1
|
Kim YD, Park HG, Song S, Kim J, Lee BJ, Broadie K, Lee S. Presynaptic structural and functional plasticity are coupled by convergent Rap1 signaling. J Cell Biol 2024; 223:e202309095. [PMID: 38748250 PMCID: PMC11096849 DOI: 10.1083/jcb.202309095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.
Collapse
Affiliation(s)
- Yeongjin David Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Hyun Gwan Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Seunghwan Song
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Joohyung Kim
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Byoung Ju Lee
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kendal Broadie
- Departments of Cell and Developmental Biology, Pharmacology, and Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, USA
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Estay SF, Morales-Moraga C, Vielma AH, Palacios-Muñoz A, Chiu CQ, Chávez AE. Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina. iScience 2024; 27:109920. [PMID: 38799553 PMCID: PMC11126983 DOI: 10.1016/j.isci.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 cannabinoid receptors (CB1Rs) are expressed in major retinal neurons within the rod-pathway suggesting a role in regulating night visual processing, but the underlying mechanisms remain poorly understood. Using acute rat retinal slices, we show that CB1R activation reduces glutamate release from rod bipolar cell (RBC) axon terminals onto AII and A17 amacrine cells through a pathway that requires exchange proteins directly activated by cAMP (EPAC1/2) signaling. Consequently, CB1R activation abrogates reciprocal GABAergic feedback inhibition from A17 amacrine cells. Moreover, the activation of CB1Rs in vivo enhances and prolongs the time course of the dim-light rod-driven visual responses, an effect that was eliminated when both GABAA and GABAC receptors were blocked. Altogether, our findings underscore a non-canonical mechanism by which cannabinoid signaling regulates RBC dyad synapses in the inner retina to regulate dim-light visual responses to fine-tune night vision.
Collapse
Affiliation(s)
- Sebastián F. Estay
- Programa de Doctorado en Ciencias, Mención Neurociencia, Valparaíso 2340000, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Camila Morales-Moraga
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Chiayu Q. Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
3
|
Zhang T, Dolga AM, Eisel ULM, Schmidt M. Novel crosstalk mechanisms between GluA3 and Epac2 in synaptic plasticity and memory in Alzheimer's disease. Neurobiol Dis 2024; 191:106389. [PMID: 38142840 DOI: 10.1016/j.nbd.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aβ), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Weichard I, Taschenberger H, Gsell F, Bornschein G, Ritzau-Jost A, Schmidt H, Kittel RJ, Eilers J, Neher E, Hallermann S, Nerlich J. Fully-primed slowly-recovering vesicles mediate presynaptic LTP at neocortical neurons. Proc Natl Acad Sci U S A 2023; 120:e2305460120. [PMID: 37856547 PMCID: PMC10614622 DOI: 10.1073/pnas.2305460120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/26/2023] [Indexed: 10/21/2023] Open
Abstract
Pre- and postsynaptic forms of long-term potentiation (LTP) are candidate synaptic mechanisms underlying learning and memory. At layer 5 pyramidal neurons, LTP increases the initial synaptic strength but also short-term depression during high-frequency transmission. This classical form of presynaptic LTP has been referred to as redistribution of synaptic efficacy. However, the underlying mechanisms remain unclear. We therefore performed whole-cell recordings from layer 5 pyramidal neurons in acute cortical slices of rats and analyzed presynaptic function before and after LTP induction by paired pre- and postsynaptic neuronal activity. LTP was successfully induced in about half of the synaptic connections tested and resulted in increased synaptic short-term depression during high-frequency transmission and a decelerated recovery from short-term depression due to an increased fraction of a slow recovery component. Analysis with a recently established sequential two-step vesicle priming model indicates an increase in the abundance of fully-primed and slowly-recovering vesicles. A systematic analysis of short-term plasticity and synapse-to-synapse variability of synaptic strength at various types of synapses revealed that stronger synapses generally recover more slowly from synaptic short-term depression. Finally, pharmacological stimulation of the cyclic adenosine monophosphate and diacylglycerol signaling pathways, which are both known to promote synaptic vesicle priming, mimicked LTP and slowed the recovery from short-term depression. Our data thus demonstrate that LTP at layer 5 pyramidal neurons increases synaptic strength primarily by enlarging a subpool of fully-primed slowly-recovering vesicles.
Collapse
Affiliation(s)
- Iron Weichard
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Felix Gsell
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Grit Bornschein
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Andreas Ritzau-Jost
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Hartmut Schmidt
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Robert J. Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig04103, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Erwin Neher
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37070, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37073, Germany
| | - Stefan Hallermann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Jana Nerlich
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| |
Collapse
|
5
|
Pannone L, Muto V, Nardecchia F, Di Rocco M, Marchei E, Tosato F, Petrini S, Onorato G, Lanza E, Bertuccini L, Manti F, Folli V, Galosi S, Di Schiavi E, Leuzzi V, Tartaglia M, Martinelli S. The recurrent pathogenic Pro890Leu substitution in CLTC causes a generalized defect in synaptic transmission in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1170061. [PMID: 37324589 PMCID: PMC10264582 DOI: 10.3389/fnmol.2023.1170061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
De novo CLTC mutations underlie a spectrum of early-onset neurodevelopmental phenotypes having developmental delay/intellectual disability (ID), epilepsy, and movement disorders (MD) as major clinical features. CLTC encodes the widely expressed heavy polypeptide of clathrin, a major component of the coated vesicles mediating endocytosis, intracellular trafficking, and synaptic vesicle recycling. The underlying pathogenic mechanism is largely unknown. Here, we assessed the functional impact of the recurrent c.2669C > T (p.P890L) substitution, which is associated with a relatively mild ID/MD phenotype. Primary fibroblasts endogenously expressing the mutated protein show reduced transferrin uptake compared to fibroblast lines obtained from three unrelated healthy donors, suggesting defective clathrin-mediated endocytosis. In vitro studies also reveal a block in cell cycle transition from G0/G1 to the S phase in patient's cells compared to control cells. To demonstrate the causative role of the p.P890L substitution, the pathogenic missense change was introduced at the orthologous position of the Caenorhabditis elegans gene, chc-1 (p.P892L), via CRISPR/Cas9. The resulting homozygous gene-edited strain displays resistance to aldicarb and hypersensitivity to PTZ, indicating defective release of acetylcholine and GABA by ventral cord motor neurons. Consistently, mutant animals show synaptic vesicle depletion at the sublateral nerve cords, and slightly defective dopamine signaling, highlighting a generalized deficit in synaptic transmission. This defective release of neurotransmitters is associated with their secondary accumulation at the presynaptic membrane. Automated analysis of C. elegans locomotion indicates that chc-1 mutants move slower than their isogenic controls and display defective synaptic plasticity. Phenotypic profiling of chc-1 (+/P892L) heterozygous animals and transgenic overexpression experiments document a mild dominant-negative behavior for the mutant allele. Finally, a more severe phenotype resembling that of chc-1 null mutants is observed in animals harboring the c.3146 T > C substitution (p.L1049P), homologs of the pathogenic c.3140 T > C (p.L1047P) change associated with a severe epileptic phenotype. Overall, our findings provide novel insights into disease mechanisms and genotype-phenotype correlations of CLTC-related disorders.
Collapse
Affiliation(s)
- Luca Pannone
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina Muto
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Martina Di Rocco
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Marchei
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Tosato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Giada Onorato
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Enrico Lanza
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | | | - Filippo Manti
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Viola Folli
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Wang XT, Zhou L, Dong BB, Xu FX, Wang DJ, Shen EW, Cai XY, Wang Y, Wang N, Ji SJ, Chen W, Schonewille M, Zhu JJ, De Zeeuw CI, Shen Y. cAMP-EPAC-PKCε-RIM1α signaling regulates presynaptic long-term potentiation and motor learning. eLife 2023; 12:e80875. [PMID: 37159499 PMCID: PMC10171863 DOI: 10.7554/elife.80875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity contributes to such learning remains elusive. Here, we report that the EPAC-PKCε module has a critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior in mice. Presynaptic cAMP-EPAC-PKCε signaling cascade induces a previously unidentified threonine phosphorylation of RIM1α, and thereby initiates the assembly of the Rab3A-RIM1α-Munc13-1 tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific blocking of EPAC-PKCε signaling abolishes presynaptic long-term potentiation at the parallel fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning mechanisms.
