1
|
Tewari BP, Woo AM, Prim CE, Chaunsali L, Patel DC, Kimbrough IF, Engel K, Browning JL, Campbell SL, Sontheimer H. Astrocytes require perineuronal nets to maintain synaptic homeostasis in mice. Nat Neurosci 2024; 27:1475-1488. [PMID: 39020018 PMCID: PMC11303255 DOI: 10.1038/s41593-024-01714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Perineuronal nets (PNNs) are densely packed extracellular matrices that cover the cell body of fast-spiking inhibitory neurons. PNNs stabilize synapses inhibiting synaptic plasticity. Here we show that synaptic terminals of fast-spiking interneurons localize to holes in the PNNs in the adult mouse somatosensory cortex. Approximately 95% of holes in the PNNs contain synapses and astrocytic processes expressing Kir4.1, glutamate and GABA transporters. Hence, holes in the PNNs contain tripartite synapses. In the adult mouse brain, PNN degradation causes an expanded astrocytic coverage of the neuronal somata without altering the axon terminals. The loss of PNNs impairs astrocytic transmitter and potassium uptake, resulting in the spillage of glutamate into the extrasynaptic space. Our data show that PNNs and astrocytes cooperate to contain synaptically released signals in physiological conditions. Their combined action is altered in mouse models of Alzheimer's disease and epilepsy where PNNs are disrupted.
Collapse
Affiliation(s)
- Bhanu P Tewari
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - AnnaLin M Woo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Courtney E Prim
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lata Chaunsali
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Dipan C Patel
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ian F Kimbrough
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kaliroi Engel
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | | | - Susan L Campbell
- Department of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Bataveljic D, Pivonkova H, de Concini V, Hébert B, Ezan P, Briault S, Bemelmans AP, Pichon J, Menuet A, Rouach N. Astroglial Kir4.1 potassium channel deficit drives neuronal hyperexcitability and behavioral defects in Fragile X syndrome mouse model. Nat Commun 2024; 15:3583. [PMID: 38678030 PMCID: PMC11055954 DOI: 10.1038/s41467-024-47681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Fragile X syndrome (FXS) is an inherited form of intellectual disability caused by the loss of the mRNA-binding fragile X mental retardation protein (FMRP). FXS is characterized by neuronal hyperexcitability and behavioral defects, however the mechanisms underlying these critical dysfunctions remain unclear. Here, using male Fmr1 knockout mouse model of FXS, we identify abnormal extracellular potassium homeostasis, along with impaired potassium channel Kir4.1 expression and function in astrocytes. Further, we reveal that Kir4.1 mRNA is a binding target of FMRP. Finally, we show that the deficit in astroglial Kir4.1 underlies neuronal hyperexcitability and several behavioral defects in Fmr1 knockout mice. Viral delivery of Kir4.1 channels specifically to hippocampal astrocytes from Fmr1 knockout mice indeed rescues normal astrocyte potassium uptake, neuronal excitability, and cognitive and social performance. Our findings uncover an important role for astrocyte dysfunction in the pathophysiology of FXS, and identify Kir4.1 channel as a potential therapeutic target for FXS.
Collapse
Affiliation(s)
- Danijela Bataveljic
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Helena Pivonkova
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vidian de Concini
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
| | - Betty Hébert
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Sylvain Briault
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
- Department of Genetics, Regional Hospital, Orléans, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, 92260, France
| | - Jacques Pichon
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
| | - Arnaud Menuet
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France.
| |
Collapse
|
3
|
Severino L, Kim J, Nam MH, McHugh TJ. From synapses to circuits: What mouse models have taught us about how autism spectrum disorder impacts hippocampal function. Neurosci Biobehav Rev 2024; 158:105559. [PMID: 38246230 DOI: 10.1016/j.neubiorev.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that impacts a variety of cognitive and behavioral domains. While a genetic component of ASD has been well-established, none of the numerous syndromic genes identified in humans accounts for more than 1% of the clinical patients. Due to this large number of target genes, numerous mouse models of the disorder have been generated. However, the focus on distinct brain circuits, behavioral phenotypes and diverse experimental approaches has made it difficult to synthesize the overwhelming number of model animal studies into concrete throughlines that connect the data across levels of investigation. Here we chose to focus on one circuit, the hippocampus, and one hypothesis, a shift in excitatory/inhibitory balance, to examine, from the level of the tripartite synapse up to the level of in vivo circuit activity, the key commonalities across disparate models that can illustrate a path towards a better mechanistic understanding of ASD's impact on hippocampal circuit function.
