1
|
Wendling F, Koksal-Ersoz E, Al-Harrach M, Yochum M, Merlet I, Ruffini G, Bartolomei F, Benquet P. Multiscale neuro-inspired models for interpretation of EEG signals in patients with epilepsy. Clin Neurophysiol 2024; 161:198-210. [PMID: 38520800 DOI: 10.1016/j.clinph.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE The aim is to gain insight into the pathophysiological mechanisms underlying interictal epileptiform discharges observed in electroencephalographic (EEG) and stereo-EEG (SEEG, depth electrodes) recordings performed during pre-surgical evaluation of patients with drug-resistant epilepsy. METHODS We developed novel neuro-inspired computational models of the human cerebral cortex at three different levels of description: i) microscale (detailed neuron models), ii) mesoscale (neuronal mass models) and iii) macroscale (whole brain models). Although conceptually different, micro- and mesoscale models share some similar features, such as the typology of neurons (pyramidal cells and three types of interneurons), their spatial arrangement in cortical layers, and their synaptic connectivity (excitatory and inhibitory). The whole brain model consists of a large-scale network of interconnected neuronal masses, with connectivity based on the human connectome. RESULTS For these three levels of description, the fine-tuning of free parameters and the quantitative comparison with real data allowed us to reproduce interictal epileptiform discharges with a high degree of fidelity and to formulate hypotheses about the cell- and network-related mechanisms underlying the generation of fast ripples and SEEG-recorded epileptic spikes and spike-waves. CONCLUSIONS The proposed models provide valuable insights into the pathophysiological mechanisms underlying the generation of epileptic events. The knowledge gained from these models effectively complements the clinical analysis of SEEG data collected during the evaluation of patients with epilepsy. SIGNIFICANCE These models are likely to play a key role in the mechanistic interpretation of epileptiform activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France; Univ Aix Marseille, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | |
Collapse
|
2
|
Pelkey KA, Vargish GA, Pellegrini LV, Calvigioni D, Chapeton J, Yuan X, Hunt S, Cummins AC, Eldridge MAG, Pickel J, Chittajallu R, Averbeck BB, Tóth K, Zaghloul K, McBain CJ. Evolutionary conservation of hippocampal mossy fiber synapse properties. Neuron 2023; 111:3802-3818.e5. [PMID: 37776852 PMCID: PMC10841147 DOI: 10.1016/j.neuron.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Geoffrey A Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonardo V Pellegrini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Daniela Calvigioni
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio Chapeton
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Pickel
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Trinh AT, Girardi-Schappo M, Béïque JC, Longtin A, Maler L. Adaptive spike threshold dynamics associated with sparse spiking of hilar mossy cells are captured by a simple model. J Physiol 2023; 601:4397-4422. [PMID: 37676904 DOI: 10.1113/jp283728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Hilar mossy cells (hMCs) in the dentate gyrus (DG) receive inputs from DG granule cells (GCs), CA3 pyramidal cells and inhibitory interneurons, and provide feedback input to GCs. Behavioural and in vivo recording experiments implicate hMCs in pattern separation, navigation and spatial learning. Our experiments link hMC intrinsic excitability to their synaptically evoked in vivo spiking outputs. We performed electrophysiological recordings from DG neurons and found that hMCs displayed an adaptative spike threshold that increased both in proportion to the intensity of injected currents, and in response to spiking itself, returning to baseline over a long time scale, thereby instantaneously limiting their firing rate responses. The hMC activity is additionally limited by a prominent medium after-hyperpolarizing potential (AHP) generated by small conductance K+ channels. We hypothesize that these intrinsic hMC properties are responsible for their low in vivo firing rates. Our findings extend previous studies that compare hMCs, CA3 pyramidal cells and hilar inhibitory cells and provide novel quantitative data that contrast the intrinsic properties of these cell types. We developed a phenomenological exponential integrate-and-fire model that closely reproduces the hMC adaptive threshold nonlinearities with respect to their threshold dependence on input current intensity, evoked spike latency and long-lasting spike-induced increase in spike threshold. Our robust and computationally efficient model is amenable to incorporation into large network models of the DG that will deepen our understanding of the neural bases of pattern separation, spatial navigation and learning. KEY POINTS: Previous studies have shown that hilar mossy cells (hMCs) are implicated in pattern separation and the formation of spatial memory, but how their intrinsic properties relate to their in vivo spiking patterns is still unknown. Here we show that the hMCs display electrophysiological properties that distinguish them from the other hilar cell types including a highly adaptive spike threshold that decays slowly. The spike-dependent increase in threshold combined with an after-hyperpolarizing potential mediated by a slow K+ conductance is hypothesized to be responsible for the low-firing rate of the hMC observed in vivo. The hMC's features are well captured by a modified stochastic exponential integrate-and-fire model that has the unique feature of a threshold intrinsically dependant on both the stimulus intensity and the spiking history. This computational model will allow future work to study how the hMCs can contribute to spatial memory formation and navigation.