Collapse
Affiliation(s)
- Xin-Tai Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Lin Zhou
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Bin-Bin Dong
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - De-Juan Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - En-Wei Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xin-Yu Cai
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yin Wang
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical UniversityYinchuanChina
| | - Na Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and TechnologyShenzhenChina
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | | | - J Julius Zhu
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
- Netherlands Institute for Neuroscience, Royal Academy of SciencesAmsterdamNetherlands
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuChina
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Tabakoff B, Hoffman PL. The role of the type 7 adenylyl cyclase isoform in alcohol use disorder and depression. Front Pharmacol 2022; 13:1012013. [PMID: 36386206 PMCID: PMC9649618 DOI: 10.3389/fphar.2022.1012013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
The translation of extracellular signals to intracellular responses involves a number of signal transduction molecules. A major component of this signal transducing function is adenylyl cyclase, which produces the intracellular "second messenger," cyclic AMP. What was initially considered as a single enzyme for cyclic AMP generation is now known to be a family of nine membrane-bound enzymes, and one cytosolic enzyme. Each member of the adenylyl cyclase family is distinguished by factors that modulate its catalytic activity, by the cell, tissue, and organ distribution of the family members, and by the physiological/behavioral functions that are subserved by particular family members. This review focuses on the Type 7 adenylyl cyclase (AC7) in terms of its catalytic characteristics and its relationship to alcohol use disorder (AUD, alcoholism), and major depressive disorder (MDD). AC7 may be part of the inherited system predisposing an individual to AUD and/or MDD in a sex-specific manner, or this enzyme may change in its expression or activity in response to the progression of disease or in response to treatment. The areas of brain expressing AC7 are related to responses to stress and evidence is available that CRF1 receptors are coupled to AC7 in the amygdala and pituitary. Interestingly, AC7 is the major form of the cyclase contained in bone marrow-derived cells of the immune system and platelets, and in microglia. AC7 is thus, poised to play an integral role in both peripheral and brain immune function thought to be etiologically involved in both AUD and MDD. Both platelet and lymphocyte adenylyl cyclase activity have been proposed as markers for AUD and MDD, as well as prognostic markers of positive response to medication for MDD. We finish with consideration of paths to medication development that may selectively modulate AC7 activity as treatments for MDD and AUD.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Henss T, Schneider M, Vettkötter D, Costa WS, Liewald JF, Gottschalk A. Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2483:61-76. [PMID: 35286669 DOI: 10.1007/978-1-0716-2245-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the past 15 years, optogenetic methods became invaluable tools in neurobiological research but also in general cell biology. Most prominently, optogenetic methods utilize microbial rhodopsins to elicit neuronal de- or hyperpolarization. However, other optogenetic tools have emerged that allow influencing neuronal function by different approaches. In this chapter we describe the use of photoactivated adenylyl cyclases (PACs) as modulators of neuronal activity. Using Caenorhabditis elegans as a model organism, this chapter shows how to measure the effect of PAC photoactivation by behavioral assays in different tissues (neurons and muscles), as well as their significance to neurobiology. Further, this chapter describes in vitro cyclic nucleoside-3',5'-monophosphate measurements (cNMP) to characterize new PACs in C. elegans.
Collapse
Affiliation(s)
- Thilo Henss
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Martin Schneider
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Dennis Vettkötter
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Wagner Steuer Costa
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Jana F Liewald
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Alexander Gottschalk
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| |
Collapse
|
9
|
Lamb R, Dhar B, Cherra SJ. PXF-1 promotes synapse development at the neuromuscular junction in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:945680. [PMID: 36311020 PMCID: PMC9606220 DOI: 10.3389/fnmol.2022.945680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are a family of proteins that modulate small G protein signaling. Mutations in a subfamily of GEFs that act on Rap, known as RapGEFs, have been associated with neurological disorders, and knockout mice display impairments in neuronal activity. However, the precise functions of RapGEFs in the nervous system remain unclear. Here, we have used the Caenorhabditis elegans neuromuscular junction, to investigate how the RapGEF homolog, PXF-1, regulates synaptic function. We found that loss of function mutations in pxf-1 reduced cholinergic activity at the neuromuscular junction. We observed that PXF-1 is expressed in the nervous system, and its expression in neurons is sufficient to promote synaptic activity. In pxf-1 mutant animals, there is a reduction in the levels of synaptic vesicles in cholinergic motor neurons but no change in the overall synapse numbers. In addition to synaptic vesicles proteins, we also found that filamentous actin, a scaffold for nascent synapses, was reduced at developing cholinergic synapses in pxf-1 mutant animals. Our studies indicate that PXF-1 regulates neuromuscular function by promoting the formation of actin filaments to support the development of motor neuron synapses.
Collapse
Affiliation(s)
- Reagan Lamb
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Bithika Dhar
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Salvatore J Cherra
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
10
|
Glycine Release Is Potentiated by cAMP via EPAC2 and Ca 2+ Stores in a Retinal Interneuron. J Neurosci 2021; 41:9503-9520. [PMID: 34620721 PMCID: PMC8612479 DOI: 10.1523/jneurosci.0670-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Neuromodulation via the intracellular second messenger cAMP is ubiquitous at presynaptic nerve terminals. This modulation of synaptic transmission allows exocytosis to adapt to stimulus levels and reliably encode information. The AII amacrine cell (AII-AC) is a central hub for signal processing in the mammalian retina. The main apical dendrite of the AII-AC is connected to several lobular appendages that release glycine onto OFF cone bipolar cells and ganglion cells. However, the influence of cAMP on glycine release is not well understood. Using membrane capacitance measurements from mouse AII-ACs to directly measure exocytosis, we observe that intracellular dialysis of 1 mm cAMP enhances exocytosis without affecting the L-type Ca2+ current. Responses to depolarizing pulses of various durations show that the size of the readily releasable pool of vesicles nearly doubles with cAMP, while paired-pulse depression experiments suggest that release probability does not change. Specific agonists and antagonists for exchange protein activated by cAMP 2 (EPAC2) revealed that the cAMP-induced enhancement of exocytosis requires EPAC2 activation. Furthermore, intact Ca2+ stores were also necessary for the cAMP potentiation of exocytosis. Postsynaptic recordings from OFF cone bipolar cells showed that increasing cAMP with forskolin potentiated the frequency of glycinergic spontaneous IPSCs. We propose that cAMP elevations in the AII-AC lead to a robust enhancement of glycine release through an EPAC2 and Ca2+ store signaling pathway. Our results thus contribute to a better understanding of how AII-AC crossover inhibitory circuits adapt to changes in ambient luminance.SIGNIFICANCE STATEMENT The mammalian retina operates over a wide dynamic range of light intensities and contrast levels. To optimize the signal-to-noise ratio of processed visual information, both excitatory and inhibitory synapses within the retina must modulate their gain in synaptic transmission to adapt to different levels of ambient light. Here we show that increases of cAMP concentration within AII amacrine cells produce enhanced exocytosis from these glycinergic interneurons. Therefore, we propose that light-sensitive neuromodulators may change the output of glycine release from AII amacrine cells. This novel mechanism may fine-tune the amount of tonic and phasic synaptic inhibition received by bipolar cell terminals and, consequently, the spiking patterns that ganglion cells send to the upstream visual areas of the brain.
Collapse
|
11
|
Axonal CB1 Receptors Mediate Inhibitory Bouton Formation via cAMP Increase and PKA. J Neurosci 2021; 41:8279-8296. [PMID: 34413209 DOI: 10.1523/jneurosci.0851-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022] Open
Abstract
Experience-dependent formation and removal of inhibitory synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by the formation of inhibitory synapses to maintain coordination between excitation and inhibition. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons in hippocampal organotypic slices from mice (both sexes), we found that CB1 receptor activation mediated the formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o-protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs-proteins using DREADDs. Blocking PKA activity prevented CB1 receptor-mediated inhibitory bouton formation. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate an unexpected role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.SIGNIFICANCE STATEMENT Coordination between excitation and inhibition is required for proper brain function throughout life. It was previously shown that new inhibitory synapses can be formed in response to strong excitation to maintain this coordination, and this was mediated by endocannabinoid signaling via CB1 receptors. As activation of CB1 receptors generally results in the suppression of synaptic transmission, it remained unclear how CB1 receptors can mediate the formation of inhibitory synapses. Here we show that CB1 receptors on inhibitory axons signal via unconventional intracellular pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels and requires PKA activity. Our findings point to a central role for axonal cAMP signaling in activity-dependent inhibitory synapse formation.
