1
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Fang M, Liu Y, Gao X, Yu J, Tu X, Mo X, Zhu H, Zou Y, Huang C, Fan S. Perillaldehyde alleviates polyQ-induced neurodegeneration through the induction of autophagy and mitochondrial UPR in Caenorhabditis elegans. Biofactors 2024. [PMID: 38990058 DOI: 10.1002/biof.2089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease associated with autophagy disorder and mitochondrial dysfunction. Here, we identified therapeutic potential of perillaldehyde (PAE), a monoterpene compound obtained from Perilla frutescens (L.) Britt., in the Caenorhabditis elegans (C. elegans) model of HD, which included lifespan extension, healthspan improvement, decrease in polyglutamine (polyQ) aggregation, and preservation of mitochondrial network. Further analyses indicated that PAE was able to induce autophagy and mitochondrial unfolded protein reaction (UPRmt) activation and positively regulated expression of associated genes. In lgg-1 RNAi C. elegans or C. elegans with UPRmt-related genes knockdown, the effects of PAE treatment on polyQ aggregation or rescue polyQ-induced toxicity were attenuated, suggesting that its neuroprotective activity depended on autophagy and UPRmt. Moreover, we found that pharmacological and genetic activation of UPRmt generally protected C. elegans from polyQ-induced cytotoxicity. Finally, PAE promoted serotonin synthesis by upregulating expression of TPH-1, and serotonin synthesis and neurosecretion were required for PAE-mediated UPRmt activation and its neuroprotective activity. In conclusion, PAE is a potential therapy for polyQ-related diseases including HD, which is dependent on autophagy and cell-non-autonomous UPRmt activation.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhang Y, Luo L, Gan P, Chen X, Li X, Pang Y, Yu X, Yu K. Exposure to pentachlorophenol destructs the symbiotic relationship between zooxanthellae and host and induces pathema in coral Porites lutea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167956. [PMID: 37884147 DOI: 10.1016/j.scitotenv.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Stress from chemical pollutants is among the key issues that have adverse impacts on coral reefs. As a persistent organic pollutant, pentachlorophenol (PCP) has been detected in the seawater of Weizhou Island and was proved to have significant adverse effects on aquatic animals. However, little is known about its effects on scleractinian coral. Therefore, we investigated the response of the coral Porites lutea to PCP stress. Coral bleaching, photosynthesis parameters and antioxidant enzyme activities of P. lutea under PCP exposure were documented. After 96 h of exposure, significant tissue loss and bleaching occurred when the PCP concentration exceeded 100 μg/L. The density of symbiotic zooxanthellae decreased from 2.06 × 106 cells/cm2 to 0.93 × 106 cells/cm2 when the PCP concentration increased from 1 μg/L- 1000 μg/L. Long-term exposure of 120 days to PCP at 0.1 μg/L also led to coral bleaching, the maximum photochemical quantum yield of PSII in P. lutea nubbins significantly decreased to 0.482. The analysis of microbial community distribution indicated that the increase of the pathogenic bacterium Citrobacter may be one of the inducers of coral bleaching. Conjoint analysis of transcriptomics and proteomics showed that the metabolism of amino acids and carbohydrates in zooxanthellae was abnormal, leading to the destruction of its symbiotic relationship with the host. The immune system of the host was disrupted, which could be linked to the prevalence of coral pathema. The toxic responses of PCP on both zooxanthellae and its host were further confirmed by the upregulation of the differential metabolites including 1-naphthylamine and phosphatidylcholine, etc.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Lan Luo
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pin Gan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaoli Li
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yan Pang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaopeng Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
4
|
