promise for diagnosing psychiatric disorders.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Qian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nanxue Duan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongping Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Yu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohui Xie
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wu
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
3
|
Pawlak M, Kemp J, Bray S, Chenji S, Noel M, Birnie KA, MacMaster FP, Miller JV, Kopala-Sibley DC. Macrostructural Brain Morphology as Moderator of the Relationship Between Pandemic-Related Stress and Internalizing Symptomology During COVID-19 in High-Risk Adolescents. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1141-1177. [PMID: 39019399 DOI: 10.1016/j.bpsc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND According to person-by-environment models, individual differences in traits may moderate the association between stressors and the development of psychopathology; however, findings in the literature have been inconsistent and little literature has examined adolescent brain structure as a moderator of the effects of stress on adolescent internalizing symptoms. The COVID-19 pandemic presented a unique opportunity to examine the associations between stress, brain structure, and psychopathology. Given links of cortical morphology with adolescent depression and anxiety, the current study investigated whether cortical morphology moderated the relationship between stress from the COVID-19 pandemic and the development of internalizing symptoms in familial high-risk adolescents. METHODS Prior to the COVID-19 pandemic, 72 adolescents (27 male) completed a measure of depressive and anxiety symptoms and underwent magnetic resonance imaging. T1-weighted images were acquired to assess cortical thickness and surface area. Approximately 6 to 8 months after COVID-19 was declared a global pandemic, adolescents reported their depressive and anxiety symptoms and pandemic-related stress. RESULTS Adjusting for pre-pandemic depressive and anxiety symptoms and stress, increased pandemic-related stress was associated with increased depressive but not anxiety symptoms. This relationship was moderated by cortical thickness and surface area in the anterior cingulate and cortical thickness in the medial orbitofrontal cortex such that increased stress was only associated with increased depressive and anxiety symptoms among adolescents with lower cortical surface area and higher cortical thickness in these regions. CONCLUSIONS Results further our understanding of neural vulnerabilities to the associations between stress and internalizing symptoms in general and during the COVID-19 pandemic in particular.
Collapse
Affiliation(s)
- McKinley Pawlak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.
| | - Jennifer Kemp
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Sneha Chenji
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn A Birnie
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada; Department of Anesthesiology, Perioperative, and Pain Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Frank P MacMaster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; IWK Health, Halifax, Nova Scotia, Canada
| | - Jillian Vinall Miller
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Anesthesiology, Perioperative, and Pain Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel C Kopala-Sibley
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Zheng T, Zeng N, Li G, Lin S, Yu B, Yuan J, Duan S, Wang G, Liu Z. Causal relationship between primary headache mediated by circulating cytokines and cerebral cortex structure: a mediation Mendelian randomization study. Cereb Cortex 2024; 34:bhae349. [PMID: 39264754 DOI: 10.1093/cercor/bhae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/29/2024] [Indexed: 09/14/2024] Open
Abstract
Inflammation may be related to structural changes in the cerebral cortex. We aimed to explore whether cytokines mediate the link between these changes and primary headache. The summary statistics of genome-wide association study (GWAS) related to migraine and its subtypes, cluster headache were derived from the FinnGen Release 10 database, and tension-type headache data was from the GWAS Catalog. Ninety-one cytokines were obtained from genome-wide pQTL mapping data. GWAS data on cortical surface area (SA) and thickness (TH) came from the ENIGMA Consortium. The methods of Mendelian randomization (MR) analysis included the inverse-variance-weighted (IVW), MR-Egger, and weighted median. Migraine reduces the SA of paracentral[β = -1.3645, OR = 0.2555, 95%CI (0.0660, 0.9898)] by fibroblast growth factor-23(FGF-23), with an intermediate ratio (IR) of 38.13%. Migraine may reduce the TH of superior parietal[β = -0.0029, OR = 0.9971, 95%CI (0.9943, 0.9999)] by interleukin (IL)-15RA, with an absolute IR of 11.11%. Migraine without aura may reduce the TH of rostral anterior cingulate[β = -0.0005, OR = 0.9995, 95%CI (0.9991, 0.9999)] by IL-18R1, with an IR of 11.63%. FGF23 and IL-15RA are associated with reduced SA or TH in migraine, while IL-18R1 is associated with increased TH in migraine without aura.
Collapse
Affiliation(s)
- Tao Zheng
- Beijing University of Chinese Medicine, No. 11 Beisanhuan East Road, Heping Street, Chaoyang District, Beijing, 100029, China
- Department of Brain Disease III, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Fangxingyuan District 1, Fangzhuang, Fengtai District, Beijing, 100078, China
| | - Na Zeng
- Shaodong People's Hospital, 95 Renmin Road, Shaodong City, Hunan Province, 422800, China
| | - Guanglu Li
- Beijing University of Chinese Medicine, No. 11 Beisanhuan East Road, Heping Street, Chaoyang District, Beijing, 100029, China
| | - Shicheng Lin
- Beijing University of Chinese Medicine, No. 11 Beisanhuan East Road, Heping Street, Chaoyang District, Beijing, 100029, China
| | - Binyang Yu
- Beijing University of Chinese Medicine, No. 11 Beisanhuan East Road, Heping Street, Chaoyang District, Beijing, 100029, China
| | - Jian Yuan
- Beijing University of Chinese Medicine, No. 11 Beisanhuan East Road, Heping Street, Chaoyang District, Beijing, 100029, China
| | - Shaojie Duan
- Department of Geriatrics, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Avenue, Jiaojiang Economic Development Zone, Taizhou, 317700, China
| | - Gesheng Wang
- Department of Brain Disease III, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Fangxingyuan District 1, Fangzhuang, Fengtai District, Beijing, 100078, China
| | - Zunjing Liu
- Department of Neurology, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| |
Collapse
|
5
|
Zhang Q, Zhang W, Zhang P, Zhao Z, Yang L, Zheng F, Zhang L, Huang G, Zhang J, Zheng W, Ma R, Yao Z, Hu B. Altered dynamic functional connectivity in rectal cancer patients with and without chemotherapy: a resting-state fMRI study. Int J Neurosci 2024; 134:584-594. [PMID: 36178032 DOI: 10.1080/00207454.2022.2130295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 10/17/2022]
Abstract
Purpose: Understanding the mechanism of brain functional alterations in rectal cancer (RC) patients is of great significance to improve the prognosis and quality of life of patients. Additionally, the influence of chemotherapy on brain function in RC patients is still unclear. In this study, we aimed to investigate the alterations of brain functional network dynamics in RC patients and explore the effects of chemotherapy on temporal dynamics of dynamic functional connectivity (DFC). Methods: The group independent component analysis (GICA) and sliding window method were applied to investigate abnormalities of DFC based on resting-state functional magnetic resonance imaging (rs-fMRI) of 18 RC patients without chemotherapy (RC_NC), 21 RC patients with chemotherapy (RC_C) and 33 healthy controls (HC). Then, the Spearman correlation between aberrant properties and clinical measures was calculated. Results: Two discrete states were identified. Compared to HC, RC_NC exhibited increased mean dwell time (MDT) and fractional windows (FW) in state 2 and decreased transition numbers between the two states. Notably, three temporal properties in RC_C showed an intermediate trend in comparison with RC_NC and HC. Furthermore, RC_C also demonstrated abnormal intra- and inter-network connections, involving the visual (VIS), default mode (DM), and cognitive control (CC) networks, and most connections related to VIS were correlated with the severity of anxiety and depression. Conclusions: Our study suggested that abnormal DFC patterns could be manifested in RC patients and chemotherapy would further correct abnormalities of network dynamics, which may provide new insights into the brain functional alterations in patients with RC from the time-varying connectivity perspective.