Collapse
|
12
|
Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release. J Neurosci 2021; 41:4187-4201. [PMID: 33820857 DOI: 10.1523/jneurosci.2631-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Release of neuropeptides from dense core vesicles (DCVs) is essential for neuromodulation. Compared with the release of small neurotransmitters, much less is known about the mechanisms and proteins contributing to neuropeptide release. By optogenetics, behavioral analysis, electrophysiology, electron microscopy, and live imaging, we show that synapsin SNN-1 is required for cAMP-dependent neuropeptide release in Caenorhabditis elegans hermaphrodite cholinergic motor neurons. In synapsin mutants, behaviors induced by the photoactivated adenylyl cyclase bPAC, which we previously showed to depend on ACh and neuropeptides (Steuer Costa et al., 2017), are altered as in animals with reduced cAMP. Synapsin mutants have slight alterations in synaptic vesicle (SV) distribution; however, a defect in SV mobilization was apparent after channelrhodopsin-based photostimulation. DCVs were largely affected in snn-1 mutants: DCVs were ∼30% reduced in synaptic terminals, and their contents not released following bPAC stimulation. Imaging axonal DCV trafficking, also in genome-engineered mutants in the serine-9 protein kinase A phosphorylation site, showed that synapsin captures DCVs at synapses, making them available for release. SNN-1 colocalized with immobile, captured DCVs. In synapsin deletion mutants, DCVs were more mobile and less likely to be caught at release sites, and in nonphosphorylatable SNN-1B(S9A) mutants, DCVs traffic less and accumulate, likely by enhanced SNN-1 dependent tethering. Our work establishes synapsin as a key mediator of neuropeptide release.SIGNIFICANCE STATEMENT Little is known about mechanisms that regulate how neuropeptide-containing dense core vesicles (DCVs) traffic along the axon, how neuropeptide release is orchestrated, and where it occurs. We found that one of the longest known synaptic proteins, required for the regulation of synaptic vesicles and their storage in nerve terminals, synapsin, is also essential for neuropeptide release. By electrophysiology, imaging, and electron microscopy in Caenorhabditis elegans, we show that synapsin regulates this process by tethering the DCVs to the cytoskeleton in axonal regions where neuropeptides are to be released. Without synapsin, DCVs cannot be captured at the release sites and, consequently, cannot fuse with the membrane, and neuropeptides are not released. We suggest that synapsin fulfills this role also in vertebrates, including humans.
Collapse
|
13
|
Abstract
The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.
Collapse
Affiliation(s)
- Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
14
|
Peng Q, Kong Y, Shi L, Yan Y, Yao Y, Wen Y, Liang Y, Lai C, Deng Z, Yan H. The Epac2 coding gene (RAPGEF4) rs3769219 polymorphism is associated with protection against major depressive disorder in the Chinese Han population. Neurosci Lett 2020; 738:135361. [PMID: 32905835 DOI: 10.1016/j.neulet.2020.135361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Adult hippocampal neurogenesis has been demonstrated to be associated with the occurrence of major depressive disorder (MDD). A recent study indicated that deletion of the Epac2 gene (RAPGEF4) caused downregulation of hippocampal neurogenesis. This study aimed to analyze the association between genetic variants of the RAPGEF4 gene and the risk of MDD. METHODS We recruited 502 patients with MDD and 504 healthy controls who matched for age and gender. Genomic DNA was extracted from whole blood samples and genotyping was performed by next-generation sequencing. In addition, we conducted subgroup analysis according to the gender and recurrence, respectively. RESULTS We found no significant association between RAPGEF4 gene rs3769219 variant and MDD in all subjects. However, the A-allele and GA + AA genotypes at rs3769219 were significantly associated with a reduced risk of MDD in the male population but not in the female population. Similarly, our study identified the A-allele and GA + AA genotypes at rs3769219 as protective factors for recurrent MDD (rMDD). CONCLUSION Our findings suggest that RAPGEF4 gene rs3769219 mutation is associated with a reduced risk of MDD in male population and rMDD in total population.
Collapse
Affiliation(s)
- Qiuju Peng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Postal Code: 510515, China
| | - Yanying Kong
- Department of Pharmacy, Guangzhou First People's Hospital, Guangzhou, Postal Code: 510180 China
| | - Lei Shi
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, Postal Code: 510010 China
| | - Yuan Yan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Postal Code: 510515, China
| | - Yuan Yao
- Medical District of Guigang, 923th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Guigang, Postal Code: 537105 China
| | - Yuguan Wen
- Department of Pharmacy, Guangzhou Brain Hospital, Guangzhou, Postal Code: 510370 China
| | - Yumin Liang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Postal Code: 510515, China
| | - Chongfa Lai
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, Postal Code: 510010 China
| | - Zhirong Deng
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, Postal Code: 510010 China
| | - Huacheng Yan
- Department of Infectious Disease Prevention and Control, Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, Postal Code: 510507, China.
| |
Collapse
|
15
|
β-Adrenergic Receptors/Epac Signaling Increases the Size of the Readily Releasable Pool of Synaptic Vesicles Required for Parallel Fiber LTP. J Neurosci 2020; 40:8604-8617. [PMID: 33046543 DOI: 10.1523/jneurosci.0716-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
The second messenger cAMP is an important determinant of synaptic plasticity that is associated with enhanced neurotransmitter release. Long-term potentiation (LTP) at parallel fiber (PF)-Purkinje cell (PC) synapses depends on a Ca2+-induced increase in presynaptic cAMP that is mediated by Ca2+-sensitive adenylyl cyclases. However, the upstream signaling and the downstream targets of cAMP involved in these events remain poorly understood. It is unclear whether cAMP generated by β-adrenergic receptors (βARs) is required for PF-PC LTP, although noradrenergic varicosities are apposed in PF-PC contacts. Guanine nucleotide exchange proteins directly activated by cAMP [Epac proteins (Epac 1-2)] are alternative cAMP targets to protein kinase A (PKA) and Epac2 is abundant in the cerebellum. However, whether Epac proteins participate in PF-PC LTP is not known. Immunoelectron microscopy demonstrated that βARs are expressed in PF boutons. Moreover, activation of these receptors through their agonist isoproterenol potentiated synaptic transmission in cerebellar slices from mice of either sex, an effect that was insensitive to the PKA inhibitors (H-89, KT270) but that was blocked by the Epac inhibitor ESI 05. Interestingly, prior activation of these βARs occluded PF-PC LTP, while the β1AR antagonist metoprolol blocked PF-PC LTP, which was also absent in Epac2 -/- mice. PF-PC LTP is associated with an increase in the size of the readily releasable pool (RRP) of synaptic vesicles, consistent with the isoproterenol-induced increase in vesicle docking in cerebellar slices. Thus, the βAR-mediated modulation of the release machinery and the subsequent increase in the size of the RRP contributes to PF-PC LTP.SIGNIFICANCE STATEMENT G-protein-coupled receptors modulate the release machinery, causing long-lasting changes in synaptic transmission that influence synaptic plasticity. Nevertheless, the mechanisms underlying synaptic responses to β-adrenergic receptor (βAR) activation remain poorly understood. An increase in the number of synaptic vesicles primed for exocytosis accounts for the potentiation of neurotransmitter release driven by βARs. This effect is not mediated by the canonical protein kinase A pathway but rather, through direct activation of the guanine nucleotide exchange protein Epac by cAMP. Interestingly, this βAR signaling via Epac is involved in long term potentiation at cerebellar granule cell-to-Purkinje cell synapses. Thus, the pharmacological activation of βARs modulates synaptic plasticity and opens therapeutic opportunities to control this phenomenon.