Zárate-Potes A, Ali I, Ribeiro Camacho M, Brownless H, Benedetto A. Meta-Analysis of Caenorhabditis elegans Transcriptomics Implicates Hedgehog-Like Signaling in Host-Microbe Interactions. Front Microbiol 2022; 13:853629. [PMID: 35620104 PMCID: PMC9127769 DOI: 10.3389/fmicb.2022.853629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Controlling nematode-caused diseases that affect cattle and crops world-wide remains a critical economic issue, owing to the lack of effective sustainable interventions. The interdependence of roundworms and their environmental microbes, including their microbiota, offers an opportunity for developing more targeted anthelminthic strategies. However, paucity of information and a currently narrow understanding of nematode-microbe interactions limited to specific infection contexts has precluded us from exploiting it. With the advent of omics approaches to map host-microbe genetic interactions, particularly in the model roundworm Caenorhabditis elegans, large datasets are now available across multiple models, that enable identification of nematode-microbe-specific pathways. In this work we collected 20 transcriptomic datasets documenting gene expression changes of C. elegans exposed to 20 different commensal and pathogenic microbes, performing gene enrichment analyses followed by functional testing using RNA interference directed toward genes of interest, before contrasting results from transcriptomic meta-analyses and phenomics. Differential expression analyses revealed a broad enrichment in signaling, innate immune response and (lipid) metabolism genes. Amongst signaling gene families, the nematode-divergent and expanded Hedgehog-like signaling (HHLS) pathway featured prominently. Indeed, 24/60 C. elegans Hedgehog-like proteins (HRPs) and 15/27 Patched-related receptors (PTRs) were differentially expressed in at least four microbial contexts, while up to 32/60 HRPs could be differentially expressed in a single context. interestingly, differentially expressed genes followed a microbe-specific pattern, suggestive of an adaptive microbe-specific response. To investigate this further, we knocked-down 96 individual HHLS genes by RNAi, using high-throughput assays to assess their impact on three worm-gut infection models (Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis) and two worm-commensal paradigms (Comamonas sp., and Bacillus subtilis). We notably identified new putative infection response genes whose upregulation was required for normal pathogen resistance (i.e., grl-21 and ptr-18 protective against E. faecalis), as well as commensal-specific host-gene expression changes that are required for normal host stress handling. Importantly, interactions appeared more microbe-specific than shared. Our results thus implicate the Hedgehog-like signaling pathway in the modulation and possibly fine-tuning of nematode-microbe interactions and support the idea that interventions targeting this pathway may provide a new avenue for anthelmintic development.
Collapse
|
5
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
6
|
The transcription factor LAG-1/CSL plays a Notch-independent role in controlling terminal differentiation, fate maintenance, and plasticity of serotonergic chemosensory neurons. PLoS Biol 2021; 19:e3001334. [PMID: 34232959 PMCID: PMC8289040 DOI: 10.1371/journal.pbio.3001334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/19/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
During development, signal-regulated transcription factors (TFs) act as basal repressors and upon signalling through morphogens or cell-to-cell signalling shift to activators, mediating precise and transient responses. Conversely, at the final steps of neuron specification, terminal selector TFs directly initiate and maintain neuron-type specific gene expression through enduring functions as activators. C. elegans contains 3 types of serotonin synthesising neurons that share the expression of the serotonin biosynthesis pathway genes but not of other effector genes. Here, we find an unconventional role for LAG-1, the signal-regulated TF mediator of the Notch pathway, as terminal selector for the ADF serotonergic chemosensory neuron, but not for other serotonergic neuron types. Regulatory regions of ADF effector genes contain functional LAG-1 binding sites that mediate activation but not basal repression. lag-1 mutants show broad defects in ADF effector genes activation, and LAG-1 is required to maintain ADF cell fate and functions throughout life. Unexpectedly, contrary to reported basal repression state for LAG-1 prior to Notch receptor activation, gene expression activation in the ADF neuron by LAG-1 does not require Notch signalling, demonstrating a default activator state for LAG-1 independent of Notch. We hypothesise that the enduring activity of terminal selectors on target genes required uncoupling LAG-1 activating role from receiving the transient Notch signalling.