Collapse
Affiliation(s)
- Anh-Tuan Trinh
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mauricio Girardi-Schappo
- Departamento de Física, Universidade Federal de Santa Catarina, Santa Catarina, Florianópolis, Brazil
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
- Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
- Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
- Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Gulfo MC, Lebowitz JJ, Ramos C, Hwang DW, Nasrallah K, Castillo PE. Dopamine D2 receptors in mossy cells reduce excitatory transmission and are essential for hippocampal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539468. [PMID: 37205586 PMCID: PMC10187294 DOI: 10.1101/2023.05.05.539468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. Expression from the dopamine D2 receptor (D2R) gene (Drd2) promoter is a defining feature of MCs, and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well-known. Surprisingly, though, the function of MC D2Rs remain largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells. D2R activation by exogenous and endogenous dopamine reduced MC to dentate granule cells (GC) synaptic transmission, most likely by a presynaptic mechanism. In contrast, removing Drd2 from MCs had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.
Collapse
Affiliation(s)
- Michelle C. Gulfo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Joseph J. Lebowitz
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, U.S.A
| | - Czarina Ramos
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
- Lead contact
| |
Collapse
|
5
|
Lutzu S, Alviña K, Puente N, Grandes P, Castillo PE. Target cell-specific plasticity rules of NMDA receptor-mediated synaptic transmission in the hippocampus. Front Cell Neurosci 2023; 17:1068472. [PMID: 37091922 PMCID: PMC10113460 DOI: 10.3389/fncel.2023.1068472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Long-term potentiation and depression of NMDA receptor-mediated synaptic transmission (NMDAR LTP/LTD) can significantly impact synapse function and information transfer in several brain areas. However, the mechanisms that determine the direction of NMDAR plasticity are poorly understood. Here, using physiologically relevant patterns of presynaptic and postsynaptic burst activities, whole-cell patch clamp recordings, 2-photon laser calcium imaging in acute rat hippocampal slices and immunoelectron microscopy, we tested whether distinct calcium dynamics and group I metabotropic glutamate receptor (I-mGluR) subtypes control the sign of NMDAR plasticity. We found that postsynaptic calcium transients (CaTs) in response to hippocampal MF stimulation were significantly larger during the induction of NMDAR-LTP compared to NMDAR-LTD at the MF-to-CA3 pyramidal cell (MF-CA3) synapse. This difference was abolished by pharmacological blockade of mGluR5 and was significantly reduced by depletion of intracellular calcium stores, whereas blocking mGluR1 had no effect on these CaTs. In addition, we discovered that MF to hilar mossy cell (MF-MC) synapses, which share several structural and functional commonalities with MF-CA3 synapses, also undergoes NMDAR plasticity. To our surprise, however, we found that the postsynaptic distribution of I-mGluR subtypes at these two synapses differ, and the same induction protocol that induces NMDAR-LTD at MF-CA3 synapses, only triggered NMDAR-LTP at MF-MC synapses, despite a comparable calcium dynamics. Thus, postsynaptic calcium dynamics alone cannot predict the sign of NMDAR plasticity, indicating that both postsynaptic calcium rise and the relative contribution of I-mGluR subtypes likely determine the learning rules of NMDAR plasticity.