Collapse
|
16
|
Bekkers JM. Autaptic Cultures: Methods and Applications. Front Synaptic Neurosci 2020; 12:18. [PMID: 32425765 PMCID: PMC7203343 DOI: 10.3389/fnsyn.2020.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
Neurons typically form daisy chains of synaptic connections with other neurons, but they can also form synapses with themselves. Although such self-synapses, or autapses, are comparatively rare in vivo, they are surprisingly common in dissociated neuronal cultures. At first glance, autapses in culture seem like a mere curiosity. However, by providing a simple model system in which a single recording electrode gives simultaneous access to the pre- and postsynaptic compartments, autaptic cultures have proven to be invaluable in facilitating important and elegant experiments in the area of synaptic neuroscience. Here, I provide detailed protocols for preparing and recording from autaptic cultures (also called micro-island or microdot cultures). Variations on the basic procedure are presented, as well as practical tips for optimizing the outcomes. I also illustrate the utility of autaptic cultures by reviewing the types of experiments that have used them over the past three decades. These examples serve to highlight the power and elegance of this simple model system, and will hopefully inspire new experiments for the interrogation of synaptic function.
Collapse
Affiliation(s)
- John M Bekkers
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
17
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
18
|
Argyrousi EK, Heckman PRA, van Hagen BTJ, Muysers H, van Goethem NP, Prickaerts J. Pro-cognitive effect of upregulating cyclic guanosine monophosphate signalling during memory acquisition or early consolidation is mediated by increased AMPA receptor trafficking. J Psychopharmacol 2020; 34:103-114. [PMID: 31692397 PMCID: PMC6947811 DOI: 10.1177/0269881119885262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Episodic memory consists of different mnemonic phases, including acquisition and early and late consolidation. Each of these phases is characterised by distinct molecular processes. Although both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are implicated in the acquisition phase, early consolidation only depends on cGMP, whereas late consolidation is mediated by cAMP. Accordingly, the cGMP-selective phosphodiesterase 5 (PDE5) inhibitor vardenafil or the cAMP-selective PDE4 inhibitor rolipram can improve memory acquisition or consolidation when applied during their respective time windows. AIMS Considering the important role of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) during normal memory function, we aimed to investigate whether the differential actions of these PDE inhibitors are mediated through AMPAR dynamics. METHODS For biochemical analysis, mice were treated with either vardenafil or rolipram and sacrificed shortly after injection. For the behavioural studies, mice received either of the inhibitors during the different mnemonic phases, while their spatial memory was tested using the object location task, and they were sacrificed 24 hours later. RESULTS Administration of either vardenafil or rolipram causes rapid changes in AMPARs. Moreover, treatment with vardenafil during the acquisition or early consolidation of spatial memory resulted in increased surface levels of AMPARs which were still augmented 24 hours after learning. Membrane levels of AMPARs were not affected anymore 24 hours after learning when rolipram was administrated at either the acquisition or late consolidation phase. CONCLUSIONS These results suggest that dissociative molecular mechanisms could mediate the pro-cognitive function of different classes of PDE inhibitors, and in the case of vardenafil, this phenomenon could be explained by changes in AMPAR dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | - Jos Prickaerts
- Jos Prickaerts, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
19
|
The loss of β adrenergic receptor mediated release potentiation in a mouse model of fragile X syndrome. Neurobiol Dis 2019; 130:104482. [DOI: 10.1016/j.nbd.2019.104482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 11/23/2022] Open
|
20
|
Oliveira S, Oliveira M, Hipolide D. A1 adenosine receptors in the striatum play a role in the memory impairment caused by sleep deprivation through downregulation of the PKA pathway. Neurobiol Learn Mem 2019; 160:91-97. [DOI: 10.1016/j.nlm.2018.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 02/04/2023]
|
21
|
Abstract
Abstract Primary sensory neurons are responsible for transmitting sensory information from the peripheral to the central nervous system. Their responses to incoming stimulation become greatly enhanced and prolonged following inflammation, giving rise to exaggerated nociceptive responses and chronic pain. The inflammatory mediator, prostaglandin E2 (PGE2), released from the inflamed tissue surrounding the terminals of sensory neurons contributes to the abnormal pain responses. PGE2 acts on G protein-coupled EP receptors to activate adenylyl cyclase, which catalyzes the conversion of adenosine triphosphate to cyclic adenosine 3′,5′-monophosphate (cAMP). Under normal conditions, cAMP activates primarily protein kinase A. After inflammation, cAMP also activates the exchange proteins activated by cAMP (Epacs) to produce exaggerated PGE2-mediated hyperalgesia. The role of cAMP-Epac signaling in the generation of hypersensitivity is the topic of this review.
Collapse
Affiliation(s)
| | - Yanping Gu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch Galveston, TX 77555-1069, USA
| |
Collapse
|
22
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
23
|
Kawano H, Oyabu K, Yamamoto H, Eto K, Adaniya Y, Kubota K, Watanabe T, Hirano-Iwata A, Nabekura J, Katsurabayashi S, Iwasaki K. Astrocytes with previous chronic exposure to amyloid β-peptide fragment 1-40 suppress excitatory synaptic transmission. J Neurochem 2017; 143:624-634. [PMID: 29076533 DOI: 10.1111/jnc.14247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
Abstract
Synaptic dysfunction and neuronal death are responsible for cognitive and behavioral deficits in Alzheimer's disease (AD). It is well known that such neurological abnormalities are preceded by long-term exposure of amyloid β-peptide (Aβ) and/or hyperphosphorylated tau prior. In addition to the neurological deficit, astrocytes as a major glial cell type in the brain, significantly participate in the neuropathogenic mechanisms underlying synaptic modulation. Although astrocytes play a significant key role in modulating synaptic transmission, little is known on whether astrocyte dysfunction caused by such long-term Aβ exposure affects synapse formation and function. Here, we show that synapse formation and synaptic transmission are attenuated in hippocampal-naïve neurons co-cultured with astrocytes that have previously experienced chronic Aβ1-40 exposure. In this abnormal astrocytic condition, hippocampal neurons exhibit decrements of evoked excitatory post-synaptic currents (EPSCs) and miniature EPSC frequency. Furthermore, size of readily releasable synaptic pools and number of excitatory synapses were also significantly decreased. Contrary to these negative effects, release probability at individual synapses was significantly increased in the same astrocytic condition. Taken together, our data indicate that lower synaptic transmission caused by astrocytes previously, and chronically, exposed to Aβ1-40 is attributable to a small number of synapses with higher release probability.
Collapse
Affiliation(s)
- Hiroyuki Kawano
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kohei Oyabu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kei Eto
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yuna Adaniya
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Ayumi Hirano-Iwata
- Advanced Institute for Materials Research, Tohoku University, Aoba-ku, Sendai, Japan.,Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai, Japan
| | - Junichi Nabekura
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,CREST, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
24
|
Gutierrez-Castellanos N, Da Silva-Matos CM, Zhou K, Canto CB, Renner MC, Koene LMC, Ozyildirim O, Sprengel R, Kessels HW, De Zeeuw CI. Motor Learning Requires Purkinje Cell Synaptic Potentiation through Activation of AMPA-Receptor Subunit GluA3. Neuron 2017; 93:409-424. [PMID: 28103481 PMCID: PMC5263704 DOI: 10.1016/j.neuron.2016.11.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that cerebellar long-term potentiation (LTP) is necessary for procedural learning. However, little is known about its underlying molecular mechanisms. Whereas AMPA receptor (AMPAR) subunit rules for synaptic plasticity have been extensively studied in relation to declarative learning, it is unclear whether these rules apply to cerebellum-dependent motor learning. Here we show that LTP at the parallel-fiber-to-Purkinje-cell synapse and adaptation of the vestibulo-ocular reflex depend not on GluA1- but on GluA3-containing AMPARs. In contrast to the classic form of LTP implicated in declarative memory formation, this form of LTP does not require GluA1-AMPAR trafficking but rather requires changes in open-channel probability of GluA3-AMPARs mediated by cAMP signaling and activation of the protein directly activated by cAMP (Epac). We conclude that vestibulo-cerebellar motor learning is the first form of memory acquisition shown to depend on GluA3-dependent synaptic potentiation by increasing single-channel conductance. Cerebellar learning depends on expression of GluA3, but not GluA1, in Purkinje cells GluA3 is required to induce LTP, but not LTD, at PF-PC synapses GluA3-dependent potentiation involves a cAMP-driven change in channel conductance GluA3-mediated LTP and learning are induced via cAMP-mediated Epac activation
Collapse
Affiliation(s)
- Nicolas Gutierrez-Castellanos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| | - Carla M Da Silva-Matos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| | - Cathrin B Canto
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Maria C Renner
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Linda M C Koene
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Ozgecan Ozyildirim
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Helmut W Kessels
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands.