Collapse
|
7
|
Fung W, Wexler L, Heiman MG. Cell-type-specific promoters for C. elegans glia. J Neurogenet 2020; 34:335-346. [PMID: 32696701 PMCID: PMC7855602 DOI: 10.1080/01677063.2020.1781851] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022]
Abstract
Glia shape the development and function of the C. elegans nervous system, especially its sense organs and central neuropil (nerve ring). Cell-type-specific promoters allow investigators to label or manipulate individual glial cell types, and therefore provide a key tool for deciphering glial function. In this technical resource, we compare the specificity, brightness, and consistency of cell-type-specific promoters for C. elegans glia. We identify a set of promoters for the study of seven glial cell types (F16F9.3, amphid and phasmid sheath glia; F11C7.2, amphid sheath glia only; grl-2, amphid and phasmid socket glia; hlh-17, cephalic (CEP) sheath glia; and grl-18, inner labial (IL) socket glia) as well as a pan-glial promoter (mir-228). We compare these promoters to promoters that are expressed more variably in combinations of glial cell types (delm-1 and itx-1). We note that the expression of some promoters depends on external conditions or the internal state of the organism, such as developmental stage, suggesting glial plasticity. Finally, we demonstrate an approach for prospectively identifying cell-type-specific glial promoters using existing single-cell sequencing data, and we use this approach to identify two novel promoters specific to IL socket glia (col-53 and col-177).
Collapse
Affiliation(s)
- Wendy Fung
- These authors contributed equally to this work
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| | - Leigh Wexler
- These authors contributed equally to this work
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| | - Maxwell G. Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston MA 02115
| |
Collapse
|
8
|
Ding M, Wang X. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity. Oncol Lett 2017; 14:6327-6333. [PMID: 29391876 DOI: 10.3892/ol.2017.7030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.
Collapse
Affiliation(s)
- Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
9
|
Satheesh NJ, Uehara Y, Fedotova J, Pohanka M, Büsselberg D, Kruzliak P. TRPV currents and their role in the nociception and neuroplasticity. Neuropeptides 2016; 57:1-8. [PMID: 26825374 DOI: 10.1016/j.npep.2016.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 01/11/2023]
Abstract
Transient receptor potential channels sensitive to vanilloids (TRPVs) are group of ion channels which are sensitive to various tissue damaging signals and their activation is generally perceived as pain. Therefore, they are generally named as nociceptors. Understanding their activation and function as well as their interaction with intracellular pathways is crucial for the development of pharmacological interference in order to reduce pain perception. The current review summarizes basic facts in regard to TRPV and discusses their relevance in the sensing of (pain-) signals and their intracellular processing, focussing on their modulation of the intracellular calcium ([Ca(2+)]i) signal. Furthermore we discuss the basic mechanisms how the modification of [Ca(2+)]i through TRPV might induce long-term-potentiation (LTP) or long-term- depression (LTD) and from "memories" of pain. Understanding of these mechanisms is needed to localize the best point of interference for pharmacological treatment. Therefore, high attention is given to highlight physiological and pathological processes and their interaction with significant modulators and their roles in neuroplasticity and pain modulation.
Collapse
Affiliation(s)
| | - Yoshio Uehara
- Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women's University, Tokyo, Japan
| | - Julia Fedotova
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Peter Kruzliak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
10
|
Xu L, Choi S, Xie Y, Sze JY. Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans. PLoS Genet 2015; 11:e1005540. [PMID: 26402365 PMCID: PMC4581872 DOI: 10.1371/journal.pgen.1005540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior. Levels of neurotransmitter serotonin synthesis shape disparate behaviors in evolutionary diverse organisms, but the mechanisms defining steady state serotonin synthesis in functionally distinct neuronal types remain unknown. A genetic screen for neuron-specific serotonin synthesis mutants in Caenorhabditis elegans revealed a unique Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to define the baseline expression of serotonin synthesis rate-limiting enzyme tryptophan hydroxylase tph-1. Unlike in canonical heterotrimeric G protein signaling pathways where Gα subunits drive downstream effectors, we found that signaling through Gβ GPB-1 to the OCR-2 TRPV channel defines the baseline tph-1 expression. This Gβ signaling is not required for the establishment or maintenance of the serotonergic cell fates, but dedicated to set steady state 5-HT synthesis in mature neurons. Behavioral analyses showed that 5-HT synthesized in different neurons modulates distinct innate rhythmic behaviors. Our work identified a Gβ-mediated signaling pathway operating in differentiated neuronal cells to specify intrinsic functional diversities, and illuminate a mechanistic principle for genetic programming of neuron-specific steady state 5-HT synthesis in dedicated behavioral circuits.
