1
|
Estadt AT, Kline D, Miller WC, Feinberg J, Hurt CB, Mixson LS, Friedmann PD, Lowe K, Tsui JI, Young AM, Cooper H, Korthuis PT, Pho MT, Jenkins W, Westergaard RP, Go VF, Brook D, Smith G, Rice DR, Lancaster KE. Differences in hepatitis C virus (HCV) testing and treatment by opioid, stimulant, and polysubstance use among people who use drugs in rural U.S. communities. Harm Reduct J 2024; 21:214. [PMID: 39614319 DOI: 10.1186/s12954-024-01131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND People who use drugs (PWUD) in rural communities increasingly use stimulants, such as methamphetamine and cocaine, with opioids. We examined differences in hepatitis C virus (HCV) testing and treatment history among rural PWUD with opioids, stimulants, and other substance use combinations. METHODS PWUD were enrolled from ten rural U.S. communities from 2018 to 2020. Participants self-reporting a positive HCV result were asked about their HCV treatment history and drug use history. Drug use was categorized as opioids alone, stimulants alone, both, or other drug(s) within the past 30 days. Prevalence ratios (PR) were yielded using adjusted multivariable log-binomial regression with generalized linear mixed models. RESULTS Of the 2,705 PWUD, most reported both opioid and stimulant use (74%); while stimulant-only (12%), opioid-only (11%), and other drug use (2%) were less common. Most (76%) reported receiving HCV testing. Compared to other drug use, those who reported opioid use alone had a lower prevalence of HCV testing (aPR = 0.80; 95% CI: 0.63, 1.02). Among participants (n = 944) who self-reported an HCV diagnosis in their lifetime, 111 (12%) ever took anti-HCV medication; those who used both opioids and stimulants were less likely to have taken anti-HCV medication compared with other drug(s) (aPR = 0.41; 95% CI: 0.19, 0.91). CONCLUSIONS In this pre-COVID study of U.S. rural PWUD, those who reported opioid use alone had a lower prevalence of reported HCV testing. Those diagnosed with HCV and reported both opioid and stimulant use were less likely to report ever taking anti-HCV medication.
Collapse
Affiliation(s)
- Angela T Estadt
- College of Public Health, Division of Epidemiology, Ohio State University, 1841 Neil Avenue, Columbus, OH, 43210, USA.
| | - David Kline
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - William C Miller
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Judith Feinberg
- Departments of Behavioral Medicine and Psychiatry & Medicine/Infectious Diseases, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Christopher B Hurt
- Institute for Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Sarah Mixson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Peter D Friedmann
- University of Massachusetts Medical School-Baystate and Baystate Health, Springfield, MA, USA
| | - Kelsa Lowe
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Judith I Tsui
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - April M Young
- Department of Epidemiology, Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY, USA
| | - Hannah Cooper
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Todd Korthuis
- Department of Medicine, Section of Addiction Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Mai T Pho
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Wiley Jenkins
- Department of Public Health Sciences, Clemson University, Clemson, SC, USA
| | - Ryan P Westergaard
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Vivian F Go
- Gillings School of Global Public Health, Department of Health Behavior, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Brook
- College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gordon Smith
- Department of Epidemiology and Biostatistics, West Virginia University School of Public Health, Morgantown, WV, USA
| | - Dylan R Rice
- University of Massachusetts Chan School of Medicine, Worcester, MA, USA
| | - Kathryn E Lancaster
- Division of Public Health Sciences, Department of Implementation Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Davidson CJ, Mascarin AT, Yahya MA, Rubio FJ, Gheidi A. Approaches and considerations of studying neuronal ensembles: a brief review. Front Cell Neurosci 2023; 17:1310724. [PMID: 38155864 PMCID: PMC10752959 DOI: 10.3389/fncel.2023.1310724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
First theorized by Hebb, neuronal ensembles have provided a framework for understanding how the mammalian brain operates, especially regarding learning and memory. Neuronal ensembles are discrete, sparsely distributed groups of neurons that become activated in response to a specific stimulus and are thought to provide an internal representation of the world. Beyond the study of region-wide or projection-wide activation, the study of ensembles offers increased specificity and resolution to identify and target specific memories or associations. Neuroscientists interested in the neurobiology of learning, memory, and motivated behavior have used electrophysiological-, calcium-, and protein-based proxies of neuronal activity in preclinical models to better understand the neurobiology of learned and motivated behaviors. Although these three approaches may be used to pursue the same general goal of studying neuronal ensembles, technical differences lead to inconsistencies in the output and interpretation of data. This mini-review highlights some of the methodologies used in electrophysiological-, calcium-, and protein-based studies of neuronal ensembles and discusses their strengths and weaknesses.