| | - Chris I De Zeeuw
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
25
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
26
|
Alonso B, Bartolomé-Martín D, Ferrero JJ, Ramírez-Franco J, Torres M, Sánchez-Prieto J. CB1 receptors down-regulate a cAMP/Epac2/PLC pathway to silence the nerve terminals of cerebellar granule cells. J Neurochem 2017; 142:350-364. [PMID: 28445587 DOI: 10.1111/jnc.14059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023]
Abstract
Cannabinoid receptors mediate short-term retrograde inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at excitatory synapses. The responses of individual nerve terminals in VGLUT1-pHluorin transfected cerebellar granule cells to cannabinoids have shown that prolonged activation of cannabinoid type 1 receptors (CB1Rs) silences a subpopulation of previously active synaptic boutons. Adopting a combined pharmacological and genetic approach to study the molecular mechanisms of CB1R-induced silencing, we found that adenylyl cyclase inhibition decreases cAMP levels while it increases the number of silent synaptic boutons and occludes the induction of further silencing by the cannabinoid agonist HU-210. Guanine nucleotide exchange proteins directly activated by cAMP (Epac proteins) mediate some of the presynaptic effects of cAMP in the potentiation of synaptic transmission. ESI05, a selective Epac2 inhibitor, and U-73122, the specific inhibitor of phospholipase C (PLC), both augment the number of silent synaptic boutons. Moreover, they abolish the capacity of the Epac activator, 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate, to prevent HU-210-induced silencing consistent with PLC signaling lying downstream of Epac2 proteins. Furthermore, Rab3-interacting molecule (RIM)1α KO cells have many more basally silent synaptic boutons (12.9 ± 3.5%) than wild-type cells (1.1 ± 0.5%). HU-210 induced further silencing in these mutant cells, although 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate only awoke the HU-210-induced silence and not the basally silent synaptic boutons. This behavior can be rescued by expressing RIM1α in RIM1α KO cells, these cells behaving very much like wild-type cells. These findings support the hypothesis that a cAMP/Epac/PLC signaling pathway targeting the release machinery appears to mediate cannabinoid-induced presynaptic silencing.
Collapse
Affiliation(s)
- Beatris Alonso
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - José Javier Ferrero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
27
|
Knott EP, Assi M, Rao SNR, Ghosh M, Pearse DD. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Int J Mol Sci 2017; 18:E696. [PMID: 28338622 PMCID: PMC5412282 DOI: 10.3390/ijms18040696] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Eric P Knott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Neuroscience Program, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- Bruce Wayne Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Sukhanova IF, Kozhevnikova LM, Mironova GY, Avdonin PV. The Epac protein inhibitor ESI-09 eliminates the tonic phase of aorta contraction induced by endogenic vasoconstrictors in rats. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
The Epac-Phospholipase Cε Pathway Regulates Endocannabinoid Signaling and Cocaine-Induced Disinhibition of Ventral Tegmental Area Dopamine Neurons. J Neurosci 2017; 37:3030-3044. [PMID: 28209735 DOI: 10.1523/jneurosci.2810-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Exchange protein directly activated by cAMP (Epac) is a direct effector for the ubiquitous second messenger cAMP. Epac activates the phospholipase Cε (PLCε) pathway. PLCβ has been linked to the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we report that Epac facilitates endocannabinoid-mediated retrograde synaptic depression through activation of PLCε. Intracellular loading of a selective Epac agonist 8-CPT-2Me-cAMP into ventral tegmental area (VTA) dopamine neurons enabled previously ineffective stimuli to induce depolarization-induced suppression of inhibition (DSI) and long-term depression of IPSCs (I-LTD) in the VTA. DSI and I-LTD are mediated by 2-AG since they were blocked by a diacylglycerol lipase inhibitor. The effects of 8-CPT-2Me-cAMP on DSI and I-LTD were absent in Epac2 and PLCε knock-out mice, but remained intact in Epac1 knock-out mice. These results identify a novel mechanism for on-demand synthesis of retrograde signaling 2-AG by the Epac2-PLCε pathway. We investigated the functional significance of Epac2-PLCε-2-AG signaling in regulating inhibitory synaptic plasticity in VTA dopamine neurons induced by in vivo cocaine exposure. We showed that cocaine place conditioning led to a decrease in the frequency and amplitude of spontaneous IPSCs and an increase in action potential firing in wild-type mice, but not in Epac2 or PLCε knock-out mice. Together, these results indicate that the Epac2-PLCε-2-AG signaling cascade contributes to cocaine-induced disinhibition of VTA dopamine neurons.SIGNIFICANCE STATEMENT 2-arachidonoylglycerol (2-AG) is an endogenous cannabinoid that depresses synaptic transmission through stimulation of CB1 receptors. Among the six isoforms of phospholipase C (PLC; PLCβ, PLCγ, PLCδ, PLCε, PLCζ, PLCη), only PLCβ has been linked to 2-AG synthesis. Here we demonstrate that 8-CPT-2Me-cAMP, a selective agonist of the cAMP sensor protein Epac, enhances 2-AG-mediated synaptic depression in ventral tegmental area (VTA) dopamine neurons via activation of PLCε. These results identify a novel mechanism for 2-AG synthesis via activation of the Epac-PLCε pathway. Furthermore, we show that cocaine-induced conditioned place preference and disinhibition of VTA dopamine neurons were impaired in mice lacking Epac or PLCε. Thus, the Epac-PLCε signaling pathway contributes to cocaine-induced disinhibition of VTA dopamine neurons and formation of drug-associated memories.
Collapse
|
30
|
Steuer Costa W, Yu SC, Liewald JF, Gottschalk A. Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading. Curr Biol 2017; 27:495-507. [PMID: 28162892 DOI: 10.1016/j.cub.2016.12.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/06/2016] [Accepted: 12/27/2016] [Indexed: 02/02/2023]
Abstract
Cyclic AMP (cAMP) signaling augments synaptic transmission, but because many targets of cAMP and protein kinase A (PKA) may be involved, mechanisms underlying this pathway remain unclear. To probe this mechanism, we used optogenetic stimulation of cAMP signaling by Beggiatoa-photoactivated adenylyl cyclase (bPAC) in Caenorhabditis elegans motor neurons. Behavioral, electron microscopy (EM), and electrophysiology analyses revealed cAMP effects on both the rate and on quantal size of transmitter release and led to the identification of a neuropeptidergic pathway affecting quantal size. cAMP enhanced synaptic vesicle (SV) fusion by increasing mobilization and docking/priming. cAMP further evoked dense core vesicle (DCV) release of neuropeptides, in contrast to channelrhodopsin (ChR2) stimulation. cAMP-evoked DCV release required UNC-31/Ca2+-dependent activator protein for secretion (CAPS). Thus, DCVs accumulated in unc-31 mutant synapses. bPAC-induced neuropeptide signaling acts presynaptically to enhance vAChT-dependent SV loading with acetylcholine, thus causing increased miniature postsynaptic current amplitudes (mPSCs) and significantly enlarged SVs.
Collapse
Affiliation(s)
- Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Szi-Chieh Yu
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany.
| |
Collapse
|
31
|
Exchange Protein Directly Activated by cAMP (EPAC) Regulates Neuronal Polarization through Rap1B. J Neurosci 2015; 35:11315-29. [PMID: 26269639 DOI: 10.1523/jneurosci.3645-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Acquisition of neuronal polarity is a complex process involving cellular and molecular events. The second messenger cAMP is involved in axonal specification through activation of protein kinase A. However, an alternative cAMP-dependent mechanism involves the exchange protein directly activated by cAMP (EPAC), which also responds to physiological changes in cAMP concentration, promoting activation of the small Rap GTPases. Here, we present evidence that EPAC signaling contributes to axon specification and elongation. In primary rat hippocampal neurons, EPAC isoforms were expressed differentially during axon specification. Furthermore, 8-pCPT, an EPAC pharmacological activator, and genetic manipulations of EPAC in neurons induced supernumerary axons indicative of Rap1b activation. Moreover, 8-pCPT-treated neurons expressed ankyrin G and other markers of mature axons such as synaptophysin and axonal accumulation of vGLUT1. In contrast, pharmacological inhibition of EPAC delayed neuronal polarity. Genetic manipulations to inactivate EPAC1 using either shRNA or neurons derived from EPAC1 knock-out (KO) mice led to axon elongation and polarization defects. Interestingly, multiaxonic neurons generated by 8-pCPT treatments in wild-type neurons were not found in EPAC1 KO mice neurons. Altogether, these results propose that EPAC signaling is an alternative and complementary mechanism for cAMP-dependent axon determination. SIGNIFICANCE STATEMENT This study identifies the guanine exchange factor responsible for Rap1b activation during neuronal polarization and provides an alternate explanation for cAMP-dependent acquisition of neuronal polarity.