Collapse
Affiliation(s)
- Lu Xu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sunju Choi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yusu Xie
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Shaham S. Glial development and function in the nervous system of Caenorhabditis elegans. Cold Spring Harb Perspect Biol 2015; 7:a020578. [PMID: 25573712 DOI: 10.1101/cshperspect.a020578] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nematode, Caenorhabditis elegans, has served as a fruitful setting for understanding conserved biological processes. The past decade has seen the rise of this model organism as an important tool for uncovering the mysteries of the glial cell, which partners with neurons to generate a functioning nervous system in all animals. C. elegans affords unparalleled single-cell resolution in vivo in examining glia-neuron interactions, and similarities between C. elegans and vertebrate glia suggest that lessons learned from this nematode are likely to have general implications. Here, I summarize what has been gleaned over the past decade since C. elegans glia research became a concerted area of focus. Studies have revealed that glia are essential elements of a functioning C. elegans nervous system and play key roles in its development. Importantly, glial influence on neuronal function appears to be dynamic. Key questions for the field to address in the near- and long-term have emerged, and these are discussed within.
Collapse
Affiliation(s)
- Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065
| |
Collapse
|
12
|
Anderson A, McMullan R. From head to tail it's a 2 way street for neuro-immune communication. WORM 2014; 3:e959425. [PMID: 26430547 PMCID: PMC4588538 DOI: 10.4161/21624046.2014.959425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/25/2014] [Indexed: 12/12/2022]
Abstract
Animals need to be able to rapidly and effectively respond to changes in their external and internal environment. To achieve this the nervous and immune systems need to coordinate their responses, integrating multiple cues including presence of potential pathogens, and availability of food. In our recent study (1) we demonstrate that signaling by sensory neurons in the head using the classical neurotransmitter serotonin can negatively regulate the rectal epithelial immune response upon infection of C. elegans with the naturally occurring bacterial pathogen Microbacterium nematophilum (M. nematophilum). The complicated nature of the mammalian brain and immune system has made it difficult to identify the molecular mechanisms mediating these interactions. With its simple, well described, nervous system and a rapidly growing understanding of its immune system, C. elegans has emerged as an excellent model to study the mechanisms by which animals recognize pathogens and coordinate behavioral and cellular immune responses to infection.
Collapse
Affiliation(s)
- A Anderson
- Department of Life Sciences; Imperial College London; South Kensington Campus ; London, UK
| | - R McMullan
- Department of Life Sciences; Imperial College London; South Kensington Campus ; London, UK
| |
Collapse
|
13
|
Anderson A, McMullan R. From head to tail it's a two way street for neuro-immune communication. WORM 2014. [DOI: 10.4161/worm.29735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
A neuronal signaling pathway of CaMKII and Gqα regulates experience-dependent transcription of tph-1. J Neurosci 2013; 33:925-35. [PMID: 23325232 DOI: 10.1523/jneurosci.2355-12.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dynamic serotonin biosynthesis is important for serotonin function; however, the mechanisms that underlie experience-dependent transcriptional regulation of the rate-limiting serotonin biosynthetic enzyme tryptophan hydroxylase (TPH) are poorly understood. Here, we characterize the molecular and cellular mechanisms that regulate increased transcription of Caenorhabditis elegans tph-1 in a pair of serotonergic neurons ADF during an aversive experience with pathogenic bacteria, a common environmental peril for worms. Training with pathogenic bacteria induces a learned aversion to the smell of the pathogen, a behavioral plasticity that depends on the serotonin signal from ADF neurons. We demonstrate that pathogen training increases ADF neuronal activity. While activating ADF increases tph-1 transcription, inhibiting ADF activity abolishes the training effect on tph-1, demonstrating the dependence of tph-1 transcriptional regulation on ADF neural activity. At the molecular level, the C. elegans homolog of CaMKII, UNC-43, functions cell-autonomously in ADF neurons to generate training-dependent enhancement in neuronal activity and tph-1 transcription, and this cell-autonomous function of UNC-43 is required for learning. Furthermore, selective expression of an activated form of UNC-43 in ADF neurons is sufficient to increase ADF activity and tph-1 transcription, mimicking the training effect. Upstream of ADF, the Gqα protein EGL-30 facilitates training-dependent induction of tph-1 by functional regulation of olfactory sensory neurons, which underscores the importance of sensory experience. Together, our work elucidates the molecular and cellular mechanisms whereby experience modulates tph-1 transcription.