Collapse
Affiliation(s)
- Cameron J. Davidson
- William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - Alixandria T. Mascarin
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Majd A. Yahya
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - F. Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Bethesda, MD, United States
| | - Ali Gheidi
- Department of Biomedical Sciences, Mercer University, Macon, GA, United States
| |
Collapse
|
4
|
Maurus P, Jackson K, Cashaback JG, Cluff T. The nervous system tunes sensorimotor gains when reaching in variable mechanical environments. iScience 2023; 26:106756. [PMID: 37213228 PMCID: PMC10197011 DOI: 10.1016/j.isci.2023.106756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Humans often move in the presence of mechanical disturbances that can vary in direction and amplitude throughout movement. These disturbances can jeopardize the outcomes of our actions, such as when drinking from a glass of water on a turbulent flight or carrying a cup of coffee while walking on a busy sidewalk. Here, we examine control strategies that allow the nervous system to maintain performance when reaching in the presence of mechanical disturbances that vary randomly throughout movement. Healthy participants altered their control strategies to make movements more robust against disturbances. The change in control was associated with faster reaching movements and increased responses to proprioceptive and visual feedback that were tuned to the variability of the disturbances. Our findings highlight that the nervous system exploits a continuum of control strategies to increase its responsiveness to sensory feedback when reaching in the presence of increasingly variable physical disturbances.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Kuira Jackson
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Joshua G.A. Cashaback
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Corresponding author
| |
Collapse
|
5
|
Darcq E, Nouel D, Hernandez G, Pokinko M, Ash P, Moquin L, Gratton A, Kieffer B, Flores C. Reduced dopamine release in Dcc haploinsufficiency male mice abolishes the rewarding effects of cocaine but not those of morphine and ethanol. Psychopharmacology (Berl) 2023; 240:637-646. [PMID: 36471064 PMCID: PMC10296775 DOI: 10.1007/s00213-022-06288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE The Netrin-1/DCC guidance cue pathway is critically involved in the adolescent organization of the mesocorticolimbic dopamine circuitry. Adult mice heterozygous for Dcc show reduced dopamine release in the nucleus accumbens in response to amphetamine and, in turn, blunted sensitivity to the rewarding effects of this drug. OBJECTIVE Here, we tested whether the protective effects of Dcc haploinsufficiency are specific to stimulant drugs of abuse or instead extrapolate to opioids and ethanol. METHODS We used the place preference paradigm to measure the rewarding effects of cocaine (20 mg/kg), morphine (5 or 10 mg/Kg), or ethanol (20%) in adult (PND 75) male Dcc haploinsufficient mice or their wild-type litter mates. In a second experiment, we compared in these two genotypes, in vivo dopamine release in the nucleus accumbens after a single i.p. injection of morphine (10 mg/kg). RESULTS We found reduced morphine-induced dopamine release in the nucleus accumbens of Dcc haploinsufficient male mice, but, contrary to the effects of stimulant drugs, there is no effect of genotype on morphine-induced conditioned preference. CONCLUSION These findings show that reduced drug-induced mesolimbic dopamine in Dcc haploinsufficient male mice protects specifically against the rewarding effects of stimulant drugs, but not against the rewarding properties of morphine and ethanol. These results suggest that these drugs exert their rewarding effect via different brain circuits.
Collapse
Affiliation(s)
- Emmanuel Darcq
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | | | - Matthew Pokinko
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montréal, Québec, Canada
| | - Polina Ash
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montréal, Québec, Canada
| | - Luc Moquin
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Alain Gratton
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Brigitte Kieffer
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, Québec, Canada.
- Department of Psychiatry, McGill University, Montréal, Québec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
- Department of Psychiatry, Douglas Mental Health University Institute, Perry Pavilion, Room 2111, 6875 LaSalle Boulevard, Montréal (Verdun), Québec, H4H 1R3, Canada.