Collapse
Affiliation(s)
- Leandra Severino
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea.
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi Saitama, Japan.
| |
Collapse
|
4
|
Ou M, Chen Y, Liu J, Zhang D, Yang Y, Shen J, Miao C, Tang SJ, Liu X, Mulkey DK, Zhu T, Zhou C. Spinal astrocytic MeCP2 regulates Kir4.1 for the maintenance of chronic hyperalgesia in neuropathic pain. Prog Neurobiol 2023; 224:102436. [PMID: 36931588 PMCID: PMC10372923 DOI: 10.1016/j.pneurobio.2023.102436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Astrocyte activation in the spinal dorsal horn may play an important role in the development of chronic neuropathic pain, but the mechanisms involved in astrocyte activation and their modulatory effects remain unknown. The inward rectifying potassium channel protein 4.1 (Kir4.1) is the most important background K+ channel in astrocytes. However, how Kir4.1 is regulated and contributes to behavioral hyperalgesia in chronic pain is unknown. In this study, single-cell RNA sequencing analysis indicated that the expression levels of both Kir4.1 and Methyl-CpG-binding protein 2 (MeCP2) were decreased in spinal astrocytes after chronic constriction injury (CCI) in a mouse model. Conditional knockout of the Kir4.1 channel in spinal astrocytes led to hyperalgesia, and overexpression of the Kir4.1 channel in spinal cord relieved CCI-induced hyperalgesia. Expression of spinal Kir4.1 after CCI was regulated by MeCP2. Electrophysiological recording in spinal slices showed that knockdown of Kir4.1 significantly up-regulated the excitability of astrocytes and then functionally changed the firing patterns of neurons in dorsal spinal cord. Therefore, targeting spinal Kir4.1 may be a therapeutic approach for hyperalgesia in chronic neuropathic pain.
Collapse
Affiliation(s)
- Mengchan Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiefei Shen
- Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases and Department of Prosthodontics, West China Stomatology Hospital of Sichuan University, Chengdu 610041, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shao-Jun Tang
- Department of Anesthesiology and The Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, NY 11794, USA
| | - Xin Liu
- Department of Anesthesiology and The Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel K Mulkey
- Departments of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Gourine AV, Dale N. Brain H + /CO 2 sensing and control by glial cells. Glia 2022; 70:1520-1535. [PMID: 35102601 DOI: 10.1002/glia.24152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/04/2023]
Abstract
Maintenance of constant brain pH is critically important to support the activity of individual neurons, effective communication within the neuronal circuits, and, thus, efficient processing of information by the brain. This review article focuses on how glial cells detect and respond to changes in brain tissue pH and concentration of CO2 , and then trigger systemic and local adaptive mechanisms that ensure a stable milieu for the operation of brain circuits. We give a detailed account of the cellular and molecular mechanisms underlying sensitivity of glial cells to H+ and CO2 and discuss the role of glial chemosensitivity and signaling in operation of three key mechanisms that work in concert to keep the brain pH constant. We discuss evidence suggesting that astrocytes and marginal glial cells of the brainstem are critically important for central respiratory CO2 chemoreception-a fundamental physiological mechanism that regulates breathing in accord with changes in blood and brain pH and partial pressure of CO2 in order to maintain systemic pH homeostasis. We review evidence suggesting that astrocytes are also responsible for the maintenance of local brain tissue extracellular pH in conditions of variable acid loads associated with changes in the neuronal activity and metabolism, and discuss potential role of these glial cells in mediating the effects of CO2 on cerebral vasculature.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
6
|
McClenahan SJ, Kent CN, Kharade SV, Isaeva E, Williams JC, Han C, Terker A, Gresham R, Lazarenko RM, Days EL, Romaine IM, Bauer JA, Boutaud O, Sulikowski GA, Harris R, Weaver CD, Staruschenko A, Lindsley CW, Denton JS. VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels. Mol Pharmacol 2022; 101:357-370. [PMID: 35246480 PMCID: PMC9092466 DOI: 10.1124/molpharm.121.000464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/14/2022] [Indexed: 01/14/2023] Open
Abstract
Heteromeric Kir4.1/Kir5.1 (KCNJ10/KCNJ16) inward rectifier potassium (Kir) channels play key roles in the brain and kidney, but pharmacological tools for probing their physiology and therapeutic potential have not been developed. Here, we report the discovery, in a high-throughput screening of 80,475 compounds, of the moderately potent and selective inhibitor VU0493690, which we selected for characterization and chemical optimization. VU0493690 concentration-dependently inhibits Kir4.1/5.1 with an IC50 of 0.96 μM and exhibits at least 10-fold selectivity over Kir4.1 and ten other Kir channels. Multidimensional chemical optimization of VU0493690 led to the development of VU6036720, the most potent (IC50 = 0.24 μM) and selective (>40-fold over Kir4.1) Kir4.1/5.1 inhibitor reported to date. Cell-attached patch single-channel recordings revealed that VU6036720 inhibits Kir4.1/5.1 activity through a reduction of channel open-state probability and single-channel current