Collapse
Affiliation(s)
- Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Pablo E. Castillo,
| |
Collapse
|
6
|
Consoli DC, Spitznagel BD, Owen BM, Kang H, Williams Roberson S, Pandharipande P, Wesley Ely E, Nobis WP, Bastarache JA, Harrison FE. Altered EEG, disrupted hippocampal long-term potentiation and neurobehavioral deficits implicate a delirium-like state in a mouse model of sepsis. Brain Behav Immun 2023; 107:165-178. [PMID: 36243287 PMCID: PMC10010333 DOI: 10.1016/j.bbi.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis and systemic inflammation are often accompanied by severe encephalopathy, sleep disruption and delirium that strongly correlate with poor clinical outcomes including long-term cognitive deficits. The cardinal manifestations of delirium are fluctuating altered mental status and inattention, identified in critically ill patients by interactive bedside assessment. The lack of analogous assessments in mouse models or clear biomarkers is a challenge to preclinical studies of delirium. In this study, we utilized concurrent measures of telemetric EEG recordings and neurobehavioral tasks in mice to characterize inattention and persistent cognitive deficits following polymicrobial sepsis. During the 24-hour critical illness period for the mice, slow-wave EEG dominance, sleep disruption, and hypersensitivity to auditory stimuli in neurobehavioral tasks resembled clinical observations in delirious patients in which alterations in similar outcome measurements, although measured differently in mice and humans, are reported. Mice were tested for nest building ability 7 days after sepsis induction, when sickness behaviors and spontaneous activity had returned to baseline. Animals that showed persistent deficits determined by poor nest building at 7 days also exhibited molecular changes in hippocampal long-term potentiation compared to mice that returned to baseline cognitive performance. Together, these behavioral and electrophysiological biomarkers offer a robust mouse model with which to further probe molecular pathways underlying brain and behavioral changes during and after acute illness such as sepsis.
Collapse
Affiliation(s)
- David C Consoli
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | | | - Benjamin M Owen
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Hakmook Kang
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | | | | | - E Wesley Ely
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - William P Nobis
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Julie A Bastarache
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Fiona E Harrison
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Steiner A, Owen BM, Bauer JP, Seanez L, Kwon S, Biddinger JE, Huffman R, Ayala JE, Nobis WP, Lewis AS. Glucagon-like peptide-1 receptor differentially controls mossy cell activity across the dentate gyrus longitudinal axis. Hippocampus 2022; 32:797-807. [PMID: 36063105 PMCID: PMC9675713 DOI: 10.1002/hipo.23469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 01/07/2023]
Abstract
Understanding the role of dentate gyrus (DG) mossy cells (MCs) in learning and memory has rapidly evolved due to increasingly precise methods for targeting MCs and for in vivo recording and activity manipulation in rodents. These studies have shown MCs are highly active in vivo, strongly remap to contextual manipulation, and that their inhibition or hyperactivation impairs pattern separation and location or context discrimination. Less well understood is how MC activity is modulated by neurohormonal mechanisms, which might differentially control the participation of MCs in cognitive functions during discrete states, such as hunger or satiety. In this study, we demonstrate that glucagon-like peptide-1 (GLP-1), a neuropeptide produced in the gut and the brain that regulates food consumption and hippocampal-dependent mnemonic function, might regulate MC function through expression of its receptor, GLP-1R. RNA-seq demonstrated that most, though not all, Glp1r in hippocampal principal neurons is expressed in MCs, and in situ hybridization revealed strong expression of Glp1r in hilar neurons. Glp1r-ires-Cre mice crossed with Ai14D reporter mice followed by co-labeling for the MC marker GluR2/3 revealed that almost all MCs in the ventral DG expressed Glp1r and that almost all Glp1r-expressing hilar neurons were MCs. However, only ~60% of dorsal DG MCs expressed Glp1r, and Glp1r was also expressed in small hilar neurons that were not MCs. Consistent with this expression pattern, peripheral administration of the GLP-1R agonist exendin-4 (5 μg/kg) increased cFos expression in ventral but not dorsal DG hilar neurons. Finally, whole-cell patch-clamp recordings from ventral MCs showed that bath application of exendin-4 (200 nM) depolarized MCs and increased action potential firing. Taken together, this study adds to known MC activity modulators a neurohormonal mechanism that may preferentially affect ventral DG physiology and may potentially be targetable by several GLP-1R pharmacotherapies already in clinical use.