| |
Collapse
|
6
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
7
|
Kahan A, Greenbaum A, Jang MJ, Robinson JE, Cho JR, Chen X, Kassraian P, Wagenaar DA, Gradinaru V. Light-guided sectioning for precise in situ localization and tissue interface analysis for brain-implanted optical fibers and GRIN lenses. Cell Rep 2021; 36:109744. [PMID: 34592157 PMCID: PMC8552649 DOI: 10.1016/j.celrep.2021.109744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 01/30/2023] Open
Abstract
Optical implants to control and monitor neuronal activity in vivo have become foundational tools of neuroscience. Standard two-dimensional histology of the implant location, however, often suffers from distortion and loss during tissue processing. To address that, we developed a three-dimensional post hoc histology method called “light-guided sectioning” (LiGS), which preserves the tissue with its optical implant in place and allows staining and clearing of a volume up to 500 μm in depth. We demonstrate the use of LiGS to determine the precise location of an optical fiber relative to a deep brain target and to investigate the implant-tissue interface. We show accurate cell registration of ex vivo histology with single-cell, two-photon calcium imaging, obtained through gradient refractive index (GRIN) lenses, and identify subpopulations based on immunohistochemistry. LiGS provides spatial information in experimental paradigms that use optical fibers and GRIN lenses and could help increase reproducibility through identification of fiber-to-target localization and molecular profiling. Kahan et al. describe a 3D histology method (LiGS) to investigate with high fidelity the vicinity of an intact optical implant (e.g., GRIN lenses and optical fibers). LiGS is compatible with immunohistochemistry and single-molecule imaging. With the use of two-photon microscopy, LiGS can also link the functional properties of cells to their molecular identity.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - J Elliott Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jounhong Ryan Cho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel A Wagenaar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Facilitating mGluR4 activity reverses the long-term deleterious consequences of chronic morphine exposure in male mice. Neuropsychopharmacology 2021; 46:1373-1385. [PMID: 33349673 PMCID: PMC8136479 DOI: 10.1038/s41386-020-00927-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Understanding the neurobiological underpinnings of abstinence from drugs of abuse is critical to allow better recovery and ensure relapse prevention in addicted subjects. By comparing the long-term transcriptional consequences of morphine and cocaine exposure, we identified the metabotropic glutamate receptor subtype 4 (mGluR4) as a promising pharmacological target in morphine abstinence. We evaluated the behavioral and molecular effects of facilitating mGluR4 activity in abstinent mice. Transcriptional regulation of marker genes of medium spiny neurons (MSNs) allowed best discriminating between 4-week morphine and cocaine abstinence in the nucleus accumbens (NAc). Among these markers, Grm4, encoding mGluR4, displayed down-regulated expression in the caudate putamen and NAc of morphine, but not cocaine, abstinent mice. Chronic administration of the mGluR4 positive allosteric modulator (PAM) VU0155041 (2.5 and 5 mg/kg) rescued social behavior, normalized stereotypies and anxiety and blunted locomotor sensitization in morphine abstinent mice. This treatment improved social preference but increased stereotypies in cocaine abstinent mice. Finally, the beneficial behavioral effects of VU0155041 treatment in morphine abstinent mice were correlated with restored expression of key MSN and neural activity marker genes in the NAc. This study reports that chronic administration of the mGluR4 PAM VU0155041 relieves long-term deleterious consequences of morphine exposure. It illustrates the neurobiological differences between opiate and psychostimulant abstinence and points to pharmacological repression of excessive activity of D2-MSNs in the NAc as a promising therapeutic lever in drug addiction.
Collapse
|
9
|
Yakout DW, Shree N, Mabb AM. Effect of pharmacological manipulations on Arc function. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 2:100013. [PMID: 34909648 PMCID: PMC8663979 DOI: 10.1016/j.crphar.2020.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a brain-enriched immediate early gene that regulates important mechanisms implicated in learning and memory. Arc levels are controlled through a balance of induction and degradation in an activity-dependent manner. Arc further undergoes multiple post-translational modifications that regulate its stability, localization and function. Recent studies demonstrate that these features of Arc can be pharmacologically manipulated. In this review, we discuss some of these compounds, with an emphasis on drugs of abuse and psychotropic drugs. We also discuss inflammatory states that regulate Arc.
Collapse
Affiliation(s)
- Dina W. Yakout
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Nitheyaa Shree
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
10
|
Małkiewicz MA, Małecki A, Toborek M, Szarmach A, Winklewski PJ. Substances of abuse and the blood brain barrier: Interactions with physical exercise. Neurosci Biobehav Rev 2020; 119:204-216. [PMID: 33038347 DOI: 10.1016/j.neubiorev.2020.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Substance use disorders pose a common medical, social and financial problem. Among the pathomechanisms of substance use disorders, the disruption and increased permeability of the blood-brain barrier has been recently revealed. Physical exercise appears to be a relatively inexpensive and feasible way to implement behavioral therapy counteracting the blood-brain barrier impairment. Concomitantly, there are also studies supporting a potential protective role of selected substances of abuse in maintaining the blood-brain barrier integrity. In this review, we aim to provide a summary on the modulatory influence of physical exercise, a non-pharmacological intervention, on the blood-brain barrier alterations caused by substances of abuse. Further studies are needed to understand the precise mechanisms that underlie various effects of physical exercise in substance use disorders.
Collapse
Affiliation(s)
- Marta A Małkiewicz
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland; Department of Psychiatry, Medical University of Gdansk, Gdansk, Poland.
| | - Andrzej Małecki
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA
| | - Arkadiusz Szarmach
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Paweł J Winklewski
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland; Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|