Collapse
Affiliation(s)
- Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, PRChina
| | - Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou, PRChina
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, PRChina
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, PRChina
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Fang Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, PRChina
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou, PRChina
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, PRChina
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, PRChina
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Rong Ma
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, PR China
- Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, PR China
| |
Collapse
|
6
|
Xu F, Ma J, Wang W, Li H. A longitudinal study of the brain structure network changes in HIV patients with ANI: combined VBM with SCN. Front Neurol 2024; 15:1388616. [PMID: 38694776 PMCID: PMC11061470 DOI: 10.3389/fneur.2024.1388616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Background Despite the widespread adoption of combination antiretroviral therapy (cART) in managing HIV, the virus's impact on the brain structure of patients remains significant. This study aims to longitudinally explore the persistent effects of HIV on brain structure, focusing on changes in gray matter volume (GMV) and structural covariance network (SCN) among patients at the Asymptomatic Neurocognitive Impairment (ANI) stage. Methods This research involved 45 HIV patients diagnosed with ANI and 45 demographically matched healthy controls (HCs). The participants were observed over a 1.5-year period. Differences in GMV between groups were analyzed using voxel-based morphometry (VBM), while the graph theory model facilitated the establishment of topological metrics for assessing network indices. These differences were evaluated using two-sample t-tests and paired-sample t-tests, applying the network-based statistics method. Additionally, the study examined correlations between GMV and cognitive performance, as well as clinical variables. Results Compared with HCs, HIV patients demonstrated reduced GMV in the right middle temporal gyrus and left middle frontal gyrus (FWE, p < 0.05), along with decreased betweenness centrality (BC) in the left anterior cingulate and paracingulate cortex. Conversely, an increase in the clustering coefficient (Cp) was observed (FDR, p < 0.05). During the follow-up period, a decline in GMV in the right fusiform gyrus (FWE, p < 0.05) and a reduction in node efficiency (Ne) in the triangular part of the inferior frontal gyrus were noted compared with baseline measurements (FDR, p < 0.05). The SCN of HIV patients exhibited small-world properties across most sparsity levels (Sigma >1), and area under the curve (AUC) analysis revealed no significant statistical differences between groups. Conclusion The findings suggest that despite the administration of combination antiretroviral therapy (cART), HIV continues to exert slow and sustained damage on brain structures. However, when compared to HCs, the small-world properties of the patients' SCNs did not significantly differ, and the clustering coefficient, indicative of the overall information-processing capacity of the brain network, was slightly elevated in HIV patients. This elevation may relate to compensatory effects of brain area functions, the impact of cART, functional reorganization, or inflammatory responses.
Collapse
Affiliation(s)
| | | | | | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Lyu W, Wu Y, Huynh KM, Ahmad S, Yap PT. A multimodal submillimeter MRI atlas of the human cerebellum. Sci Rep 2024; 14:5622. [PMID: 38453991 PMCID: PMC10920891 DOI: 10.1038/s41598-024-55412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
The human cerebellum is engaged in a broad array of tasks related to motor coordination, cognition, language, attention, memory, and emotional regulation. A detailed cerebellar atlas can facilitate the investigation of the structural and functional organization of the cerebellum. However, existing cerebellar atlases are typically limited to a single imaging modality with insufficient characterization of tissue properties. Here, we introduce a multifaceted cerebellar atlas based on high-resolution multimodal MRI, facilitating the understanding of the neurodevelopment and neurodegeneration of the cerebellum based on cortical morphology, tissue microstructure, and intra-cerebellar and cerebello-cerebral connectivity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Wang F, Hou X, Guo X, Zang C, Wu G, Zhao J. Regional decreases of cortical thickness in major depressive disorder and their correlation with illness duration: a case-control study. Front Psychiatry 2024; 15:1297204. [PMID: 38322142 PMCID: PMC10844537 DOI: 10.3389/fpsyt.2024.1297204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Alterations in brain structure and function in major depressive disorder (MDD) have been identified in a number of studies, but findings regarding cortical thickness were various and inconsistent. Our current study aims to explore the differences in cortical thickness between individuals with MDD and healthy controls (HC) in a Chinese population. Methods We investigated T1-weighted brain magnetic resonance imaging data from 61 participants (31 MDD and 30 HC). The cortical thickness between the two groups and analyzed correlations between cortical thickness and demographic variables in the MDD group for regions with significant between-group differences were conducted. Results Compared with the HC group, patients with MDD had significantly decreased cortical thickness, in left pars triangularis, left pars orbitalis, left rostral middle frontal gyrus, left supramarginal gyrus, right parahippocampal gyrus, right lingual gyrus, right fusiform and right inferior parietal gyrus. The cortical thickness of left rostral middle frontal gyrus was negatively correlated (r = -0.47, p = 0.028) with the illness duration in patients with MDD. Conclusion Our study distinguished that cortical thickness decreases in numerous brain regions both in the left and right hemisphere in individuals with MDD, and the negative correlation between the cortical thickness of left rostral middle frontal gyrus illness duration. Our current findings are valuable in providing neural markers to identify MDD and understanding the potential pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Fukun Wang
- General Committee Office, Zhumadian Second People’s Hospital, Zhengzhou, Henan, China
| | - Xiaofang Hou
- Laboratory of Magnetic Resonance, Zhumadian Second People’s Hospital, Zhengzhou, Henan, China
| | - Xiao Guo
- General Committee Office, Zhumadian Second People’s Hospital, Zhengzhou, Henan, China
| | - Chen Zang
- Laboratory of Magnetic Resonance, Zhumadian Second People’s Hospital, Zhengzhou, Henan, China
| | - Gang Wu
- Laboratory of Magnetic Resonance, Zhumadian Second People’s Hospital, Zhengzhou, Henan, China
| | - Jingjing Zhao
- Laboratory of Magnetic Resonance, Zhumadian Second People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Ahn S, Lee SH, Lee KS. Impact of Intolerance of Uncertainty on Brain Structural Changes in Panic Disorder. Psychiatry Investig 2023; 20:1069-1076. [PMID: 37997335 PMCID: PMC10678144 DOI: 10.30773/pi.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE This study investigated the impact of intolerance of uncertainty (IU) on structural changes in the brain and symptom severity in patients with panic disorder. METHODS This study included 90 participants diagnosed with panic disorder. The IU Scale, Panic Disorder Severity Scale (PDSS), Beck Depression Inventory-II (BDI-II), Penn State Worry Questionnaire (PSWQ), Self-Forgiveness Scale (SFS), and Short Form 36 Health Survey (SF) were used. A voxel-wise correlation analysis was conducted to investigate the structural differences in the gray matter. RESULTS As IU increased, the cortical thickness of the right lingual gyrus decreased significantly, while the gray matter volume of the right pars triangularis increased. The cortical thickness of the right lingual gyrus showed a significant negative correlation with the BDI-II score and a positive correlation with the SFS. Additionally, the gray matter volume of the right pars triangularis was positively correlated with the PDSS, PSWQ, and BDI-II scores and negatively correlated with the mental health domain of the SF. CONCLUSION According to our findings, elevated IU in participants with panic disorder was associated with cortical thinning in the lingual gyrus and increased gray matter volume in the pars triangularis. These structural alterations may also have an impact on perceived quality of life, as well as high levels of depression and anxiety.