Collapse
|
32
|
Sugawara K, Shibasaki T, Takahashi H, Seino S. Structure and functional roles of Epac2 (Rapgef4). Gene 2015; 575:577-83. [PMID: 26390815 DOI: 10.1016/j.gene.2015.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/13/2015] [Accepted: 09/15/2015] [Indexed: 10/24/2022]
Abstract
Epac (exchange protein activated by cyclic-AMP) 2 is a direct target of 3'-5'-cyclic adenosine monophosphate (cAMP) and is involved in cAMP-mediated signal transduction through activation of the Ras-like small GTPase Rap. Crystallographic analyses revealed that activation of Epac2 by cAMP is accompanied by dynamic structural changes. Epac2 is expressed mainly in brain, neuroendocrine and endocrine tissues, and is involved in diverse cellular functions in the tissues. In this review, we summarize the structure and function of Epac2. We also discuss the physiological and pathophysiological roles of Epac2, and the possibility of Epac2 as a therapeutic target.
Collapse
Affiliation(s)
- Kenji Sugawara
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadao Shibasaki
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
33
|
Ferrero JJ, Ramírez-Franco J, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Cross-talk between metabotropic glutamate receptor 7 and beta adrenergic receptor signaling at cerebrocortical nerve terminals. Neuropharmacology 2015. [PMID: 26211974 DOI: 10.1016/j.neuropharm.2015.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The co-existence of presynaptic G protein coupled receptors, GPCRs, has received little attention, despite the fact that interplay between the signaling pathways activated by such receptors may affect the neurotransmitter release. Using immunocytochemistry and immuhistochemistry we show that mGlu7 and β-adrenergic receptors are co-expressed in a sub-population of cerebrocortical nerve terminals. mGlu7 receptors readily couple to pathways that inhibit glutamate release. We found that when mGlu7 receptors are also coupled to pathways that enhance glutamate release by prolonged exposure to agonist, and β-adrenergic receptors are also activated, a cross-talk between their signaling pathways occurs that affect the overall release response. This interaction is the result of mGlu7 receptors inhibiting the adenylyl cyclase activated by β adrenergic receptors. Thus, blocking Gi/o proteins with pertussis toxin provokes a further increase in release after receptor co-activation which is also observed after activating β-adrenergic receptor signaling pathways downstream of adenylyl cyclase with the cAMP analog Sp8Br or 8pCPT-2-OMe-cAMP (a specific activator of the guanine nucleotide exchange protein directly activated by cAMP, EPAC). Co-activation of mGlu7 and β-adrenergic receptors also enhances PLC-dependent accumulation of IP1 and the translocation of the active zone protein Munc13-1 to the membrane, indicating that release potentiation by these receptors involves the modulation of the release machinery.
Collapse
Affiliation(s)
- José Javier Ferrero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain.
| |
Collapse
|
34
|
Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus. J Neurosci 2015; 35:6544-53. [PMID: 25904804 DOI: 10.1523/jneurosci.0314-14.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus.
Collapse
|
35
|
Lee K, Kobayashi Y, Seo H, Kwak JH, Masuda A, Lim CS, Lee HR, Kang SJ, Park P, Sim SE, Kogo N, Kawasaki H, Kaang BK, Itohara S. Involvement of cAMP-guanine nucleotide exchange factor II in hippocampal long-term depression and behavioral flexibility. Mol Brain 2015; 8:38. [PMID: 26104314 PMCID: PMC4477293 DOI: 10.1186/s13041-015-0130-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Background Guanine nucleotide exchange factors (GEFs) activate small GTPases that are involved in several cellular functions. cAMP-guanine nucleotide exchange factor II (cAMP-GEF II) acts as a target for cAMP independently of protein kinase A (PKA) and functions as a GEF for Rap1 and Rap2. Although cAMP-GEF II is expressed abundantly in several brain areas including the cortex, striatum, and hippocampus, its specific function and possible role in hippocampal synaptic plasticity and cognitive processes remain elusive. Here, we investigated how cAMP-GEF II affects synaptic function and animal behavior using cAMP-GEF II knockout mice. Results We found that deletion of cAMP-GEF II induced moderate decrease in long-term potentiation, although this decrease was not statistically significant. On the other hand, it produced a significant and clear impairment in NMDA receptor-dependent long-term depression at the Schaffer collateral-CA1 synapses of hippocampus, while microscopic morphology, basal synaptic transmission, and depotentiation were normal. Behavioral testing using the Morris water maze and automated IntelliCage system showed that cAMP-GEF II deficient mice had moderately reduced behavioral flexibility in spatial learning and memory. Conclusions We concluded that cAMP-GEF II plays a key role in hippocampal functions including behavioral flexibility in reversal learning and in mechanisms underlying induction of long-term depression.
Collapse
Affiliation(s)
- Kyungmin Lee
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Hyunhyo Seo
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Ji-Hye Kwak
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Akira Masuda
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea.
| | - Hye-Ryeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea.
| | - SukJae Joshua Kang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Pojeong Park
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Su-Eon Sim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Naomi Kogo
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Hiroaki Kawasaki
- Department of Psychiatry, Faculty of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea. .,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
36
|
Liu J, Yeung PKK, Cheng L, Lo ACY, Chung SSM, Chung SK. Epac2-deficiency leads to more severe retinal swelling, glial reactivity and oxidative stress in transient middle cerebral artery occlusion induced ischemic retinopathy. SCIENCE CHINA-LIFE SCIENCES 2015; 58:521-30. [PMID: 25985753 DOI: 10.1007/s11427-015-4860-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Abstract
Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac1 and Epac2, are cAMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions. To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion (tMCAO) was performed on Epac1-deficient (Epac1 (-/-)) mice, Epac2-deficient (Epac2 (-/-)) mice, and their wild type counterparts (Epac1 (+/+) and Epac2 (+/+)). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After tMCAO, the contralateral retinae displayed similar morphology between different genotypes. Neuronal loss, retinal edema and increase in immunoreactivity for aquaporin 4 (AQP4), glial fibrillary acidic protein (GFAP), peroxiredoxin 6 (Prx6) were observed in ipsilateral retinae. Epac2 (-/-) ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2 (+/+). However, Epac1 (-/-) ipsilateral retinae displayed similar pathology as those in Epac1 (+/+) mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jin Liu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
37
|
Vasko MR, Habashy Malty R, Guo C, Duarte DB, Zhang Y, Nicol GD. Nerve growth factor mediates a switch in intracellular signaling for PGE2-induced sensitization of sensory neurons from protein kinase A to Epac. PLoS One 2014; 9:e104529. [PMID: 25126967 PMCID: PMC4134201 DOI: 10.1371/journal.pone.0104529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/13/2014] [Indexed: 12/21/2022] Open
Abstract
We examined whether nerve growth factor (NGF), an inflammatory mediator that contributes to chronic hypersensitivity, alters the intracellular signaling that mediates the sensitizing actions of PGE2 from activation of protein kinase A (PKA) to exchange proteins directly activated by cAMP (Epacs). When isolated sensory neurons are grown in the absence of added NGF, but not in cultures grown with 30 ng/ml NGF, inhibiting protein kinase A (PKA) activity blocks the ability of PGE2 to augment capsaicin-evoked release of the neuropeptide CGRP and to increase the number of action potentials (APs) evoked by a ramp of current. Growing sensory neurons in culture in the presence of increasing concentrations of NGF increases the expression of Epac2, but not Epac1. An intradermal injection of complete Freund's adjuvant into the rat hindpaw also increases the expression of Epac2, but not Epac1 in the dorsal root ganglia and spinal cord: an effect blocked by intraplantar administration of NGF antibodies. Treating cultures grown in the presence of 30 ng/ml NGF with Epac1siRNA significantly reduced the expression of Epac1, but not Epac2, and did not block the ability of PGE2 to augment capsaicin-evoked release of CGRP from sensory neurons. Exposing neuronal cultures grown in NGF to Epac2siRNAreduced the expression of Epac2, but not Epac1 and prevented the PGE2-induced augmentation of capsaicin and potassium-evoked CGRP release in sensory neurons and the PGE2-induced increase in the number of APs generated by a ramp of current. In neurons grown with no added NGF, Epac siRNAs did not attenuate PGE2-induced sensitization. These results demonstrate that NGF, through increasing Epac2 expression, alters the signaling cascade that mediates PGE2-induced sensitization of sensory neurons, thus providing a novel mechanism for maintaining PGE2-induced hypersensitivity during inflammation.