Collapse
|
15
|
Xie Y, Moussaif M, Choi S, Xu L, Sze JY. RFX transcription factor DAF-19 regulates 5-HT and innate immune responses to pathogenic bacteria in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003324. [PMID: 23505381 PMCID: PMC3591283 DOI: 10.1371/journal.pgen.1003324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/04/2013] [Indexed: 02/06/2023] Open
Abstract
In Caenorhabditis elegans the Toll-interleukin receptor domain adaptor protein TIR-1 via a conserved mitogen-activated protein kinase (MAPK) signaling cascade induces innate immunity and upregulates serotonin (5-HT) biosynthesis gene tph-1 in a pair of ADF chemosensory neurons in response to infection. Here, we identify transcription factors downstream of the TIR-1 signaling pathway. We show that common transcription factors control the innate immunity and 5-HT biosynthesis. We demonstrate that a cysteine to tyrosine substitution in an ARM motif of the HEAT/Arm repeat region of the TIR-1 protein confers TIR-1 hyperactivation, leading to constitutive tph-1 upregulation in the ADF neurons, increased expression of intestinal antimicrobial genes, and enhanced resistance to killing by the human opportunistic pathogen Pseudomonas aeruginosa PA14. A forward genetic screen for suppressors of the hyperactive TIR-1 led to the identification of DAF-19, an ortholog of regulatory factor X (RFX) transcription factors that are required for human adaptive immunity. We show that DAF-19 concerts with ATF-7, a member of the activating transcription factor (ATF)/cAMP response element-binding B (CREB) family of transcription factors, to regulate tph-1 and antimicrobial genes, reminiscent of RFX-CREB interaction in human immune cells. daf-19 mutants display heightened susceptibility to killing by PA14. Remarkably, whereas the TIR-1-MAPK-DAF-19/ATF-7 pathway in the intestinal immunity is regulated by DKF-2/protein kinase D, we found that the regulation of tph-1 expression is independent of DKF-2 but requires UNC-43/Ca2+/calmodulin-dependent protein kinase (CaMK) II. Our results suggest that pathogenic cues trigger a common core-signaling pathway via tissue-specific mechanisms and demonstrate a novel role for RFX factors in neuronal and innate immune responses to infection. Toll-interleukin receptor (TIR)–domain adaptor proteins are keys to activate signaling cascades inducing transcriptional responses to internal and external pathogenic signals in evolutionary disparate organisms. Despite lacking a homolog of the mammalian innate immunity transcriptional regulator nuclear factor-kappaB (NF-κB), the nematode Caenorhabditis elegans responds to infections by activating TIR-1 signaling targets in the innate immune system and in neurons. Through a genetic screen for factors required for TIR-1 signaling to upregulate the serotonin biosynthesis gene tph-1, we identified DAF-19, an ortholog of regulatory factor X (RFX) transcription factors that were initially discovered in human immune cells. We show that DAF-19 concerts with ATF-7, a member of the activating transcription factor (ATF)/cAMP response element-binding B (CREB) family of transcription factors, to upregulate tph-1 in the ADF chemosensory neurons and antimicrobial genes in the intestine in response to bacterial infection, reminiscent of RFX-CREB interaction in human immune cells. daf-19 mutants display heightened susceptibility to killing by the human pathogen Pseudomonas aeruginosa PA14. Our studies suggest that RFX transcriptional regulation, which is essential for human adaptive immunity, has an ancient role in controlling serotonin biosynthesis and innate immunity.