amplitude. Elevating extracellular potassium ion by 20 mM shifted the IC50 6.8-fold, suggesting that VU6036720 is a pore blocker that binds in the ion-conduction pathway. Mutation of the "rectification controller" asparagine 161 to glutamate (N161E), which is equivalent to small-molecule binding sites in other Kir channels, led to a strong reduction of inhibition by VU6036720. Renal clearance studies in mice failed to show a diuretic response that would be consistent with inhibition of Kir4.1/5.1 in the renal tubule. Drug metabolism and pharmacokinetics profiling revealed that high VU6036720 clearance and plasma protein binding may prevent target engagement in vivo. In conclusion, VU6036720 represents the current state-of-the-art Kir4.1/5.1 inhibitor that should be useful for probing the functions of Kir4.1/5.1 in vitro and ex vivo. SIGNIFICANCE STATEMENT: Heteromeric inward rectifier potassium (Kir) channels comprising Kir4.1 and Kir5.1 subunits play important roles in renal and neural physiology and may represent inhibitory drug targets for hypertension and edema. Herein, we employ high-throughput compound library screening, patch clamp electrophysiology, and medicinal chemistry to develop and characterize the first potent and specific in vitro inhibitor of Kir4.1/5.1, VU6036720, which provides proof-of-concept that drug-like inhibitors of this channel may be developed.
Collapse
Affiliation(s)
- Samantha J McClenahan
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Caitlin N Kent
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Sujay V Kharade
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Elena Isaeva
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Jade C Williams
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Changho Han
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Andrew Terker
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Robert Gresham
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Roman M Lazarenko
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Emily L Days
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Ian M Romaine
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Joshua A Bauer
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Olivier Boutaud
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Gary A Sulikowski
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Raymond Harris
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - C David Weaver
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Alexander Staruschenko
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Craig W Lindsley
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| | - Jerod S Denton
- Departments of Anesthesiology (S.J.M., S.V.K., R.G., R.M.L., J.S.D.), Biochemistry (J.A.B.), Chemistry (C.N.K., J.C.W., I.M.R., C.D.W., G.A.S., C.W.L.), Pharmacology (E.L.D., C.D.W., C.W.L., C.H., O.B., J.S.D.), and Nephrology (A.T., R.H.), and Vanderbilt Institute of Chemical Biology (J.A.B., G.S., C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin (E.I.); and Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida (A.S.)
| |
Collapse
|
7
|
Li W. Excitation and Inhibition Imbalance in Rett Syndrome. Front Neurosci 2022; 16:825063. [PMID: 35250460 PMCID: PMC8894599 DOI: 10.3389/fnins.2022.825063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
A loss of the excitation/inhibition (E/I) balance in the neural circuit has emerged as a common neuropathological feature in many neurodevelopmental disorders. Rett syndrome (RTT), a prevalent neurodevelopmental disorder that affects 1:10,000-15,000 women globally, is caused by loss-of-function mutations in the Methyl-CpG-binding Protein-2 (Mecp2) gene. E/I imbalance is recognized as the leading cellular and synaptic hallmark that is fundamental to diverse RTT neurological symptoms, including stereotypic hand movements, impaired motor coordination, breathing irregularities, seizures, and learning/memory dysfunctions. E/I balance in RTT is not homogeneously altered but demonstrates brain region and cell type specificity instead. In this review, I elaborate on the current understanding of the loss of E/I balance in a range of brain areas at molecular and cellular levels. I further describe how the underlying cellular mechanisms contribute to the disturbance of the proper E/I ratio. Last, I discuss current pharmacologic innervations for RTT and their role in modifying the E/I balance.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Cheng P, Qiu Z, Du Y. Potassium channels and autism spectrum disorder: An overview. Int J Dev Neurosci 2021; 81:479-491. [PMID: 34008235 DOI: 10.1002/jdn.10123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted, repetitive patterns of behaviors, interests, or activities. It had been demonstrated that potassium channels played a key role in regulating neuronal excitability, which was closely associated with neurological diseases including epilepsy, ataxia, myoclonus, and psychiatric disorders. In recent years, a growing body of evidence from whole-genome sequencing and whole-exome sequencing had identified several ASD susceptibility genes of potassium channels in ASD subjects. Genetically dysfunction of potassium channels may be involved in altered neuronal excitability and abnormal brain function in the pathogenesis of ASD. This review summarizes current findings on the features of ASD-risk genes (KCND2, KCNQ2, KCNQ3, KCNH5, KCNJ2, KCNJ10, and KCNMA1) and further expatiate their potential role in the pathogenicity of ASD.