Collapse
Affiliation(s)
- Sungjun Ahn
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
10
|
Abstract
Introduction: Regional hypermetabolism in Alzheimer's disease (AD), especially in the cerebellum, has been consistently observed but often neglected as an artefact produced by the commonly used proportional scaling procedure in the statistical parametric mapping. We hypothesize that the hypermetabolic regions are also important in disease pathology in AD. Methods: Using fluorodeoxyglucose (FDG)-positron emission tomography (PET) images from 88 AD subjects and 88 age-sex matched normal controls (NL) from the publicly available Alzheimer's Disease Neuroimaging Initiative database, we developed a general linear model-based classifier that differentiated AD patients from normal individuals (sensitivity = 87.50%, specificity = 82.95%). We constructed region-region group-wise correlation matrices and evaluated differences in network organization by using the graph theory analysis between AD and control subjects. Results: We confirmed that hypermetabolism found in AD is not an artefact by replicating it using white matter as the reference region. The role of the hypermetabolic regions has been further investigated by using the graph theory. The differences in betweenness centrality (BC) between AD and NL network were correlated with region weights of FDG PET-based AD classifier. In particular, the hypermetabolism in cerebellum was accompanied with higher BC. The brain regions with higher BC in AD network showed a progressive increase in FDG uptake over 2 years in prodromal AD patients (n = 39). Discussion: This study suggests that hypermetabolism found in AD may play an important role in forming the AD-related metabolic network. In particular, hypermetabolic cerebellar regions represent a good candidate for further investigation in altered network organization in AD.
Collapse
Affiliation(s)
- Vinay Gupta
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Samuel Booth
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Ji Hyun Ko
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Chen X, Chen H, Liu J, Tang H, Zhou J, Liu P, Tian Y, Wang X, Lu F, Zhou J. Functional connectivity alterations in reward-related circuits associated with non-suicidal self-injury behaviors in drug-naïve adolescents with depression. J Psychiatr Res 2023; 163:270-277. [PMID: 37244065 DOI: 10.1016/j.jpsychires.2023.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Non-suicidal self-injury (NSSI) behaviors are a major public health concern among adolescents with depression. Such behaviors may be associated with the reward system. However, the underlying mechanism in patients with depression and NSSI still remains unclear. A total of 56 drug-naïve adolescents with depression, including 23 patients with NSSI (the NSSI group) and 33 patients without NSSI (the nNSSI group), and 25 healthy controls (HCs) were recruited in this study. Seed-based functional connectivity (FC) was used to explore the NSSI-related FC alterations in the reward circuit. Correlation analysis was conducted between the altered FCs and clinical data. Compared with the nNSSI group, the NSSI group showed greater FC between left nucleus accumbens (NAcc) and right lingual gyrus and between right putamen accumbens and right angular gyrus (ANG). The NSSI group also had declined FC between right NAcc and left inferior cerebellum, between left cingulate gyrus (CG) and right ANG, between left CG and left middle temporal gyrus (MTG), and between right CG and bilateral MTG (voxel-wise p < 0.01, cluster-wise p < 0.05, Gaussian random field correction). The FC between right NAcc and left inferior cerebellum was found positively correlated with the score of addictive features of NSSI (r = 0.427, p = 0.042). Our findings indicated that the regions in the reward circuit with NSSI-related FC alterations included bilateral NAcc, right putamen and bilateral CG, which may provide new evidence on the neural mechanisms of NSSI behaviors in adolescents with depression.
Collapse
Affiliation(s)
- Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peiqu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Vargas TG, Mittal VA. Brain morphometry points to emerging patterns of psychosis, depression, and anxiety vulnerability over a 2-year period in childhood. Psychol Med 2023; 53:3322-3334. [PMID: 37323064 PMCID: PMC10276191 DOI: 10.1017/s0033291721005304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gray matter morphometry studies have lent seminal insights into the etiology of mental illness. Existing research has primarily focused on adults and then, typically on a single disorder. Examining brain characteristics in late childhood, when the brain is preparing to undergo significant adolescent reorganization and various forms of serious psychopathology are just first emerging, may allow for a unique and highly important perspective of overlapping and unique pathogenesis. METHODS A total of 8645 youth were recruited as part of the Adolescent Brain and Cognitive Development study. Magnetic resonance imaging scans were collected, and psychotic-like experiences (PLEs), depressive, and anxiety symptoms were assessed three times over a 2-year period. Cortical thickness, surface area, and subcortical volume were used to predict baseline symptomatology and symptom progression over time. RESULTS Some features could possibly signal common vulnerability, predicting progression across forms of psychopathology (e.g. superior frontal and middle temporal regions). However, there was a specific predictive value for emerging PLEs (lateral occipital and precentral thickness), anxiety (parietal thickness/area and cingulate), and depression (e.g. parahippocampal and inferior temporal). CONCLUSION Findings indicate common and distinct patterns of vulnerability for varying forms of psychopathology are present during late childhood, before the adolescent reorganization, and have direct relevance for informing novel conceptual models along with early prevention and intervention efforts.
Collapse
Affiliation(s)
- Teresa G Vargas
- Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60201, USA
| | - Vijay A Mittal
- Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60201, USA
| |
Collapse
|
13
|
Wang Y, Li C, Qi X. The effect of acupuncture at the Yuji point on resting-state brain function in anxiety. Medicine (Baltimore) 2023; 102:e33094. [PMID: 36827004 PMCID: PMC11309646 DOI: 10.1097/md.0000000000033094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The COVID-19 epidemic has placed a lot of mental burdens on school students, causing anxiety. Clinically, it has been found that the Yuji point (LU10) can relieve anxiety by regulating Qi. METHODS Thirty-six volunteers with anxiety disorders were divided into 3 groups, all of whom underwent 2 MRI examinations. The Yuji and nonacupoint groups received acupuncture between functional magnetic resonance imagings. We used the amplitude of low-frequency fluctuation to analyze regional brain activity, and seed-based functional connectivity (FC) to analyze changes in brain networks. RESULTS After acupuncture, the LU10 was able to activate the frontal lobe, medial frontal gyrus, anterior cingulate gyrus, temporal lobe, hippocampus, etc in the left brain compared to the control group. The frontal lobe, medial frontal gyrus, cingulate gyrus, and anterior cingulate gyrus in the left brain were activated compared to those in the nonacupoint group. Compared with the control group, LU10 showed increased FC in the right parietal lobe, right precuneus, left temporal lobe, left superior temporal gyrus, and with cingulate gyrus. FC was enhanced among the hippocampus with the left temporal lobe and the superior temporal gyrus and reduced in the right lingual gyrus and right occipital lobe. CONCLUSION Acupuncture at LU10s can regulate anxiety by upregulating or downregulating the relevant brain regions and networks. LU10s can be used to treat not only lung disorders but also related mental disorders.