Collapse
Affiliation(s)
- Alex Steiner
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin M. Owen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James P. Bauer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leann Seanez
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sam Kwon
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jessica E. Biddinger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ragan Huffman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - William P. Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan S. Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Wang X, Zhang Y, Cheng W, Gao Y, Li S. Decreased excitatory drive onto hilar neuronal nitric oxide synthase expressing interneurons in chronic models of epilepsy. Brain Res 2021; 1764:147467. [PMID: 33831408 DOI: 10.1016/j.brainres.2021.147467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Excitation-inhibition imbalance of GABAergic interneurons is predisposed to develop chronic temporal lobe epilepsy (TLE). We have previously shown that virtually every neuronal nitric oxide synthase (nNOS)-positive cell is a GABAergic inhibitory interneuron in the denate gyrus. The present study was designed to quantify the number of nNOS-containing hilar interneurons using stereology in pilocapine- and kainic acid (KA)-exposed transgenic adult mice that expressed GFP under the nNOS promoter. In addition, we studied the properties of miniature excitatory postsynaptic current (mEPSC) and paired-pulse response ratio (PPR) of evoked EPSC in nNOS interneurons using whole cell recording techniques. Results showed that there were fewer nNOS-immunoreactive interneurons of chronically epileptic animals. Importantly, patch-clamp recordings revealed reduction in mEPSC frequency, indicating diminished global excitatory input. In contrast, PPR of evoked EPSC following the granule cell layer stimulation was increased in epileptic animals suggesting reduced neurotransmitter release from granule cell input. In summary, we propose that impaired excitatory drive onto hippocampal nNOS interneurons may be implicated in the development of refractory epilepsy.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China.
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Weyland Cheng
- Department of Orthopaedics, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou 450018, Henan, China
| | - Yinbo Gao
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
9
|
Mulle C, Crépel V. Regulation and dysregulation of neuronal circuits by KARs. Neuropharmacology 2021; 197:108699. [PMID: 34246686 DOI: 10.1016/j.neuropharm.2021.108699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Kainate receptors (KARs) constitute a family of ionotropic glutamate receptors (iGluRs) with distinct physiological roles in synapses and neuronal circuits. Despite structural and biophysical commonalities with the other iGluRs, AMPA receptors and NMDA receptors, their role as post-synaptic receptors involved in shaping EPSCs to transmit signals across synapses is limited to a small number of synapses. On the other hand KARs regulate presynaptic release mechanisms and control ion channels and signaling pathways through non-canonical metabotropic actions. We review how these different KAR-dependent mechanisms concur to regulate the activity and plasticity of neuronal circuits in physiological conditions of activation of KARs by endogenous glutamate (as opposed to pharmacological activation by exogenous agonists). KARs have been implicated in neurological disorders, based on genetic association and on physiopathological studies. A well described example relates to temporal lobe epilepsy for which the aberrant recruitment of KARs at recurrent mossy fiber synapses takes part in epileptogenic neuronal activity. In conclusion, KARs certainly represent an underestimated actor in the regulation of neuronal circuits, and a potential therapeutic target awaiting more selective and efficient genetic tools and/or ligands.