Collapse
Affiliation(s)
- Michael R. Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Ramy Habashy Malty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Chunlu Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Djane B. Duarte
- Faculdade De Ciências da Saúde-FS, Universidade De Brasília-UNB Campus Universitário Darcy, Ribeiro-Asa Norte, Brazil
| | - Yihong Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Grant D. Nicol
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
38
|
Matsumoto JPP, Almeida MG, Castilho-Martins EA, Costa MA, Fior-Chadi DR. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata. Neurosci Res 2014; 85:1-11. [PMID: 24912137 DOI: 10.1016/j.neures.2014.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 01/25/2023]
Abstract
Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation.
Collapse
Affiliation(s)
| | - Marina Gomes Almeida
- Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maisa Aparecida Costa
- Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
39
|
Ramírez-Franco J, Bartolomé-Martín D, Alonso B, Torres M, Sánchez-Prieto J. Cannabinoid type 1 receptors transiently silence glutamatergic nerve terminals of cultured cerebellar granule cells. PLoS One 2014; 9:e88594. [PMID: 24533119 PMCID: PMC3922925 DOI: 10.1371/journal.pone.0088594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 01/13/2014] [Indexed: 12/25/2022] Open
Abstract
Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals.
Collapse
Affiliation(s)
- Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Beatris Alonso
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- * E-mail: (JSP); (MT)
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- * E-mail: (JSP); (MT)
| |
Collapse
|
40
|
Chen H, Wild C, Zhou X, Ye N, Cheng X, Zhou J. Recent advances in the discovery of small molecules targeting exchange proteins directly activated by cAMP (EPAC). J Med Chem 2013; 57:3651-65. [PMID: 24256330 DOI: 10.1021/jm401425e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
3',5'-Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger that regulates numerous biological processes under physiological and pathological conditions, including cancer, diabetes, heart failure, inflammation, and neurological disorders. In the past, all effects of cAMP were initially believed to be mediated by protein kinase A (PKA) and cyclic nucleotide-regulated ion channels. Since the discovery of exchange proteins directly activated by cyclic adenosine 5'-monophosphate (EPACs) in 1998, accumulating evidence has demonstrated that the net cellular effects of cAMP are also regulated by EPAC. The pursuit of the biological functions of EPAC has benefited from the development and applications of a growing number of pharmacological probes targeting EPACs. In this review, we seek to provide a concise update on recent advances in the development of chemical entities including various membrane-permeable analogues of cAMP and newly discovered EPAC-specific ligands from high throughput assays and hit-to-lead optimizations.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | | | |
Collapse
|
41
|
Ferrero JJ, Alvarez AM, Ramírez-Franco J, Godino MC, Bartolomé-Martín D, Aguado C, Torres M, Luján R, Ciruela F, Sánchez-Prieto J. β-Adrenergic receptors activate exchange protein directly activated by cAMP (Epac), translocate Munc13-1, and enhance the Rab3A-RIM1α interaction to potentiate glutamate release at cerebrocortical nerve terminals. J Biol Chem 2013; 288:31370-85. [PMID: 24036110 DOI: 10.1074/jbc.m113.463877] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The adenylyl cyclase activator forskolin facilitates synaptic transmission presynaptically via cAMP-dependent protein kinase (PKA). In addition, cAMP also increases glutamate release via PKA-independent mechanisms, although the downstream presynaptic targets remain largely unknown. Here, we describe the isolation of a PKA-independent component of glutamate release in cerebrocortical nerve terminals after blocking Na(+) channels with tetrodotoxin. We found that 8-pCPT-2'-O-Me-cAMP, a specific activator of the exchange protein directly activated by cAMP (Epac), mimicked and occluded forskolin-induced potentiation of glutamate release. This Epac-mediated increase in glutamate release was dependent on phospholipase C, and it increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Moreover, the potentiation of glutamate release by Epac was independent of protein kinase C, although it was attenuated by the diacylglycerol-binding site antagonist calphostin C. Epac activation translocated the active zone protein Munc13-1 from soluble to particulate fractions; it increased the association between Rab3A and RIM1α and redistributed synaptic vesicles closer to the presynaptic membrane. Furthermore, these responses were mimicked by the β-adrenergic receptor (βAR) agonist isoproterenol, consistent with the immunoelectron microscopy and immunocytochemical data demonstrating presynaptic expression of βARs in a subset of glutamatergic synapses in the cerebral cortex. Based on these findings, we conclude that βARs couple to a cAMP/Epac/PLC/Munc13/Rab3/RIM-dependent pathway to enhance glutamate release at cerebrocortical nerve terminals.
Collapse
Affiliation(s)
- Jose J Ferrero
- From the Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Spangler SA, Schmitz SK, Kevenaar JT, de Graaff E, de Wit H, Demmers J, Toonen RF, Hoogenraad CC. Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. ACTA ACUST UNITED AC 2013; 201:915-28. [PMID: 23751498 PMCID: PMC3678157 DOI: 10.1083/jcb.201301011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liprin-α2 is required for the presynaptic recruitment and turnover of RIM1 and CASK, components of the release machinery, and facilitates synaptic output by regulating synaptic vesicle pool size. The presynaptic active zone mediates synaptic vesicle exocytosis, and modulation of its molecular composition is important for many types of synaptic plasticity. Here, we identify synaptic scaffold protein liprin-α2 as a key organizer in this process. We show that liprin-α2 levels were regulated by synaptic activity and the ubiquitin–proteasome system. Furthermore, liprin-α2 organized presynaptic ultrastructure and controlled synaptic output by regulating synaptic vesicle pool size. The presence of liprin-α2 at presynaptic sites did not depend on other active zone scaffolding proteins but was critical for recruitment of several components of the release machinery, including RIM1 and CASK. Fluorescence recovery after photobleaching showed that depletion of liprin-α2 resulted in reduced turnover of RIM1 and CASK at presynaptic terminals, suggesting that liprin-α2 promotes dynamic scaffolding for molecular complexes that facilitate synaptic vesicle release. Therefore, liprin-α2 plays an important role in maintaining active zone dynamics to modulate synaptic efficacy in response to changes in network activity.
Collapse
Affiliation(s)
- Samantha A Spangler
- Department of Neuroscience, Erasmus Medical Center, 3015GE Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Richter W, Menniti FS, Zhang HT, Conti M. PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 2013; 17:1011-27. [PMID: 23883342 DOI: 10.1517/14728222.2013.818656] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The second messengers cAMP and cGMP mediate fundamental aspects of brain function relevant to memory, learning, and cognitive functions. Consequently, cyclic nucleotide phosphodiesterases (PDEs), the enzymes that inactivate the cyclic nucleotides, are promising targets for the development of cognition-enhancing drugs. AREAS COVERED PDE4 is the largest of the 11 mammalian PDE families. This review covers the properties and functions of the PDE4 family, highlighting procognitive and memory-enhancing effects associated with their inactivation. EXPERT OPINION PAN-selective PDE4 inhibitors exert a number of memory- and cognition-enhancing effects and have neuroprotective and neuroregenerative properties in preclinical models. The major hurdle for their clinical application is to target inhibitors to specific PDE4 isoforms relevant to particular cognitive disorders to realize the therapeutic potential while avoiding side effects, in particular emesis and nausea. The PDE4 family comprises four genes, PDE4A-D, each expressed as multiple variants. Progress to date stems from characterization of rodent models with selective ablation of individual PDE4 subtypes, revealing that individual subtypes exert unique and non-redundant functions in the brain. Thus, targeting specific PDE4 subtypes, as well as splicing variants or conformational states, represents a promising strategy to separate the therapeutic benefits from the side effects of PAN-PDE4 inhibitors.
Collapse
Affiliation(s)
- Wito Richter
- University of California San Francisco, Department of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, CA 94143-0556, USA.
| | | | | | | |
Collapse
|
44
|
Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol 2013; 714:486-97. [PMID: 23850946 DOI: 10.1016/j.ejphar.2013.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
Abstract
Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.