Collapse
Affiliation(s)
- Yuangeng Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunlin Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianghua Qi
- Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Lin HM, Chang YT, Chen MH, Liu ST, Chen BS, Li L, Lee CY, Sue YR, Sung TM, Sun CK, Yeh PY. Structural and Functional Neural Correlates in Individuals with Excessive Smartphone Use: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16277. [PMID: 36498362 PMCID: PMC9739413 DOI: 10.3390/ijerph192316277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Background: Despite known association of internet addiction with a reduced brain volume and abnormal connectivity, the impact of excessive smartphone use remains unclear. Methods: PubMed, Embase, ClinicalTrial.gov, and Web of Science databases were systematically searched from inception to July 2022 using appropriate keywords for observational studies comparing differences in brain volumes and activations between excessive smartphone users and individuals with regular use by magnetic resonance imaging. Results: Of the 11 eligible studies retrieved from 6993 articles initially screened, seven and six evaluated brain volumes and activations, respectively. The former enrolled 421 participants (165 excessive smartphone users vs. 256 controls), while the latter recruited 276 subjects with 139 excessive smartphone users. The results demonstrated a smaller brain volume in excessive smartphone users compared to the controls (g = −0.55, p < 0.001), especially in subcortical regions (p < 0.001). Besides, the impact was more pronounced in adolescents than in adults (p < 0.001). Regression analysis revealed a significant positive association between impulsivity and volume reduction. Regarding altered activations, the convergences of foci in the declive of the posterior lobe of cerebellum, the lingual gyrus, and the middle frontal gyrus were noted. Conclusions: Our findings demonstrated a potential association of excessive smartphone use with a reduced brain volume and altered activations.
Collapse
Affiliation(s)
- Hsiu-Man Lin
- Division of Child and Adolescent Psychiatry & Division of Developmental and Behavioral Pediatrics, China Medical University Children’s Hospital, Taichung 404327, Taiwan
| | - Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 406040, Taiwan
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 404327, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 83300, Taiwan
| | - Shu-Tsen Liu
- Division of Child and Adolescent Psychiatry & Division of Developmental and Behavioral Pediatrics, China Medical University Children’s Hospital, Taichung 404327, Taiwan
| | - Bo-Shen Chen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Lin Li
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Chiao-Yu Lee
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Yu-Ru Sue
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Tsai-Mei Sung
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824005, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung 82445, Taiwan
| | - Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Clinical Psychology Center, Asia University Hospital, Taichung 41354, Taiwan
| |
Collapse
|
15
|
Makowski C, Wang H, Chen CH. Clinical opportunity awaits at the intersection of genomics and brain imaging. J Psychiatry Neurosci 2022; 47:E293-E298. [PMID: 35948342 PMCID: PMC9377545 DOI: 10.1503/jpn.220075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
| | | | - Chi-Hua Chen
- From the Center for Multimodal Imaging and Genetics, Department of Radiology, University of California San Diego, San Diego, Cali., USA
| |
Collapse
|
16
|
Cecilia A, Patricio P, Donna C, Rakibul H, Sussanne R, Betsy L, Bharat B. Cognitive control inhibition networks in adulthood are impaired by early iron deficiency in infancy. Neuroimage Clin 2022; 35:103089. [PMID: 35753235 PMCID: PMC9249946 DOI: 10.1016/j.nicl.2022.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022]
Abstract
Iron deficiency, a common form of micronutrient deficiency, primarily affects children and women. The principal cause of iron deficiency is undernutrition in low-income countries and malnutrition in middle to upper income regions. Iron is a key element for myelin production, neuronal metabolism, and dopamine functions. Iron deficiency in early life can alter brain development and exert long-lasting effects. Control inhibition is an executive function that involves several brain regions, including the prefrontal cortex and caudate and sub-thalamic nuclei. Dopamine is the prevalent neurotransmitter underlying cognitive inhibition. We followed cohort study participants who had iron deficiency anemia in infancy as well non-anemic controls. At 22 years of age, the participants were subjected to functional magnetic resonance imaging (fMRI) to evaluate the correlation between functional connectivity and performance on an inhibitory cognitive task (Go/No-Go). We hypothesized that former iron deficient anemic (FIDA) participants demonstrate less strength in functional connectivity compared with controls (C). There were not significant group differences in the behavioral results in terms of accuracy and response time. A continuous covariate interaction analysis of functional connectivity and the Go/No-Go scores demonstrated significant differences between the FIDA and C groups. The FIDA participants demonstrated less strength in connectivity in brain regions related to control inhibition, including the medial temporal lobe, impairment in the integration of the default mode network (indicating decreased attention and alertness), and an increase in connectivity in posterior brain areas, all of which suggest slower circuitry maturation. The results support the hypothesis that FIDA young adults show differences in the connectivity of networks related to executive functions. These differences could increase their vulnerability to develop cognitive dysfunctions or mental disorders in adulthood.
Collapse
Affiliation(s)
- Algarín Cecilia
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology, University of Chile, Chile,Corresponding author at: El Líbano 5524, Macul 7830490, Región Metropolitana, Santiago, Chile.
| | - Peirano Patricio
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology, University of Chile, Chile
| | - Chen Donna
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Hafiz Rakibul
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Reyes Sussanne
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology, University of Chile, Chile
| | - Lozoff Betsy
- Department of Pediatrics and Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Biswal Bharat
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| |
Collapse
|
17
|
Dubol M, Stiernman L, Wikström J, Lanzenberger R, Neill Epperson C, Sundström-Poromaa I, Bixo M, Comasco E. Differential grey matter structure in women with premenstrual dysphoric disorder: evidence from brain morphometry and data-driven classification. Transl Psychiatry 2022; 12:250. [PMID: 35705554 PMCID: PMC9200862 DOI: 10.1038/s41398-022-02017-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a female-specific condition classified in the Diagnostic and Statical Manual-5th edition under depressive disorders. Alterations in grey matter volume, cortical thickness and folding metrics have been associated with a number of mood disorders, though little is known regarding brain morphological alterations in PMDD. Here, women with PMDD and healthy controls underwent magnetic resonance imaging (MRI) during the luteal phase of the menstrual cycle. Differences in grey matter structure between the groups were investigated by use of voxel- and surface-based morphometry. Machine learning and multivariate pattern analysis were performed to test whether MRI data could distinguish women with PMDD from healthy controls. Compared to controls, women with PMDD had smaller grey matter volume in ventral posterior cortices and the cerebellum (Cohen's d = 0.45-0.76). Region-of-interest analyses further indicated smaller volume in the right amygdala and putamen of women with PMDD (Cohen's d = 0.34-0.55). Likewise, thinner cortex was observed in women with PMDD compared to controls, particularly in the left hemisphere (Cohen's d = 0.20-0.74). Classification analyses showed that women with PMDD can be distinguished from controls based on grey matter morphology, with an accuracy up to 74%. In line with the hypothesis of an impaired top-down inhibitory circuit involving limbic structures in PMDD, the present findings point to PMDD-specific grey matter anatomy in regions of corticolimbic networks. Furthermore, the results include widespread cortical and cerebellar regions, suggesting the involvement of distinct networks in PMDD pathophysiology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden
| | - Louise Stiernman
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, 751 85, Sweden
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, 1090, Austria
| | - C Neill Epperson
- Department of Psychiatry, Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Marie Bixo
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden.