Collapse
Affiliation(s)
- Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille Université, Marseille, France
| |
Collapse
|
10
|
Núñez-Ochoa MA, Chiprés-Tinajero GA, González-Domínguez NP, Medina-Ceja L. Causal relationship of CA3 back-projection to the dentate gyrus and its role in CA1 fast ripple generation. BMC Neurosci 2021; 22:37. [PMID: 34001031 PMCID: PMC8130286 DOI: 10.1186/s12868-021-00641-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pathophysiological evidence from temporal lobe epilepsy models highlights the hippocampus as the most affected structure due to its high degree of neuroplasticity and control of the dynamics of limbic structures, which are necessary to encode information, conferring to it an intrinsic epileptogenicity. A loss in this control results in observable oscillatory perturbations called fast ripples, in epileptic rats those events are found in CA1, CA3, and the dentate gyrus (DG), which are the principal regions of the trisynaptic circuit of the hippocampus. The present work used Granger causality to address which relationships among these three regions of the trisynaptic circuit are needed to cause fast ripples in CA1 in an in vivo model. For these purposes, male Wistar rats (210-300 g) were injected with a single dose of pilocarpine hydrochloride (2.4 mg/2 µl) into the right lateral ventricle and video-monitored 24 h/day to detect spontaneous and recurrent seizures. Once detected, rats were implanted with microelectrodes in these regions (fixed-recording tungsten wire electrodes, 60-μm outer diameter) ipsilateral to the pilocarpine injection. A total of 336 fast ripples were recorded and probabilistically characterized, from those fast ripples we made a subset of all the fast ripple events associated with sharp-waves in CA1 region (n = 40) to analyze them with Granger Causality. RESULTS Our results support existing evidence in vitro in which fast ripple events in CA1 are initiated by CA3 multiunit activity and describe a general synchronization in the theta band across the three regions analyzed DG, CA3, and CA1, just before the fast ripple event in CA1 have begun. CONCLUSION This in vivo study highlights the causal participation of the CA3 back-projection to the DG, a connection commonly overlooked in the trisynaptic circuit, as a facilitator of a closed-loop among these regions that prolongs the excitatory activity of CA3. We speculate that the loss of inhibitory drive of DG and the mechanisms of ripple-related memory consolidation in which also the CA3 back-projection to DG has a fundamental role might be underlying processes of the fast ripples generation in CA1.
Collapse
Affiliation(s)
- Miguel A Núñez-Ochoa
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Gustavo A Chiprés-Tinajero
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Nadia P González-Domínguez
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico.
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
11
|
Yan WW, Xia M, Chiang J, Levitt A, Hawkins N, Kearney J, Swanson GT, Chetkovich D, Nobis WP. Enhanced Synaptic Transmission in the Extended Amygdala and Altered Excitability in an Extended Amygdala to Brainstem Circuit in a Dravet Syndrome Mouse Model. eNeuro 2021; 8:ENEURO.0306-20.2021. [PMID: 34045209 PMCID: PMC8213443 DOI: 10.1523/eneuro.0306-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy with an increased incidence of sudden death. Evidence of interictal breathing deficits in DS suggests that alterations in subcortical projections to brainstem nuclei may exist, which might be driving comorbidities in DS. The aim of this study was to determine whether a subcortical structure, the bed nucleus of the stria terminalis (BNST) in the extended amygdala, is activated by seizures, exhibits changes in excitability, and expresses any alterations in neurons projecting to a brainstem nucleus associated with respiration, stress response, and homeostasis. Experiments were conducted using F1 mice generated by breeding 129.Scn1a+/- mice with wild-type C57BL/6J mice. Immunohistochemistry was performed to quantify neuronal c-fos activation in DS mice after observed spontaneous seizures. Whole-cell patch-clamp and current-clamp electrophysiology recordings were conducted to evaluate changes in intrinsic and synaptic excitability in the BNST. Spontaneous seizures in DS mice significantly enhanced neuronal c-fos expression in the BNST. Further, the BNST had altered AMPA/NMDA postsynaptic receptor composition and showed changes in spontaneous neurotransmission, with greater excitation and decreased inhibition. BNST to parabrachial nucleus (PBN) projection neurons exhibited intrinsic excitability in wild-type mice, while these projection neurons were hypoexcitable in DS mice. The findings suggest that there is altered excitability in neurons of the BNST, including BNST-to-PBN projection neurons, in DS mice. These alterations could potentially be driving comorbid aspects of DS outside of seizures, including respiratory dysfunction and sudden death.