Collapse
Affiliation(s)
| | | | | | | | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lee BH, Liu J, Wong D, Srinivasan S, Ashrafi K. Hyperactive neuroendocrine secretion causes size, feeding, and metabolic defects of C. elegans Bardet-Biedl syndrome mutants. PLoS Biol 2011; 9:e1001219. [PMID: 22180729 PMCID: PMC3236739 DOI: 10.1371/journal.pbio.1001219] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 11/02/2011] [Indexed: 12/16/2022] Open
Abstract
Bardet-Biedl syndrome, BBS, is a rare autosomal recessive disorder with clinical presentations including polydactyly, retinopathy, hyperphagia, obesity, short stature, cognitive impairment, and developmental delays. Disruptions of BBS proteins in a variety of organisms impair cilia formation and function and the multi-organ defects of BBS have been attributed to deficiencies in various cilia-associated signaling pathways. In C. elegans, bbs genes are expressed exclusively in the sixty ciliated sensory neurons of these animals and bbs mutants exhibit sensory defects as well as body size, feeding, and metabolic abnormalities. Here we show that in contrast to many other cilia-defective mutants, C. elegans bbs mutants exhibit increased release of dense-core vesicles and organism-wide phenotypes associated with enhanced activities of insulin, neuropeptide, and biogenic amine signaling pathways. We show that the altered body size, feeding, and metabolic abnormalities of bbs mutants can be corrected to wild-type levels by abrogating the enhanced secretion of dense-core vesicles without concomitant correction of ciliary defects. These findings expand the role of BBS proteins to the regulation of dense-core-vesicle exocytosis and suggest that some features of Bardet-Biedl Syndrome may be caused by excessive neuroendocrine secretion. Bardet-Biedl syndrome, BBS, is a rare human genetic disease caused by mutations in many genes. The BBS phenotype is very complex; it is principally characterized by early-onset obesity, progressive blindness, extra digits on the hands and feet, and renal problems. BBS patients may also suffer from developmental delay, learning disabilities, diabetes, and loss of the sense of smell. This complexity suggests that BBS proteins function in a variety of tissues, causing defects in many organs. A unifying theme for the diverse features of BBS emerged when BBS genes were identified and their protein products were found to function in the cilium, a sensory structure found in many cell types. Since then, the various manifestations of BBS have been attributed to the loss of ciliary function in the corresponding tissues. This notion was also supported by the finding that mutations in several genes required for proper cilia formation and function reproduce some of the features seen in BBS patients. Here, we have further investigated the defects found in Caenorhabditis elegans strains carrying mutations in BBS genes (bbs mutants). We find that not only do they display sensory deficits associated with loss of ciliary function, but they also exhibit increased release of multiple peptide and biogenic amine hormones contained in dense-core vesicles of ciliated sensory neurons. Importantly, limiting this excessive hormonal release without correcting the ciliary defects of bbs mutants was sufficient to restore normal body size, feeding, and metabolism to these mutants. Moreover, we show that although non-bbs ciliary mutations can mimic some of the phenotypes of bbs mutants, these effects can be attributed to distinct spatial and molecular mechanisms. Our findings indicate that C. elegans bbs mutants exhibit features of both ciliary and endocrine defects and suggest that some of the clinical manifestations of human BBS may result from excessive endocrine activity, independently of the loss of ciliary function.