| |
Collapse
|
18
|
Park SE, Kim YH, Yang JC, Jeong GW. Comparative Functional Connectivity of Core Brain Regions between Implicit and Explicit Memory Tasks Underlying Negative Emotion in General Anxiety Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:279-291. [PMID: 35466099 PMCID: PMC9048018 DOI: 10.9758/cpn.2022.20.2.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/24/2022]
Abstract
Objective To investigate not only differential patterns of functional connectivity of core brain regions between implicit and explicit verbal memory tasks underlying negatively evoked emotional condition, but also correlations of functional connectivity (FC) strength with clinical symptom severity in patients with generalized anxiety disorder (GAD). Methods Thirteen patients with GAD and 13 healthy controls underwent functional magnetic resonance imaging for memory tasks with negative emotion words. Results Clinical symptom and its severities of GAD were potentially associated with abnormalities of task-based FC with core brain regions and distinct FC patterns between implicit vs. explicit memory processing in GAD were potentially well discriminated. Outstanding FC in implicit memory task includes positive connections of precentral gyus (PrG) to inferior frontal gyrus and inferior parietal gyrus (IPG), respectively, in encoding period; a positive connection of amygdala (Amg) to globus pallidus as well as a negative connection of Amg to cerebellum in retrieval period. Meanwhile, distinct FC in explicit memory included a positive connection of PrG to inferior temporal gyrus (ITG) in encoding period; a positive connection of the anterior cingulate gyrus to superior frontal gyrus in retrieval period. Especially, there were positive correlation between GAD-7 scores and FC of PrG-IPG (r2 = 0.324, p = 0.042) in implicit memory encoding, and FC of PrG-ITG (r2 = 0.378, p = 0.025) in explicit memory encoding. Conclusion This study clarified differential patterns of brain activation and relevant FC between implicit and explicit verbal memory tasks underlying negative emotional feelings in GAD. These findings will be helpful for an understanding of distinct brain functional mechanisms associated with clinical symptom severities in GAD.
Collapse
Affiliation(s)
- Shin-Eui Park
- Advanced Institute of Aging Science, Chonnam National University, Gwangju, Korea
| | - Yun-Hyeon Kim
- Department of Radiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Jeonuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Gwang-Woo Jeong
- Department of Radiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
19
|
Liang HB, Dong L, Cui Y, Wu J, Tang W, Du X, Liu JR. Significant Structural Alterations and Functional Connectivity Alterations of Cerebellar Gray Matter in Patients With Somatic Symptom Disorder. Front Neurosci 2022; 16:816435. [PMID: 35350558 PMCID: PMC8957795 DOI: 10.3389/fnins.2022.816435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Recent studies have revealed a strong association between the cerebellum and psychiatric disorders. However, the structural changes in the cerebellar regions and functional connectivity (FC) patterns in patients with somatic symptom disorder (SSD) have not been elucidated. Methods Thirty-seven patients with SSD (29 drug-naive and 8 medicated patients) and 37 sex- and age-matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging scans. The spatially unbiased infratentorial (SUIT) cerebellar atlas-based voxel-based morphometry was used to investigate the changes in cerebellar regional gray matter (GM). Seed-based FC was further computed to explore the pattern of abnormal FC across the whole brain. Correlations were calculated to investigate the relationship between cerebellar structural (and FC) changes and clinical characteristics. Results After controlling for age, sex, total intracranial volume, medication, and mean FD covariates, all patients with SSD had increased mean GM volume (GMV) in the posterior lobules of the cerebellum bilaterally when compared with HCs, specifically, in the bilateral cerebellar crura I and II. Patients with SSD showed significantly stronger FC between the right crura I and II and bilateral precuneus inferior parietal region, and postcentral gyrus, extending to the superior parietal lobe, cingulate gyrus, and the white matter subgyral. In addition to the two clusters, right lingual gyrus was also a surviving cluster with significantly higher FC. Partial correlation analysis revealed that the degree of regional GMV increases in the two significant clusters and the Hamilton Depression Scale (HAMD) score was negatively correlated. Moreover, the FC of right crura I and II with the left parietal lobe and right lingual gyrus were also negatively associated with the HAMD score. Conclusions SSD exhibited significant microstructural changes and changes in FC pattern in the posterior cerebellar lobe. These results shed new light on the psychological and neural substrates of SSD and may serve as a potential treatment target for SSD based on the cerebellar area.
Collapse
Affiliation(s)
- Huai-Bin Liang
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liao Dong
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Yangyang Cui
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jing Wu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Xiaoxia Du,
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jian-Ren Liu,
| |
Collapse
|
20
|
Bernanke J, Luna A, Chang L, Bruno E, Dworkin J, Posner J. Structural brain measures among children with and without ADHD in the Adolescent Brain and Cognitive Development Study cohort: a cross-sectional US population-based study. Lancet Psychiatry 2022; 9:222-231. [PMID: 35143759 DOI: 10.1016/s2215-0366(21)00505-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Structural neuroimaging research has identified a variety of abnormalities in cortical and subcortical structures in children with ADHD. However, studies to date have not employed large, non-referred samples, complete with data on potential confounding variables. Here, we tested for differences in structural MRI measures among children with and without ADHD using data from the Adolescent Brain and Cognitive Development (ABCD) Study, the largest paediatric brain imaging study in the USA. METHODS In this cross-sectional study, we used baseline demographic, clinical, and neuroimaging data from the ABCD Study, which recruited children aged 9-10 years between Sept 1, 2016, and Aug 31, 2018, representative of the sociodemographic features of the US population. ADHD was diagnosed by parent report of symptoms. Neuroimaging data underwent centralised quality control and processing by the ABCD team. Linear mixed effects models were used to estimate Cohen's d values associated with ADHD for 79 brain measures of cortical thickness, cortical area, and subcortical volume. We used a novel simulation strategy to assess the ability to detect significant effects despite potential diagnostic misclassification. FINDINGS Our sample included 10 736 participants (5592 boys, 5139 girls; 5692 White, 2165 Hispanic, 1543 Black, 221 Asian, and 1100 of other race or ethnicity), of whom, 949 met the criteria for ADHD and 9787 did not. In the full model, which included potential confounding variables selected a priori, we found only 11 significant differences across the 79 brain measures after false discovery rate correction, all indicating reductions in brain measures among participants with ADHD. Cohen's d values were small, ranging from -0·11 to -0·06, and were not meaningfully changed by using a more restrictive comparison group or alternative diagnostic methods. Simulations indicated adequate statistical power to detect differences even if there was substantial diagnostic misclassification. INTERPRETATION In a sample representative of the general population, children aged 9-10 years with ADHD differed only modestly on structural brain measures from their unaffected peers. Future studies might need to incorporate other MRI modalities, novel statistical approaches, or alternative diagnostic classifications, particularly for research aimed at developing ADHD diagnostic biomarkers. FUNDING Edwin S Webster Foundation and Duke University, NC, USA.