Collapse
Affiliation(s)
- Wen Wei Yan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Maya Xia
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jeremy Chiang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alyssa Levitt
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Nicole Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Jennifer Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Dane Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - William P Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
12
|
Núñez-Ochoa MA, Chiprés-Tinajero GA, Medina-Ceja L. Evaluation of the hippocampal immunoreactivity of the serotonin 5-HT1A, 5-HT2 and 5-HT7 receptors in a pilocarpine temporal lobe epilepsy rat model with fast ripples. Neuroreport 2021; 32:306-311. [PMID: 33470771 DOI: 10.1097/wnr.0000000000001594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fast ripples (FRs) are found in the hippocampus of epileptic brains, and this fast electrical activity has been described as a biomarker of the epileptogenic process itself. Results from our laboratory, such as the observation of decreased seizure rates and FR incidence at a specific citalopram dose, have suggested that serotonin (5-HT) may play a key role in the FR generation process. Therefore, to gather more details about the state of the serotoninergic system in the hippocampus under an epileptogenic process, we studied the immunoreactivity of three 5-HT receptors (5-HT1A, 5-HT2 and 5-HT7) as well as the extracellular levels of 5-HT in the hippocampal tissue of epileptic rats with FR. Wistar rats (210-300 g) were injected with a single dose of pilocarpine hydrochloride (2.4 mg/2 µl) in the right lateral ventricle and video-monitored 24 h/d to detect spontaneous and recurrent seizures; microelectrodes were implanted in the dentate gyrus (DG) and CA3 and CA1 regions of these rats ipsilateral to the pilocarpine injection site 1 day after the first spontaneous seizure was observed, and only rats who suffered FR events were used in this work. Thirty-three days after the first spontaneous seizure, an immunostaining procedure and high performance liquid chromatography were performed to measure the 5-HT levels. A general depletion of the 5-HT and 5-HIIA levels in hippocampal tissue from epileptic animals compared with those in controls was observed; in addition, a general decrease in immunoreactivity for the three receptors was found, especially in the DG, which may support the establishment of an excitatory/inhibitory imbalance in the trisynaptic circuit that underlies the FR generation process.
Collapse
MESH Headings
- Animals
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Disease Models, Animal
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hydroxyindoleacetic Acid/metabolism
- Immunohistochemistry
- Muscarinic Agonists/toxicity
- Pilocarpine/toxicity
- Rats
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/metabolism
- Serotonin/metabolism
Collapse
Affiliation(s)
- Miguel A Núñez-Ochoa
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, México
| | | | | |
Collapse
|
13
|
Swaminathan A, Wichert I, Schmitz D, Maier N. Involvement of Mossy Cells in Sharp Wave-Ripple Activity In Vitro. Cell Rep 2019; 23:2541-2549. [PMID: 29847786 DOI: 10.1016/j.celrep.2018.04.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The role of mossy cells (MCs) of the hippocampal dentate area has long remained mysterious. Recent research has begun to unveil their significance in spatial computation of the hippocampus. Here, we used an in vitro model of sharp wave-ripple complexes (SWRs), which contribute to hippocampal memory formation, to investigate MC involvement in this fundamental population activity. We find that a significant fraction of MCs (∼47%) is recruited into the active neuronal network during SWRs in the CA3 area. Moreover, MCs receive pronounced, ripple-coherent, excitatory and inhibitory synaptic input. Finally, we find evidence for SWR-related synaptic activity in granule cells that is mediated by MCs. Given the widespread connectivity of MCs within and between hippocampi, our data suggest a role for MCs as a hub functionally coupling the CA3 and the DG during ripple-associated computations.
Collapse
Affiliation(s)
- Aarti Swaminathan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Cluster of Excellence NeuroCure, 10117 Berlin, Germany
| | - Ines Wichert
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany; Cluster of Excellence NeuroCure, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| |
Collapse
|