Collapse
Affiliation(s)
- Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
10
|
Patterson KC, Kahanovitch U, Gonçalves CM, Hablitz JJ, Staruschenko A, Mulkey DK, Olsen ML. K ir 5.1-dependent CO 2 /H + -sensitive currents contribute to astrocyte heterogeneity across brain regions. Glia 2021; 69:310-325. [PMID: 32865323 PMCID: PMC8665280 DOI: 10.1002/glia.23898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 09/19/2023]
Abstract
Astrocyte heterogeneity is an emerging concept in which astrocytes within or between brain regions show variable morphological and/or gene expression profiles that presumably reflect different functional roles. Recent evidence indicates that retrotrapezoid nucleus (RTN) astrocytes sense changes in tissue CO2/ H+ to regulate respiratory activity; however, mechanism(s) by which they do so remain unclear. Alterations in inward K+ currents represent a potential mechanism by which CO2 /H+ signals may be conveyed to neurons. Here, we use slice electrophysiology in rats of either sex to show that RTN astrocytes intrinsically respond to CO2 /H+ by inhibition of an inward rectifying potassium (Kir ) conductance and depolarization of the membrane, while cortical astrocytes do not exhibit such CO2 /H+ -sensitive properties. Application of Ba2+ mimics the effect of CO2 /H+ on RTN astrocytes as measured by reductions in astrocyte Kir -like currents and increased RTN neuronal firing. These CO2 /H+ -sensitive currents increase developmentally, in parallel to an increased expression in Kir 4.1 and Kir 5.1 in the brainstem. Finally, the involvement of Kir 5.1 in the CO2 /H+ -sensitive current was verified using a Kir5.1 KO rat. These data suggest that Kir inhibition by CO2 /H+ may govern the degree to which astrocytes mediate downstream chemoreceptive signaling events through cell-autonomous mechanisms. These results identify Kir channels as potentially important regional CO2 /H+ sensors early in development, thus expanding our understanding of how astrocyte heterogeneity may uniquely support specific neural circuits and behaviors.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
11
|
FOXP1 negatively regulates intrinsic excitability in D2 striatal projection neurons by promoting inwardly rectifying and leak potassium currents. Mol Psychiatry 2021; 26:1761-1774. [PMID: 33402705 PMCID: PMC8255328 DOI: 10.1038/s41380-020-00995-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/18/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
Heterozygous loss-of-function mutations in the transcription factor FOXP1 are strongly associated with autism. Dopamine receptor 2 expressing (D2) striatal projection neurons (SPNs) in heterozygous Foxp1 (Foxp1+/-) mice have higher intrinsic excitability. To understand the mechanisms underlying this alteration, we examined SPNs with cell-type specific homozygous Foxp1 deletion to study cell-autonomous regulation by Foxp1. As in Foxp1+/- mice, D2 SPNs had increased intrinsic excitability with homozygous Foxp1 deletion. This effect involved postnatal mechanisms. The hyperexcitability was mainly due to down-regulation of two classes of potassium currents: inwardly rectifying (KIR) and leak (KLeak). Single-cell RNA sequencing data from D2 SPNs with Foxp1 deletion indicated the down-regulation of transcripts of candidate ion channels that may underlie these currents: Kcnj2 and Kcnj4 for KIR and Kcnk2 for KLeak. This Foxp1-dependent regulation was neuron-type specific since these same currents and transcripts were either unchanged, or very little changed, in D1 SPNs with cell-specific Foxp1 deletion. Our data are consistent with a model where FOXP1 negatively regulates the excitability of D2 SPNs through KIR and KLeak by transcriptionally activating their corresponding transcripts. This, in turn, provides a novel example of how a transcription factor may regulate multiple genes to impact neuronal electrophysiological function that depends on the integration of multiple current types - and do this in a cell-specific fashion. Our findings provide initial clues to altered neuronal function and possible therapeutic strategies not only for FOXP1-associated autism but also for other autism forms associated with transcription factor dysfunction.
