1
|
Azevedo A, Lesser E, Phelps JS, Mark B, Elabbady L, Kuroda S, Sustar A, Moussa A, Khandelwal A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Cook A, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Dickinson M, Pacureanu A, Seung HS, Macrina T, Lee WCA, Tuthill JC. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 2024; 631:360-368. [PMID: 38926570 PMCID: PMC11348827 DOI: 10.1038/s41586-024-07389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.
Collapse
Affiliation(s)
- Anthony Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Avinash Khandelwal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions, Zurich, Switzerland
| | - Ran Lu
- Zetta AI, Sherrill, NJ, USA
| | | | - Kisuk Lee
- Zetta AI, Sherrill, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Lesser E, Azevedo AW, Phelps JS, Elabbady L, Cook A, Sakeena Syed D, Mark B, Kuroda S, Sustar A, Moussa A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Macrina T, Dickinson M, Lee WCA, Tuthill JC. Synaptic architecture of leg and wing premotor control networks in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542725. [PMID: 37398440 PMCID: PMC10312524 DOI: 10.1101/2023.05.30.542725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. MN activity is coordinated by complex premotor networks that allow individual muscles to contribute to many different behaviors. Here, we use connectomics to analyze the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. In contrast, wing premotor networks lack proportional synaptic connectivity, which may allow wing steering muscles to be recruited with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
Collapse
Affiliation(s)
- Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Anthony W. Azevedo
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | | | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Chris J. Dallmann
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Su-Yee J. Lee
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions LLC, Switzerland
| | | | | | - Kisuk Lee
- Zetta AI, LLC, USA
- Princeton Neuroscience Institute, Princeton University, NJ, USA
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, NJ, USA
- Computer Science Department, Princeton University, NJ, USA
| | | | | | | | - Chris S. Jordan
- Princeton Neuroscience Institute, Princeton University, NJ, USA
| | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, MA, USA
| | - John C. Tuthill
- Department of Physiology and Biophysics, University of Washington, WA, USA
| |
Collapse
|
3
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Ammer G, Vieira RM, Fendl S, Borst A. Anatomical distribution and functional roles of electrical synapses in Drosophila. Curr Biol 2022; 32:2022-2036.e4. [DOI: 10.1016/j.cub.2022.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
5
|
Cheong HS, Siwanowicz I, Card GM. Multi-regional circuits underlying visually guided decision-making in Drosophila. Curr Opin Neurobiol 2020; 65:77-87. [PMID: 33217639 DOI: 10.1016/j.conb.2020.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.
Collapse
Affiliation(s)
- Han Sj Cheong
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States
| | - Igor Siwanowicz
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States
| | - Gwyneth M Card
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States.
| |
Collapse
|
6
|
Kennedy T, Rinker D, Broadie K. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model. BMC Biol 2020; 18:94. [PMID: 32731855 PMCID: PMC7392683 DOI: 10.1186/s12915-020-00817-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neural circuits are initially assembled during development when neurons synapse with potential partners and later refined as appropriate connections stabilize into mature synapses while inappropriate contacts are eliminated. Disruptions to this synaptogenic process impair connectivity optimization and can cause neurodevelopmental disorders. Intellectual disability (ID) and autism spectrum disorder (ASD) are often characterized by synaptic overgrowth, with the maintenance of immature or inappropriate synapses. Such synaptogenic defects can occur through mutation of a single gene, such as fragile X mental retardation protein (FMRP) loss causing the neurodevelopmental disorder fragile X syndrome (FXS). FXS represents the leading heritable cause of ID and ASD, but many other genes that play roles in ID and ASD have yet to be identified. RESULTS In a Drosophila FXS disease model, one dfmr150M null mutant stock exhibits previously unreported axonal overgrowths at developmental and mature stages in the giant fiber (GF) escape circuit. These excess axon projections contain both chemical and electrical synapse markers, indicating mixed synaptic connections. Extensive analyses show these supernumerary synapses connect known GF circuit neurons, rather than new, inappropriate partners, indicating hyperconnectivity within the circuit. Despite the striking similarities to well-characterized FXS synaptic defects, this new GF circuit hyperconnectivity phenotype is driven by genetic background mutations in this dfmr150M stock. Similar GF circuit synaptic overgrowth is not observed in independent dfmr1 null alleles. Bulked segregant analysis (BSA) was combined with whole genome sequencing (WGS) to identify the quantitative trait loci (QTL) linked to neural circuit hyperconnectivity. The results reveal 8 QTL associated with inappropriate synapse formation and maintenance in the dfmr150M mutant background. CONCLUSIONS Synaptogenesis is a complex, precisely orchestrated neurodevelopmental process with a large cohort of gene products coordinating the connectivity, synaptic strength, and excitatory/inhibitory balance between neuronal partners. This work identifies a number of genetic regions that contain mutations disrupting proper synaptogenesis within a particularly well-mapped neural circuit. These QTL regions contain potential new genes involved in synapse formation and refinement. Given the similarity of the synaptic overgrowth phenotype to known ID and ASD inherited conditions, identifying these genes should increase our understanding of these devastating neurodevelopmental disease states.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
7
|
Lacin H, Williamson WR, Card GM, Skeath JB, Truman JW. Unc-4 acts to promote neuronal identity and development of the take-off circuit in the Drosophila CNS. eLife 2020; 9:55007. [PMID: 32216875 PMCID: PMC7156266 DOI: 10.7554/elife.55007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events.
Collapse
Affiliation(s)
- Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Genetics, Washington University, Saint Louis, United States
| | - W Ryan Williamson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James B Skeath
- Department of Genetics, Washington University, Saint Louis, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Friday Harbor Laboratories, University of Washington, Friday Harbor, United States
| |
Collapse
|