Collapse
Affiliation(s)
- Joel Bernanke
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alex Luna
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Le Chang
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Elizabeth Bruno
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jordan Dworkin
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jonathan Posner
- Department of Psychiatry and Behavioral Health, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Makowski C, van der Meer D, Dong W, Wang H, Wu Y, Zou J, Liu C, Rosenthal SB, Hagler DJ, Fan CC, Kremen WS, Andreassen OA, Jernigan TL, Dale AM, Zhang K, Visscher PM, Yang J, Chen CH. Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science 2022; 375:522-528. [PMID: 35113692 DOI: 10.1126/science.abe8457] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To determine the impact of genetic variants on the brain, we used genetically informed brain atlases in genome-wide association studies of regional cortical surface area and thickness in 39,898 adults and 9136 children. We uncovered 440 genome-wide significant loci in the discovery cohort and 800 from a post hoc combined meta-analysis. Loci in adulthood were largely captured in childhood, showing signatures of negative selection, and were linked to early neurodevelopment and pathways associated with neuropsychiatric risk. Opposing gradations of decreased surface area and increased thickness were associated with common inversion polymorphisms. Inferior frontal regions, encompassing Broca's area, which is important for speech, were enriched for human-specific genomic elements. Thus, a mixed genetic landscape of conserved and human-specific features is concordant with brain hierarchy and morphogenetic gradients.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Weixiu Dong
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Hao Wang
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Yan Wu
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Jingjing Zou
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Cin Liu
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, CA, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, CA, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terry L Jernigan
- Center for Human Development, University of California, San Diego, CA, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Disrupted Dynamic Functional Connectivity of the Visual Network in Episodic Patients with Migraine without Aura. Neural Plast 2022; 2022:9941832. [PMID: 35035474 PMCID: PMC8754605 DOI: 10.1155/2022/9941832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Background Visual symptoms are common in patients with migraine, even in interictal periods. The purpose was to assess the association between dynamic functional connectivity (dFC) of the visual cortex and clinical characteristics in migraine without aura (MwoA) patients. Methods We enrolled fifty-five MwoA patients as well as fifty gender- and age-matched healthy controls. Regional visual cortex alterations were investigated using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF). Then, significant regions were selected as seeds for conducting dFC between the visual cortex and the whole brain. Results Relative to healthy controls, MwoA patients exhibited decreased ReHo and ALFF values in the right lingual gyrus (LG) and increased ALFF values in the prefrontal cortex. The right LG showed abnormal dFC within the visual cortex and with other core brain networks. Additionally, ReHo values for the right LG were correlated with duration of disease and ALFF values of the right inferior frontal gyrus and middle frontal gyrus were correlated with headache frequency and anxiety scores, respectively. Moreover, the abnormal dFC of the right LG with bilateral cuneus was positively correlated with anxiety scores. Conclusions The dFC abnormalities of the visual cortex may be involved in pain integration with multinetworks and associated with anxiety disorder in episodic MwoA patients.
Collapse
|
23
|
Li C, Wang Y, Li B, Su S. Effects of Acupuncture at Neiguan in Neural Activity of Related Brain Regions: A Resting-State fMRI Study in Anxiety. Neuropsychiatr Dis Treat 2022; 18:1375-1384. [PMID: 35832324 PMCID: PMC9271906 DOI: 10.2147/ndt.s368227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Acupuncture of PC6 points has the effects of calming, tranquilizing, regulating qi, and relieving pain and has been clinically found to alleviate anxiety disorders. To explore the mechanism of improvement at the Neiguan point acupuncture in anxiety patients, we used fMRI to observe the changes in brain function in patients with immediate anxiety before and after acupuncture at the Neiguan point. SUBJECTS AND METHODS The experiment followed the principle of randomized, single-blind design. Twenty-four anxiety volunteers (14 males and 10 females, 20-35 years old) were divided randomly into two groups: a group of acupuncture at Neiguan and a group of acupuncture at non-acupoint. Functional magnetic resonance imaging (fMRI) was applied to measure brain activity pre- and post-acupuncture. The amplitude of low-frequency fluctuations (ALFF) and seed-based functional connectivity (FC) was used to analyze the activity and network of brain regions. Statistical analysis was done using SPSS 21.0 and REST 1.8 software. RESULTS ALFF results revealed that post-acupuncture at Neiguan increased the activity of the left parahippocampal gyrus, fusiform gyrus, and right superior temporal gyrus and decreased the activity of the right middle frontal gyrus, right precuneus, and cuneus. Post-acupuncture at non-acupoint led to a significant ALFF increase in the thalamus and middle frontal gyrus. The ALFF in the left middle frontal gyrus was decreased. Functional connectivity in several anterior default mode network (DMN) regions and vermis cerebelli at left parahippocampal/fusiform gyri was increased, and connectivity in bilateral superior temporal gyri was decreased. FC with posterior DMN regions decreased at the right middle frontal gyrus, right precuneus, and cuneus. CONCLUSION Our study elucidates that acupuncture at Neiguan modulates anxiety by activating or deactivating these brain anxiety-related regions and provides potential explanations for the application of PC6 acupuncture in mental diseases.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yuangeng Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Baopeng Li
- Department of Radiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Shanshan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
24
|
Xu D, Xu G, Zhao Z, Sublette ME, Miller JM, Mann JJ. Diffusion tensor imaging brain structural clustering patterns in major depressive disorder. Hum Brain Mapp 2021; 42:5023-5036. [PMID: 34312935 PMCID: PMC8449115 DOI: 10.1002/hbm.25597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
Using magnetic resonance diffusion tensor imaging data from 45 patients with major depressive disorder (MDD) and 41 healthy controls (HCs), network indices based on a 246-region Brainnetcome Atlas were investigated in the two groups, and in the MDD subgroups that were subgrouped based on their duration of the disease. Correlation between the network indices and the duration of illness was also examined. Differences were observed between the MDDS subgroup (short disease duration) and the HC group, but not between the MDD and HC groups. Compared with the HCs, the clustering coefficient (CC) values of MDDS were higher in precentral gyrus, and caudal lingual gyrus; the CC of MDDL subgroup (long disease duration) was higher in postcentral gyrus and dorsal granular insula in the right hemisphere. Network resilience analyses showed that the MDDS group was higher than the HC group, representing relatively more randomized networks in the diseased brains. The correlation analyses showed that the caudal lingual gyrus in the right hemisphere and the rostral lingual gyrus in the left hemisphere were particularly correlated with disease duration. The analyses showed that duration of the illness appears to have an impact on the networking patterns. Networking abnormalities in MDD patients could be blurred or hidden by the heterogeneity of the MDD clinical subgroups. Brain plasticity may introduce a recovery effect to the abnormal network patterns seen in patients with a relative short term of the illness, as the abnormalities may disappear in MDDL .