Collapse
|
12
|
Boni JL, Kahanovitch U, Nwaobi SE, Floyd CL, Olsen ML. DNA methylation: A mechanism for sustained alteration of KIR4.1 expression following central nervous system insult. Glia 2020; 68:1495-1512. [PMID: 32068308 PMCID: PMC8665281 DOI: 10.1002/glia.23797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
Kir4.1, a glial-specific inwardly rectifying potassium channel, is implicated in astrocytic maintenance of K+ homeostasis. Underscoring the role of Kir4.1 in central nervous system (CNS) functioning, genetic mutations in KCNJ10, the gene which encodes Kir4.1, causes seizures, ataxia and developmental disability in humans. Kir4.1 protein and mRNA loss are consistently observed in CNS injury and neurological diseases linked to hyperexcitability and neuronal dysfunction, leading to the notion that Kir4.1 represents an attractive therapeutic target. Despite this, little is understood regarding the mechanisms that underpin this downregulation. Previous work by our lab revealed that DNA hypomethylation of the Kcnj10 gene functions to regulate mRNA levels during astrocyte maturation whereas hypermethylation in vitro led to decreased promoter activity. In the present study, we utilized two vastly different injury models with known acute and chronic loss of Kir4.1 protein and mRNA to evaluate the methylation status of Kcnj10 as a candidate molecular mechanism for reduced transcription and subsequent protein loss. Examining whole hippocampal tissue and isolated astrocytes, in a lithium-pilocarpine model of epilepsy, we consistently identified hypermethylation of CpG island two, which resides in the large intronic region spanning the Kcnj10 gene. Strikingly similar results were observed using the second injury paradigm, a fifth cervical (C5) vertebral hemi-contusion model of spinal cord injury. Our previous work indicates the same gene region is significantly hypomethylated when transcription increases during astrocyte maturation. Our results suggest that DNA methylation can bidirectionally modulate Kcnj10 transcription and may represent a targetable molecular mechanism for the restoring astroglial Kir4.1 expression following CNS insult.
Collapse
Affiliation(s)
- Jessica L Boni
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Sinifunanya E Nwaobi
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, University of California Los Angeles, Los Angeles, California
| | - Candace L Floyd
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Physical Medicine and Rehabilitation, University of Utah Health, Salt Lake City, Utah
| | - Michelle L Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| |
Collapse
|
13
|
Holt LM, Stoyanof ST, Olsen ML. Magnetic Cell Sorting for In Vivo and In Vitro Astrocyte, Neuron, and Microglia Analysis. ACTA ACUST UNITED AC 2020; 88:e71. [PMID: 31216394 DOI: 10.1002/cpns.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interest in evaluating individual cellular populations in the central nervous system has prompted the development of several techniques enabling the enrichment of single-cell populations. Herein we detail a relatively inexpensive method to specifically isolate neurons, astrocytes, and microglia from a mixed homogenate utilizing magnetic beads conjugated to cell-type specific antibodies. We have used this technique to isolate astrocytes across development and into late adulthood. Finally, we detail the utilization of this technique in novel astrocyte and astrocyte/neuron co-culture paradigms. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Leanne M Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - S Tristan Stoyanof
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| |
Collapse
|
14
|
Luoni M, Giannelli S, Indrigo MT, Niro A, Massimino L, Iannielli A, Passeri L, Russo F, Morabito G, Calamita P, Gregori S, Deverman B, Broccoli V. Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome. eLife 2020; 9:52629. [PMID: 32207685 PMCID: PMC7117907 DOI: 10.7554/elife.52629] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
Rett syndrome is an incurable neurodevelopmental disorder caused by mutations in the gene encoding for methyl-CpG binding-protein 2 (MeCP2). Gene therapy for this disease presents inherent hurdles since MECP2 is expressed throughout the brain and its duplication leads to severe neurological conditions as well. Herein, we use the AAV-PHP.eB to deliver an instability-prone Mecp2 (iMecp2) transgene cassette which, increasing RNA destabilization and inefficient protein translation of the viral Mecp2 transgene, limits supraphysiological Mecp2 protein levels. Intravenous injections of the PHP.eB-iMecp2 virus in symptomatic Mecp2 mutant mice significantly improved locomotor activity, lifespan and gene expression normalization. Remarkably, PHP.eB-iMecp2 administration was well tolerated in female Mecp2 mutant or in wild-type animals. In contrast, we observed a strong immune response to the transgene in treated male Mecp2 mutant mice that was overcome by immunosuppression. Overall, PHP.eB-mediated delivery of iMecp2 provided widespread and efficient gene transfer maintaining physiological Mecp2 protein levels in the brain.