Collapse
Affiliation(s)
- Brian H. Lee
- Department of Physiology and the UCSF Diabetes Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Jason Liu
- Department of Physiology and the UCSF Diabetes Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Daisy Wong
- Department of Physiology and the UCSF Diabetes Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Supriya Srinivasan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology and the UCSF Diabetes Center, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Dev Biol 2011; 357:235-47. [PMID: 21740898 DOI: 10.1016/j.ydbio.2011.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 11/23/2022]
Abstract
Cilia are ubiquitous cell surface projections that mediate various sensory- and motility-based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. To identify new components required for cilium biogenesis and function, we sought to further define and validate the transcriptional targets of DAF-19, the ciliogenic C. elegans RFX transcription factor. Transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using embryos staged to when the cell types developing cilia in the worm, the ciliated sensory neurons (CSNs), still differentiate. Comparisons between the two populations revealed 881 differentially regulated genes with greater than a 1.5-fold increase or decrease in expression. A subset of these was confirmed by quantitative RT-PCR. Transgenic worms expressing transcriptional GFP fusions revealed CSN-specific expression patterns for 11 of 14 candidate genes. We show that two uncharacterized candidate genes, termed dyf-17 and dyf-18 because their corresponding mutants display dye-filling (Dyf) defects, are important for ciliogenesis. DYF-17 localizes at the base of cilia and is specifically required for building the distal segment of sensory cilia. DYF-18 is an evolutionarily conserved CDK7/CCRK/LF2p-related serine/threonine kinase that is necessary for the proper function of intraflagellar transport, a process critical for cilium biogenesis. Together, our microarray study identifies targets of the evolutionarily conserved RFX transcription factor, DAF-19, providing a rich dataset from which to uncover-in addition to DYF-17 and DYF-18-cellular components important for cilium formation and function.
Collapse
|
18
|
Oikonomou G, Shaham S. The glia of Caenorhabditis elegans. Glia 2010; 59:1253-63. [PMID: 21732423 DOI: 10.1002/glia.21084] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/07/2010] [Indexed: 11/10/2022]
Abstract
Glia have been, in many ways, the proverbial elephant in the room. Although glia are as numerous as neurons in vertebrate nervous systems, technical and other concerns had left research on these cells languishing, whereas research on neurons marched on. Importantly, model systems to study glia had lagged considerably behind. A concerted effort in recent years to develop the canonical invertebrate model animals, Drosophila melanogaster and Caenorhabditis elegans, as settings to understand glial roles in nervous system development and function has begun to bear fruit. In this review, we summarize our current understanding of glia and their roles in the nervous system of the nematode C. elegans. The recent studies we describe highlight the similarities and differences between C. elegans and vertebrate glia, and focus on novel insights that are likely to have general relevance to all nervous systems.
Collapse
Affiliation(s)
- Grigorios Oikonomou
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
19
|
Lee JH, Gleeson JG. The role of primary cilia in neuronal function. Neurobiol Dis 2010; 38:167-72. [PMID: 20097287 DOI: 10.1016/j.nbd.2009.12.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/09/2009] [Accepted: 12/26/2009] [Indexed: 10/19/2022] Open
Abstract
The "ciliopathies" are a newly defined group of disorders characterized by defects in the structure or function of the cellular primary cilium. Patients with these disorders display variably expressive fibrocystic renal disease, retinal blindness, polydactyly, obesity, and brain dysgenesis as well as neurocognitive impairments. Joubert syndrome is a ciliopathy defined by cerebellar vermis hypoplasia, oculomotor apraxia, intermittent hyperventilation, and mental retardation. Recent evidence suggests important roles for the primary cilium in mediating a host of extracellular signaling events such as morphogen, mitogen, homeostatic and polarity signals. Based upon the clinical features of ciliopathies and cilia mediated signaling pathways, the data support a role for the primary cilium in modulating neurogenesis, cell polarity, axonal guidance and possibly adult neuronal function.
Collapse
Affiliation(s)
- Jeong Ho Lee
- Department of Neurosciences and Pediatrics, Howard Hughes Medical Institute, University of California, San Diego, CA 92093-0665, USA
| | | |
Collapse
|