Collapse
Affiliation(s)
- Dongrong Xu
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Guojun Xu
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
- Shanghai Key Laboratory of Magnetic Resonance ImagingEast China Normal UniversityShanghaiChina
| | - Zhiyong Zhao
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
- Shanghai Key Laboratory of Magnetic Resonance ImagingEast China Normal UniversityShanghaiChina
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Jeffrey M. Miller
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
| | - J. John Mann
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
- Department of RadiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
25
|
Lee JS, Kang W, Kang Y, Kim A, Han KM, Tae WS, Ham BJ. Alterations in the Occipital Cortex of Drug-Naïve Adults With Major Depressive Disorder: A Surface-Based Analysis of Surface Area and Cortical Thickness. Psychiatry Investig 2021; 18:1025-1033. [PMID: 34666430 PMCID: PMC8542746 DOI: 10.30773/pi.2021.0099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in surface-based morphometric methods have allowed researchers to separate cortical volume into cortical thickness (CTh) and surface area (SA). Although CTh alterations in major depressive disorder (MDD) have been observed in numerous studies, few studies have described significant SA alterations. Our study aimed to measure patients' SAs and to compare it with their CTh to examine whether SA exhibits alteration patterns that differ from those of CTh in drug-naïve patients with MDD. METHODS A total of 71 drug-naïve MDD patients and 111 healthy controls underwent structural magnetic resonance imaging, and SA and CTh were analyzed between the groups. RESULTS We found a smaller SA in the left superior occipital gyrus (L-SOG) in drug-naïve patients with MDD. In the CTh analysis, the bilateral fusiform gyrus, left middle occipital gyrus, left temporal superior gyrus, and right posterior cingulate showed thinner cortices in patients with MDD, while the CTh of the bilateral SOG, right straight gyrus, right posterior cingulate, and left lingual gyrus were increased. CONCLUSION Compared with the bilateral occipito-temporal changes in CTh, SA alterations in patients with MDD were confined to the L-SOG. These findings may improve our understanding of the neurobiological mechanisms of SA alteration in relation to MDD.
Collapse
Affiliation(s)
- Jee Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Yeung HW, Shen X, Stolicyn A, de Nooij L, Harris MA, Romaniuk L, Buchanan CR, Waiter GD, Sandu AL, McNeil CJ, Murray A, Steele JD, Campbell A, Porteous D, Lawrie SM, McIntosh AM, Cox SR, Smith KM, Whalley HC. Spectral clustering based on structural magnetic resonance imaging and its relationship with major depressive disorder and cognitive ability. Eur J Neurosci 2021; 54:6281-6303. [PMID: 34390586 DOI: 10.1111/ejn.15423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
There is increasing interest in using data-driven unsupervised methods to identify structural underpinnings of common mental illnesses, including major depressive disorder (MDD) and associated traits such as cognition. However, studies are often limited to severe clinical cases with small sample sizes and most do not include replication. Here, we examine two relatively large samples with structural magnetic resonance imaging (MRI), measures of lifetime MDD and cognitive variables: Generation Scotland (GS subsample, N = 980) and UK Biobank (UKB, N = 8,900), for discovery and replication, using an exploratory approach. Regional measures of FreeSurfer derived cortical thickness (CT), cortical surface area (CSA), cortical volume (CV) and subcortical volume (subCV) were input into a clustering process, controlling for common covariates. The main analysis steps involved constructing participant K-nearest neighbour graphs and graph partitioning with Markov stability to determine optimal clustering of participants. Resultant clusters were (1) checked whether they were replicated in an independent cohort and (2) tested for associations with depression status and cognitive measures. Participants separated into two clusters based on structural brain measurements in GS subsample, with large Cohen's d effect sizes between clusters in higher order cortical regions, commonly associated with executive function and decision making. Clustering was replicated in the UKB sample, with high correlations of cluster effect sizes for CT, CSA, CV and subCV between cohorts across regions. The identified clusters were not significantly different with respect to MDD case-control status in either cohort (GS subsample: pFDR = .2239-.6585; UKB: pFDR = .2003-.7690). Significant differences in general cognitive ability were, however, found between the clusters for both datasets, for CSA, CV and subCV (GS subsample: d = 0.2529-.3490, pFDR < .005; UKB: d = 0.0868-0.1070, pFDR < .005). Our results suggest that there are replicable natural groupings of participants based on cortical and subcortical brain measures, which may be related to differences in cognitive performance, but not to the MDD case-control status.
Collapse
Affiliation(s)
- Hon Wah Yeung
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Aleks Stolicyn
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Laura de Nooij
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Colin R Buchanan
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alison Murray
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - J Douglas Steele
- School of Medicine, University of Dundee, Dundee, UK.,Department of Neurology, NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Keith M Smith
- Usher Institute, University of Edinburgh, Edinburgh, UK.,Health Data Research UK, London, UK
| | | |
Collapse
|
27
|
Ruiz-Saez B, García MMB, de Aragon AM, Gil-Correa M, Melero H, Malpica NA, de Ory SJ, Zamora B, Guillen S, Rojo P, Falcon-Neyra L, Alvarez A, Fernandez P, Lorente-Jareño ML, Ramos JT, Sainz T, Velo C, Navarro ML, Gonzalez-Tomé MI. Effects of perinatal HIV-infection on the cortical thickness and subcortical gray matter volumes in young adulthood. Medicine (Baltimore) 2021; 100:e25403. [PMID: 33847637 PMCID: PMC8051971 DOI: 10.1097/md.0000000000025403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Brain atrophy has been observed in perinatally HIV-infected patients (PHIV) despite initiation on combined antiretroviral treatment (cART), but neuroimaging studies are limited. We aimed to evaluate cortical thickness (CT) and subcortical gray matter (GM) volumes of PHIV youths with stable immunovirological situation and with a normal daily performance.A prospective cross-sectional study was conducted. A total of 25 PHIV patients on cART and 25 HIV-negative (HIV-) controls matched by age, sex, level of education, and socioeconomic status underwent a magnetic resonance imaging scan. CAT12 toolbox was used to extract CT values from T1w images using parcellations from Desikan-Killiany atlas (DK40). To measure regional brain volumes, native segmented images were parceled in regions of interest according to the Neuromorphometrics Atlas. Neuropsychological assessment and psychopathological symptoms were documented.Fifty participants were included (60% females, median age 20 years [interquartile range, IQR 19-23], 64% Whites). No differences regarding neuropsychological tests or psychopathological symptoms were found between groups (all P > .05). All participants presented an average performance in the Fluid Intelligence (FI) test (PHIV mean: -0.12, HIV- mean: 0.24), When comparing CT, PHIV-infected patients showed thinner cortices compared with their peers in fusiform gyrus (P = .000, P = .009), lateral-orbitofrontal gyrus (P = .006, P = .0024), and right parsobitalis gyrus (P = .047). Regarding subcortical GM volumes, PHIV patients showed lower right amygdala (P = .014) and left putamen (P = .016) volumes when compared with HIV- controls. Within the PHIV group, higher CD4 count was associated with higher volumes in right putamen (B = 0.00000038, P = .045). Moreover, increased age at cART initiation and lower nadir CD4 count was associated with larger volumes in left accumbens (B = 0.0000046, P = .033; B = -0.00000008, P = .045, respectively).PHIV patients showed thinner cortices of areas in temporal, orbito-frontal and occipital lobes and lower volumes of subcortical GM volumes when compared with the HIV- control group, suggesting cortical and subcortical brain alterations in otherwise neuroasymptomatic patients. Nevertheless, larger and longitudinal studies are required to determine the impact of HIV on brain structure in PHIV patients and to further identify risk and protective factors that could be implicated.