Collapse
Affiliation(s)
- Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Serena Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marzia Tina Indrigo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Niro
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Iannielli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Via Olgettina, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Via Olgettina, Milan, Italy
| | - Giuseppe Morabito
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Piera Calamita
- National Institute of Molecular Genetics (INGM), Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Via Olgettina, Milan, Italy
| | - Benjamin Deverman
- Stanley Center for Psychiatric Research at Broad Institute, Cambridge, United States
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| |
Collapse
|
15
|
MacAulay N. Molecular mechanisms of K + clearance and extracellular space shrinkage-Glia cells as the stars. Glia 2020; 68:2192-2211. [PMID: 32181522 DOI: 10.1002/glia.23824] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+ ]o . This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+ ]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+ /K+ -ATPase, but not the Na+ /K+ /Cl- cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+ /K+ -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+ -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes. Neurochem Int 2019; 133:104628. [PMID: 31825815 PMCID: PMC6957761 DOI: 10.1016/j.neuint.2019.104628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
Unprovoked recurrent seizures are a serious comorbidity affecting most patients who suffer from glioma, a primary brain tumor composed of malignant glial cells. Cellular mechanisms contributing to the development of recurrent spontaneous seizures include the release of the excitatory neurotransmitter glutamate from glioma into extracellular space. Under physiological conditions, astrocytes express two high affinity glutamate transporters, Glt-1 and Glast, which are responsible for the removal of excess extracellular glutamate. In the context of neurological disease or brain injury, astrocytes become reactive which can negatively affect neuronal function, causing hyperexcitability and/or death. Using electrophysiology, immunohistochemistry, fluorescent in situ hybridization, and Western blot analysis in different orthotopic xenograft and allograft models of human and mouse gliomas, we find that peritumoral astrocytes exhibit astrocyte scar formation characterized by proliferation, cellular hypertrophy, process elongation, and increased GFAP and pSTAT3. Overall, peritumoral reactive astrocytes show a significant reduction in glutamate and potassium uptake, as well as decreased glutamine synthetase activity. A subset of peritumoral astrocytes displayed a depolarized resting membrane potential, further contributing to reduced potassium and glutamate homeostasis. These changes may contribute to the propagation of peritumoral neuronal hyperexcitability and excitotoxic death.
Collapse
|
17
|
Nadella RK, Chellappa A, Subramaniam AG, More RP, Shetty S, Prakash S, Ratna N, Vandana VP, Purushottam M, Saini J, Viswanath B, Bindu PS, Nagappa M, Mehta B, Jain S, Kannan R. Identification and functional characterization of two novel mutations in KCNJ10 and PI4KB in SeSAME syndrome without electrolyte imbalance. Hum Genomics 2019; 13:53. [PMID: 31640787 PMCID: PMC6805350 DOI: 10.1186/s40246-019-0236-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Dysfunction in inwardly rectifying potassium channel Kir4.1 has been implicated in SeSAME syndrome, an autosomal-recessive (AR), rare, multi-systemic disorder. However, not all neurological, intellectual disability, and comorbid phenotypes in SeSAME syndrome can be mechanistically linked solely to Kir4.1 dysfunction. Methods We therefore performed whole-exome sequencing and identified additional genetic risk-elements that might exert causative effects either alone or in concert with Kir4.1 in a family diagnosed with SeSAME syndrome. Results Two variant prioritization pipelines based on AR inheritance and runs of homozygosity (ROH), identified two novel homozygous variants in KCNJ10 and PI4KB and five rare homozygous variants in PVRL4, RORC, FLG2, FCRL1, NIT1 and one common homozygous variant in HSPA6 segregating in all four patients. The novel mutation in KCNJ10 resides in the cytoplasmic domain of Kir4.1, a seat of phosphatidylinositol bisphosphate (PIP2) binding. The mutation altered the subcellular localization and stability of Kir4.1 in patient-specific lymphoblastoid cells (LCLs) compared to parental controls. Barium-sensitive endogenous K+ currents in patient-specific LCLs using whole-cell patch-clamp electrophysiology revealed membrane depolarization and defects in inward K+ ion conductance across the membrane, thereby suggesting a loss-of-function effect of KCNJ10 variant. Conclusion Altogether, our findings implicate the role of new genes in SeSAME syndrome without electrolyte imbalance and thereby speculate the regulation of Kir4.1 channel activity by PIP2 and integrin-mediated adhesion signaling mechanisms. Electronic supplementary material The online version of this article (10.1186/s40246-019-0236-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravi K Nadella