Collapse
|
45
|
Guibinga GH, Murray F, Barron N, Pandori W, Hrustanovic G. Deficiency of the purine metabolic gene HPRT dysregulates microRNA-17 family cluster and guanine-based cellular functions: a role for EPAC in Lesch-Nyhan syndrome. Hum Mol Genet 2013; 22:4502-15. [PMID: 23804752 DOI: 10.1093/hmg/ddt298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lesch-Nyhan syndrome (LNS) is a neurodevelopmental disorder caused by mutations in the gene encoding the purine metabolic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). A series of motor, cognitive and neurobehavioral anomalies characterize this disease phenotype, which is still poorly understood. The clinical manifestations of this syndrome are believed to be the consequences of deficiencies in neurodevelopmental pathways that lead to disordered brain function. We have used microRNA array and gene ontology analysis to evaluate the gene expression of differentiating HPRT-deficient human neuron-like cell lines. We set out to identify dysregulated genes implicated in purine-based cellular functions. Our approach was based on the premise that HPRT deficiency affects preeminently the expression and the function of purine-based molecular complexes, such as guanine nucleotide exchange factors (GEFs) and small GTPases. We found that several microRNAs from the miR-17 family cluster and genes encoding GEF are dysregulated in HPRT deficiency. Most notably, our data show that the expression of the exchange protein activated by cAMP (EPAC) is blunted in HPRT-deficient human neuron-like cell lines and fibroblast cells from LNS patients, and is altered in the cortex, striatum and midbrain of HPRT knockout mouse. We also show a marked impairment in the activation of small GTPase RAP1 in the HPRT-deficient cells, as well as differences in cytoskeleton dynamics that lead to increased motility for HPRT-deficient neuron-like cell lines relative to control. We propose that the alterations in EPAC/RAP1 signaling and cell migration in HPRT deficiency are crucial for neuro-developmental events that may contribute to the neurological dysfunctions in LNS.
Collapse
|
46
|
NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology 2013; 38:1352-64. [PMID: 23358240 PMCID: PMC3656378 DOI: 10.1038/npp.2013.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu(31),Pro(34)]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.
Collapse
|
47
|
Ariel P, Hoppa MB, Ryan TA. Intrinsic variability in Pv, RRP size, Ca(2+) channel repertoire, and presynaptic potentiation in individual synaptic boutons. Front Synaptic Neurosci 2013; 4:9. [PMID: 23335896 PMCID: PMC3542534 DOI: 10.3389/fnsyn.2012.00009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/24/2012] [Indexed: 11/23/2022] Open
Abstract
The strength of individual synaptic contacts is considered a key modulator of information flow across circuits. Presynaptically the strength can be parsed into two key parameters: the size of the readily releasable pool (RRP) and the probability that a vesicle in that pool will undergo exocytosis when an action potential fires (Pv). How these variables are controlled and the degree to which they vary across individual nerve terminals is crucial to understand synaptic plasticity within neural circuits. Here we report robust measurements of these parameters in rat hippocampal neurons and their variability across populations of individual synapses. We explore the diversity of presynaptic Ca2+ channel repertoires and evaluate their effect on synaptic strength at single boutons. Finally, we study the degree to which synapses can be differentially modified by a known potentiator of presynaptic function, forskolin. Our experiments revealed that both Pv and RRP spanned a large range, even for synapses made by the same axon, demonstrating that presynaptic efficacy is governed locally at the single synapse level. Synapses varied greatly in their dependence on N or P/Q type Ca2+ channels for neurotransmission, but there was no association between specific channel repertoires and synaptic efficacy. Increasing cAMP concentration using forskolin enhanced synaptic transmission in a Ca2+-independent manner that was inversely related with a synapse's initial Pv, and independent of its RRP size. We propose a simple model based on the relationship between Pv and calcium entry that can account for the variable potentiation of synapses based on initial probability of vesicle fusion.
Collapse
Affiliation(s)
- Pablo Ariel
- Department of Biochemistry, Weill Cornell Medical College New York, NY, USA ; David Rockefeller Graduate Program, The Rockefeller University New York, NY, USA
| | | | | |
Collapse
|
48
|
Kawano H, Katsurabayashi S, Kakazu Y, Yamashita Y, Kubo N, Kubo M, Okuda H, Takasaki K, Kubota K, Mishima K, Fujiwara M, Harata NC, Iwasaki K. Long-term culture of astrocytes attenuates the readily releasable pool of synaptic vesicles. PLoS One 2012; 7:e48034. [PMID: 23110166 PMCID: PMC3482238 DOI: 10.1371/journal.pone.0048034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 09/19/2012] [Indexed: 12/24/2022] Open
Abstract
The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP) expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.
Collapse
Affiliation(s)
- Hiroyuki Kawano
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
- * E-mail: (SK); (KI)
| | - Yasuhiro Kakazu
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Yuta Yamashita
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - Natsuko Kubo
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - Masafumi Kubo
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - Hideto Okuda
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - Kotaro Takasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
- A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
| | - N. Charles Harata
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
- A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Fukuoka, Japan
- * E-mail: (SK); (KI)
| |
Collapse
|
49
|
Mohan S, Ahmad AS, Glushakov AV, Chambers C, Doré S. Putative role of prostaglandin receptor in intracerebral hemorrhage. Front Neurol 2012; 3:145. [PMID: 23097645 PMCID: PMC3477820 DOI: 10.3389/fneur.2012.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
Each year, approximately 795,000 people experience a new or recurrent stroke. Of all strokes, 84% are ischemic, 13% are intracerebral hemorrhage (ICH) strokes, and 3% are subarachnoid hemorrhage strokes. Despite the decreased incidence of ischemic stroke, there has been no change in the incidence of hemorrhagic stroke in the last decade. ICH is a devastating disease 37–38% of patients between the ages of 45 and 64 die within 30 days. In an effort to prevent ischemic and hemorrhagic strokes we and others have been studying the role of prostaglandins and their receptors. Prostaglandins are bioactive lipids derived from the metabolism of arachidonic acid. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. Most prostaglandins are produced from specific enzymes and act upon cells via distinct G-protein coupled receptors. The presence of multiple prostaglandin receptors cross-reactivity and coupling to different signal transduction pathways allow differentiated cells to respond to prostaglandins in a unique manner. Due to the number of prostaglandin receptors, prostaglandin-dependent signaling can function either to promote neuronal survival or injury following acute excitotoxicity, hypoxia, and stress induced by ICH. To better understand the mechanisms of neuronal survival and neurotoxicity mediated by prostaglandin receptors, it is essential to understand downstream signaling. Several groups including ours have discovered unique roles for prostaglandin receptors in rodent models of ischemic stroke, excitotoxicity, and Alzheimer disease, highlighting the emerging role of prostaglandin receptor signaling in hemorrhagic stroke with a focus on cyclic-adenosine monophosphate and calcium (Ca2+) signaling. We review current ICH data and discuss future directions notably on prostaglandin receptors, which may lead to the development of unique therapeutic targets against hemorrhagic stroke and brain injuries alike.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, College of Medicine, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
50
|
Melatonin attenuates scopolamine-induced memory/synaptic disorder by rescuing EPACs/miR-124/Egr1 pathway. Mol Neurobiol 2012; 47:373-81. [PMID: 23054680 DOI: 10.1007/s12035-012-8355-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia in elderly people. There are decreased melatonin levels in the serum of AD patients, and melatonin supplements are able to reverse AD pathology and memory deficits in many animal experiments and clinical trials. However, the underlying mechanism regarding how melatonin rescues the AD-like memory/synaptic disorder remains unknown. Here, we use the Morris water maze, step-down inhibitory avoidance task, in vivo long-term potentiation recording, and Golgi staining and report that intraperitoneal injection of melatonin (1 mg/kg/day) for 14 days in rats effectively reverses the memory and synaptic impairment in scopolamine-induced amnesia, a well-recognized dementia animal model. Using real-time polymerase chain reaction and western blotting experiments, we further determined that melatonin rescues the EPACs/miR-124/Egr1 signal pathway, which is important in learning and memory, as reported recently. Our studies provide a novel underlying epigenetic mechanism for melatonin to attenuate the synaptic disorder and could benefit drug discovery in neurodegenerative diseases.
Collapse
|