Collapse
Affiliation(s)
- Beatriz Ruiz-Saez
- Immunobiology Department, Hospital Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón (IisGM)
| | - Manuela Martín-Bejarano García
- Department of Paediatric Infectious Diseases, Hospital Universitario 12 de Octubre; Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)
| | | | - Mario Gil-Correa
- Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos
| | - Helena Melero
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento - Universidad Complutense de Madrid, Spain, y Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos
| | | | - Santiago Jimenez de Ory
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IisGM)
| | - Berta Zamora
- Paediatric Neuropsychology Department. Hospital Universitario 12 De Octubre, Madrid
| | - Sara Guillen
- Paediatric Infectious Diseases Department, Hospital Universitario de Getafe, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Pablo Rojo
- Paediatric Infectious Diseases Department. Hospital Universitario 12 De Octubre, Madrid, 28041, Spain. Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid
| | - Lola Falcon-Neyra
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Sevilla
| | | | - Pilar Fernandez
- Radiology Department. Hospital Universitario Gregorio Marañón
| | | | - Jose Tomas Ramos
- Paediatric Infectious Diseases Department, Hospital Clínico San Carlos, Madrid, 28040, Spain, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Talía Sainz
- Paediatric Infectious and Tropical Diseases Department, Hospital Universitario La Paz. Hospital La Paz Institute For Health Research (Idipaz), Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Carlos Velo
- Department of Paediatric Infectious Diseases, Hospital Universitario 12 de Octubre; Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)
| | - Maria Luisa Navarro
- Paediatric Infectious Diseases Department. Hospital Gregorio Marañon, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | | |
Collapse
|
28
|
Zhu PW, Chen Y, Gong YX, Jiang N, Liu WF, Su T, Ye L, Min YL, Yuan Q, He LC, Shao Y. Altered brain network centrality in patients with trigeminal neuralgia: a resting-state fMRI study. Acta Radiol 2020; 61:67-75. [PMID: 31088124 DOI: 10.1177/0284185119847678] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Neuroimaging studies revealed that trigeminal neuralgia was related to alternations in brain anatomical function and regional function. However, the functional characteristics of network organization in the whole brain is unknown. Purpose The aim of the present study was to analyze potential functional network brain-activity changes and their relationships with clinical features in patients with trigeminal neuralgia via the voxel-wise degree centrality method. Material and Methods This study involved a total of 28 trigeminal neuralgia patients (12 men, 16 women) and 28 healthy controls matched in sex, age, and education. Spontaneous brain activity was evaluated by degree centrality. Correlation analysis was used to examine the correlations between behavioral performance and average degree centrality values in several brain regions. Results Compared with healthy controls, trigeminal neuralgia patients had significantly higher degree centrality values in the right lingual gyrus, right postcentral gyrus, left paracentral lobule, and bilateral inferior cerebellum. Receiver operative characteristic curve analysis of each brain region confirmed excellent accuracy of the areas under the curve. There was a positive correlation between the mean degree centrality value of the right postcentral gyrus and VAS score (r = 0.885, P < 0.001). Conclusions Trigeminal neuralgia causes abnormal brain network activity in multiple brain regions, which may be related to underlying disease mechanisms.
Collapse
Affiliation(s)
- Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - You Chen
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Ying-Xin Gong
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Jiang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian Province, PR China
| | - Wen-Feng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Ting Su
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian Province, PR China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Lai-Chang He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
29
|
Schmaal L. Cortical surface area: a potential biological marker for depression onset and poor clinical outcomes? Lancet Psychiatry 2019; 6:277-279. [PMID: 30904115 DOI: 10.1016/s2215-0366(19)30100-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
30
|
Göbel A, Heldmann M, Göttlich M, Goerges R, Nieberding R, Sartorius A, Brabant G, Münte TF. Partial withdrawal of levothyroxine treated disease leads to brain activations and effects on performance in a working memory task: A pilot study. J Neuroendocrinol 2019; 31:e12707. [PMID: 30875138 DOI: 10.1111/jne.12707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/09/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Hypothyroidism is associated with memory impairments. The present study aimed to evaluate the effects of partial withdrawal of levothyroxine on working memory tasks and brain function. Fifteen subjects under long-term levothyroxine substitution as a result of complete hypothyroidism participated in the present study. Functional magnetic resonance imaging (MRI) was performed using a working memory task (n-back task) and neuropsychological tests were performed before and 52-54 days after the induction of subclinical hypothyroidism by reducing the pretest levothyroxine dosage by 30%. Reaction time of subjects under partial levothyroxine withdrawal was significantly longer and less accurate with respect to solving the working memory tasks. Functional MRI revealed significant activation changes after medication withdrawal in the cerebellum, insula, parietal, frontal, temporal and occipital lobes, lingual gyrus, and the cuneus. Partial withdrawal of levothyroxine may lead to deficits in a working memory task and to an activation of brain areas associated with working memory ability.
Collapse
Affiliation(s)
- Anna Göbel
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Department of Psychology II, University of Lübeck, Lübeck, Germany
| | - Martin Göttlich
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - René Goerges
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Relana Nieberding
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | | | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Department of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
31
|
Gvozdanovic G, Stämpfli P, Seifritz E, Rasch B. Structural brain differences predict early traumatic memory processing. Psychophysiology 2019; 57:e13354. [PMID: 30825218 DOI: 10.1111/psyp.13354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/21/2018] [Accepted: 01/20/2019] [Indexed: 01/31/2023]
Abstract
Intrusive memories are a key symptom of post-traumatic stress disorder (PTSD). They emerge early after trauma exposure and are predictive for PTSD development. There is a high relevance in evaluating the neurobiological mechanisms of early stages of intrusive symptom development to provide a further understanding of PTSD. In the present study, we explore structural differences in healthy young female subjects preceding experimental trauma exposure and their relationship to early intrusive memory development using a traumatic film paradigm. With voxel-based morphometry, we demonstrate that smaller insular volume was associated with an increased number of early intrusive film memories. Moreover, larger lingual gyrus/cerebellar and inferior frontal gyrus/precentral gyrus volumes were also related to an increased number of early intrusive film memories. Our results identify unique brain areas associated with early experimental trauma memory processing and highlight the necessity of evaluating early symptom stages relevant for personalized PTSD prevention and treatment.
Collapse
Affiliation(s)
- Geraldine Gvozdanovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,Institute of Psychology, University of Zürich, Zürich, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric Hospital of the University of Zürich, Zürich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,Competence Center of Sleep & Health Zürich, University of Zürich, Zürich, Switzerland
| | - Björn Rasch
- Competence Center of Sleep & Health Zürich, University of Zürich, Zürich, Switzerland.,Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|