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Anirudh Chellappa
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Anand G Subramaniam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Ravi Prabhakar More
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Srividya Shetty
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Suriya Prakash
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Nikhil Ratna
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - V P Vandana
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - P S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.,National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Ramakrishnan Kannan
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| |
Collapse
|
18
|
Kadam SD, Sullivan BJ, Goyal A, Blue ME, Smith-Hicks C. Rett Syndrome and CDKL5 Deficiency Disorder: From Bench to Clinic. Int J Mol Sci 2019; 20:ijms20205098. [PMID: 31618813 PMCID: PMC6834180 DOI: 10.3390/ijms20205098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Rett syndrome (RTT) and CDKL5 deficiency disorder (CDD) are two rare X-linked developmental brain disorders with overlapping but distinct phenotypic features. This review examines the impact of loss of methyl-CpG-binding protein 2 (MeCP2) and cyclin-dependent kinase-like 5 (CDKL5) on clinical phenotype, deficits in synaptic- and circuit-homeostatic mechanisms, seizures, and sleep. In particular, we compare the overlapping and contrasting features between RTT and CDD in clinic and in preclinical studies. Finally, we discuss lessons learned from recent clinical trials while reviewing the findings from pre-clinical studies.
Collapse
Affiliation(s)
- Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Brennan J Sullivan
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Archita Goyal
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Mary E Blue
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Constance Smith-Hicks
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Plazaola-Sasieta H, Zhu Q, Gaitán-Peñas H, Rios M, Estévez R, Morey M. Drosophila ClC-a is required in glia of the stem cell niche for proper neurogenesis and wiring of neural circuits. Glia 2019; 67:2374-2398. [PMID: 31479171 PMCID: PMC6851788 DOI: 10.1002/glia.23691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Abstract
Glial cells form part of the neural stem cell niche and express a wide variety of ion channels; however, the contribution of these channels to nervous system development is poorly understood. We explored the function of the Drosophila ClC‐a chloride channel, since its mammalian ortholog CLCN2 is expressed in glial cells, and defective channel function results in leukodystrophies, which in humans are accompanied by cognitive impairment. We found that ClC‐a was expressed in the niche in cortex glia, which are closely associated with neurogenic tissues. Characterization of loss‐of‐function ClC‐a mutants revealed that these animals had smaller brains and widespread wiring defects. We showed that ClC‐a is required in cortex glia for neurogenesis in neuroepithelia and neuroblasts, and identified defects in a neuroblast lineage that generates guidepost glial cells essential for photoreceptor axon guidance. We propose that glia‐mediated ionic homeostasis could nonautonomously affect neurogenesis, and consequently, the correct assembly of neural circuits.
Collapse
Affiliation(s)
- Haritz Plazaola-Sasieta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Qi Zhu
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Gaitán-Peñas
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Martín Rios
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Raúl Estévez
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morey
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Programa de Biologia Integrativa, Barcelona, Spain
| |
Collapse
|
20
|
Holt LM, Hernandez RD, Pacheco NL, Torres Ceja B, Hossain M, Olsen ML. Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1. eLife 2019; 8:44667. [PMID: 31433295 PMCID: PMC6726422 DOI: 10.7554/elife.44667] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a critical growth factor involved in the maturation of the CNS, including neuronal morphology and synapse refinement. Herein, we demonstrate astrocytes express high levels of BDNF’s receptor, TrkB (in the top 20 of protein-coding transcripts), with nearly exclusive expression of the truncated isoform, TrkB.T1, which peaks in expression during astrocyte morphological maturation. Using a novel culture paradigm, we show that astrocyte morphological complexity is increased in the presence of BDNF and is dependent upon BDNF/TrkB.T1 signaling. Deletion of TrkB.T1, globally and astrocyte-specifically, in mice revealed morphologically immature astrocytes with significantly reduced volume, as well as dysregulated expression of perisynaptic genes associated with mature astrocyte function. Indicating a role for functional astrocyte maturation via BDNF/TrkB.T1 signaling, TrkB.T1 KO astrocytes do not support normal excitatory synaptogenesis or function. These data suggest a significant role for BDNF/TrkB.T1 signaling in astrocyte morphological maturation, a critical process for CNS development.
Collapse
Affiliation(s)
- Leanne M Holt
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, United States.,School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States
| | - Raymundo D Hernandez
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, United States
| | - Natasha L Pacheco
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, United States
| | - Beatriz Torres Ceja
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States
| | - Muhannah Hossain
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States
| | - Michelle L Olsen
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, United States.,School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States
| |
Collapse
|
21
|
Kahanovitch U, Patterson KC, Hernandez R, Olsen ML. Glial Dysfunction in MeCP2 Deficiency Models: Implications for Rett Syndrome. Int J Mol Sci 2019; 20:ijms20153813. [PMID: 31387202 PMCID: PMC6696322 DOI: 10.3390/ijms20153813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.
Collapse
Affiliation(s)
- Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
| | - Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA
| | - Raymundo Hernandez
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, VL 24014, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
22
|
Cresto N, Pillet LE, Billuart P, Rouach N. Do Astrocytes Play a Role in Intellectual Disabilities? Trends Neurosci 2019; 42:518-527. [PMID: 31300246 DOI: 10.1016/j.tins.2019.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental disorders, including those involving intellectual disability, are characterized by abnormalities in formation and functions of synaptic circuits. Traditionally, research on synaptogenesis and synaptic transmission in health and disease focused on neurons, however, a growing number of studies have highlighted the role of astrocytes in this context. Tight structural and functional interactions of astrocytes and synapses indeed play important roles in brain functions, and the repertoire of astroglial regulations of synaptic circuits is large and complex. Recently, genetic studies of intellectual disabilities have underscored potential contributions of astrocytes in the pathophysiology of these disorders. Here we review how alterations of astrocyte functions in disease may interfere with neuronal excitability and the balance of excitatory and inhibitory transmission during development, and contribute to intellectual disabilities.
Collapse
Affiliation(s)
- Noémie Cresto
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France; Doctoral School N°562, Paris Descartes University, Paris 75006, France
| | - Pierre Billuart
- Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France.
| |
Collapse
|
23
|
Kharade SV, Kurata H, Bender AM, Blobaum AL, Figueroa EE, Duran A, Kramer M, Days E, Vinson P, Flores D, Satlin LM, Meiler J, Weaver CD, Lindsley CW, Hopkins CR, Denton JS. Discovery, Characterization, and Effects on Renal Fluid and Electrolyte Excretion of the Kir4.1 Potassium Channel Pore Blocker, VU0134992. Mol Pharmacol 2018; 94:926-937. [PMID: 29895592 DOI: 10.1124/mol.118.112359] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
The inward rectifier potassium (Kir) channel Kir4.1 (KCNJ10) carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in KCNJ10 lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)-N-(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC50 value of 0.97 µM and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC50 = 9 µM) at -120 mV. In thallium (Tl+) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction (fu) in rat plasma (fu = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Sujay V Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Haruto Kurata
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Aaron M Bender
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Anna L Blobaum
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Eric E Figueroa
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Amanda Duran
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Meghan Kramer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Emily Days
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Paige Vinson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Daniel Flores
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Lisa M Satlin
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Jens Meiler
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - C David Weaver
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Craig W Lindsley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Corey R Hopkins
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee (S.V.K., M.K., J.S.D.); Center for Neuroscience Drug Discovery and the Vanderbilt Specialized Chemistry Center for Accelerated Probe Development (H.K., A.M.B., A.L.B., C.W.L., C.R.H.), Departments of Pharmacology (H.K., A.M.B., E.E.F., J.M., C.D.W., C.W.L., J.S.D.) and Chemistry (A.D., J.M., C.D.W., C.W.L.), High-Throughput Screening Center (E.D., P.V.), and Institute of Chemical Biology (C.D.W., C.W.L., J.S.D.), Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York (D.F., L.M.S.); and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| |
Collapse
|